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Chloride homeostasis is critical in the physiological functions of the central
nervous system (CNS). Its concentration is precisely regulated by multiple ion-
transporting proteins such as chloride channels and transporters that are widely
distributed in the brain cells, including neurons and glia. Unlike ion transporters,
chloride channels provide rapid responses to efficiently regulate ion flux. Some of
chloride channels are also permeable to selected organic anions such as
glutamate and γ-aminobutyric acid, suggesting neuroexcitatory and
neuroinhibitory functions while gating. Dysregulated chloride channels are
implicated in neurological disorders, e.g., ischemia and neuroinflammation.
Modulation of chloride homeostasis through chloride channels has been
suggested as a potential therapeutic approach for neurological disorders. The
drug design for CNS diseases is challenging because it requires the therapeutics to
traverse the blood-brain-barrier. Small molecules are a well-established modality
with better cell permeability due to their lower molecular weight and flexibility for
structure optimization compared to biologics. In this article, we describe the
important roles of chloride homeostasis in each type of brain cells and introduce
selected chloride channels identified in the CNS. We then discuss the contribution
of their dysregulations towards the pathogenesis of neurological disorders,
emphasizing the potential of targeting chloride channels as a therapeutic
strategy for CNS disease treatment. Along with this literature survey, we
summarize the small molecules that modulate chloride channels and propose
the potential strategy of optimizing existing drugs to brain-penetrants to support
future CNS drug discovery.
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blood-brain-barrier; BCRP, breast cancer resistance protein; Best1, bestrophin 1; CaCC, Ca2+-gated
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channel; MDR1, multiple drug resistance 1; MLC, megalencephalic leukoencephalopathy with subcortical
cysts; MW, molecular weight; PD, Parkinson’s disease; THIP, 4,5,6,7-tetrahydroisoxazolopyridin-3-ol;
TPSA, topological polar surface area; VRAC, volume regulated anion channel.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 02 March 2023
DOI 10.3389/fphys.2023.1122444

https://www.frontiersin.org/articles/10.3389/fphys.2023.1122444/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1122444/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1122444/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1122444&domain=pdf&date_stamp=2023-03-02
mailto:kaylee.choi@amgen.com
mailto:kaylee.choi@amgen.com
https://doi.org/10.3389/fphys.2023.1122444
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1122444


1 Introduction

As the most abundant anion, chloride performs multiple
physiological functions in the cells, where it maintains cellular
homeostasis (Verkman and Galietta, 2021). In the central
nervous system (CNS), chloride participates in multiple events to
support neuronal functions. For instance, chloride regulates
postsynaptic inhibition involved in neural coding through
GABAA receptors (GABAARs; GABA, γ-aminobutyric acid)
(Doyon et al., 2016). Its concentration gradient directly impacts
neuronal excitation and inhibition (Mahadevan et al., 2014). In
addition, chloride mediates the physiological properties of the CNS-
supporting cells, glia. Glial cells comprise astrocytes, microglia, and
oligodendrocytes. Astrocytes are the most abundant glial cells in the
brain, where they surround neurons to provide physical structures,
maintain ion balances, regulate a blood flow, participate in neural
repairs, and release and uptake neurotransmitters. These functions
are regulated by chloride in multiple dimensions. For instance, the
strength of Cl− current is associated with the activity of glutamate
transporters in astrocytes (Wilson and Mongin, 2019). Under
transient ischemic stress, chloride is maintained at a dynamic
balance through multiple chloride-transporting mechanisms to
prevent astrocytic swelling (Engels et al., 2021). Microglia, ‘brain
macrophages’, keep sensing the microenvironment with a ramified
morphology at the resting stage. Upon the recognition of foreign
invaders such as pathogens or inflammatory molecules, they are
activated to initiate immune responses with an alternation into
amoeboid morphology initiating neuroinflammation. This
activation with a consequent morphology change is tightly
regulated by chloride. Chloride, to be specific, participates in the
membrane stretch during ramification of microglia and the
associated tyrosine-phosphorylation signaling pathway (Eder
et al., 1998). Its influx also provokes lamellipodium formation,
suggesting the critical role in microglia migration towards foreign
species (Zierler et al., 2008). Upon activation, chloride mediates
phagocytosis and the release of proinflammatory cytokines from
microglia, suggesting the therapeutic potential of chloride channel
modulators for microglia-involved neurodegenerative diseases
(Schlichter et al., 1996; Eder et al., 1998; Novarino et al., 2004;
Zierler et al., 2008). Oligodendrocytes are the myelinating glia in the
CNS. They assemble myelin sheath along nerve cell axons, reducing
internodal membrane capacitance and facilitating rapid conduction
of electrical impulses (Stassart et al., 2018). Its proliferation,
development, and maturation require chloride homeostasis
(Magalhães and Rivera, 2016).

Chloride homeostasis is regulated by multiple chloride-
transporting proteins including ion channels and transporters.
Due to genetic disorders, acute injuries, or inflammation,
however, these functional proteins are dysregulated, contributing
towards the pathophysiology of numerous neurological disorders
such as epilepsy, autism, ataxia, hyperekplexia, and neuropathic pain
(Funk et al., 2008; Kahle et al., 2008; Tyzio et al., 2014; Wu et al.,
2016; Wu et al., 2022). Modulation of chloride homeostasis in the
CNS has been suggested as a promising therapeutic approach to
resolve chloride disturbance and associated pathological disorders.

The drug design for CNS diseases is challenging because it
requires the therapeutics to traverse the blood-brain-barrier (BBB).
Compared to biologics, small molecules exhibit better permeability

to BBB and cellular membranes and offer flexibility for hit discovery
and lead optimization. In the past years, tremendous efforts have
been made to modulate chloride homeostasis through chloride
transporting proteins. Unlike the transporters, chloride channels
provide fast responses to efficiently regulate ion flux driven by
electrochemical gradient. In addition, various chloride channels
are permeable to larger anions such as GABA and glutamate,
exhibiting neuroinhibitory and neuroexcitatory effects while
gating (Park et al., 2009; Lee et al., 2010; Woo et al., 2012).
These features suggest a promising strategy to regulate chloride-
involved neurological disorders through chloride channels.

Since chloride channels show distinct properties between the
CNS and peripheral systems (Zhang et al., 2004), herein, we describe
the important roles of chloride homeostasis in each type of brain
cells and introduce selected chloride channels in the CNS,
emphasizing the contributions of their dysregulations towards the
pathogenesis of CNS disorders. We also discuss targeting chloride
channels as a therapeutic strategy for CNS disease treatments and
review the small molecules that modulate chloride homeostasis and
associated neurological disorders. From medicinal chemistry
perspective, we calculate the physicochemical properties of these
molecules and propose potential strategies to optimize specific
physicochemical parameters through structural modification,
supporting future CNS drug discovery.

2 Chloride channels in the CNS

2.1 Voltage-gated chloride channel (ClC
family)

ClC channels are expressed on plasma membranes, intracellular
organelles, and vesicles, where they regulate chloride gradients for
various cellular functions. For instance, ClC-2 regulates intracellular
chloride concentration of hippocampal pyramidal neurons through
chloride extrusion based on its inward rectifying property (Rinke
et al., 2010; Földy et al., 2010). The gating mechanisms of ClCs have
been reported with their protein structures (Accardi, 2015; Poroca
et al., 2017). Briefly, the subunit of dimeric ClC channels harbors an
ion pore that is modulated by the protonation-deprotonation cycle
of a glutamate gate. This cycle is voltage-dependent and can be
initiated by repulsion or protonation when voltage navigates a
permeant anion or a proton in. ClC family comprises nine
members that can be divided into chloride channels (ClC-1, -2,
-Ka, and -Kb) and Cl−/H+ exchangers (ClC-3 through -7). The
contributions of ClCs in physiology and disease progressions have
been extensively reviewed by Jentsch and colleagues (Jentsch and
Pusch, 2018). In this section, we focus on the roles of ClC-1 and -2 in
neurodegenerative diseases.

2.1.1 ClC-1
In the CNS, ClC-1 is distributed in the hippocampus, brain stem

nuclei, thalamic nuclei, and frontal neocortex, participating in
physiological processes (Chen et al., 2013). ClC-1 in the CNS
exhibits features distinct from ClC-1 in muscle tissue. For
example, ClC-1 in astrocytes exhibits less dependence on voltage
and extracellular Cl− than that in skeletal muscle (Zhang et al., 2004).
In the CNS, ClC-1 contributes to neuronal network maturation and
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TABLE 1 Summary of chloride channels involved in neurological disorders and their small-molecule modulators with physiochemical properties.

Chloride
channels

Gating
mechanism

Related
neurological
disorders

Small-molecule
modulators

In vitro potency Development stage Physicochemical properties

HBD
(<3)

cLogP
(2.0–4.0)

PSA
(<90)

MW
(<450)

ClC-1 Voltage-gated Epilepsy N/A Approved drug for the treatments of
glaucoma, epilepsy, altitude sickness,
periodic paralysis, idiopathic
intracranial hypertension, urine
alkalinization, and heart failure

2 −0.98 114 222

ClC-2 Epilepsy; MLC IC50: 17 ± 1 nM Koster et al. (2020) Preclinical stage 2 6.78 71 389

ANO1 Ligand (Ca2+)-gated Ischemic stroke;
neuropathic pain

IC50: 0.31 ± 0.59 μM Liu et al. (2015) Preclinical stage 2 4.83 96 416

ANO1: IC50: 7.84 ± 0.62 μM; Best 1:
IC50: 7.15 ± 0.65 μM Liu et al. (2015);
Liu et al. (2021)

Preclinical stage 2 5.71 76 347

Best1 AD; neuron
regeneration;
neuropathic pain

N/A Approved drug for the treatment of
urea cycle disorders

0 −100 40 186
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TABLE 1 (Continued) Summary of chloride channels involved in neurological disorders and their small-molecule modulators with physiochemical properties.

Chloride
channels

Gating
mechanism

Related
neurological
disorders

Small-molecule
modulators

In vitro potency Development stage Physicochemical properties

HBD
(<3)

cLogP
(2.0–4.0)

PSA
(<90)

MW
(<450)

CFTR Ligand (cAMP)-gated Glioma; AD;
frontotemporal
dementia

Potentiator EC50 G551D-CFTR:
100 nM; F508del-CFTR: 50 nM Van
Goor et al. (2009)

Approved drug for CF treatment 3 3.82 78 392

Potentiator EC50 G551D-CFTR:
1.12 ± 0.08 nM; F508del-CFTR:
280 nM Veit et al. (2021)

Approved as a combination drug with
ivacaftor and tezacaftor for CF
treatment

1 4.43 119 598

Potentiator EC50 G551D-CFTR:
339 nM; F508del-CFTR: 3 nM Van
der Plas et al. (2018)

Phase II clinical trial 3 1.88 106 348

Corrector EC50 F508del-CFTR:
38 pM Pedemonte et al. (2020)

Preclinical stage 1 7.58 101 616

Corrector EC50 F508del-CFTR: 81 ±
19 nM Van Goor et al. (2011)

Approved as a combination drug with
ivacaftor for CF treatment

2 6.05 97 452

(Continued on following page)

Fro
n
tie

rs
in

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

0
4

W
an

g
an

d
C
h
o
i

10
.3
3
8
9
/fp

h
ys.2

0
2
3
.112

2
4
4
4

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1122444


TABLE 1 (Continued) Summary of chloride channels involved in neurological disorders and their small-molecule modulators with physiochemical properties.

Chloride
channels

Gating
mechanism

Related
neurological
disorders

Small-molecule
modulators

In vitro potency Development stage Physicochemical properties

HBD
(<3)

cLogP
(2.0–4.0)

PSA
(<90)

MW
(<450)

Corrector EC50 F508del-CFTR: 5 nM
Wang et al. (2018)

Phase II clinical trial 2 6.51 103 559

VRAC Volume-regulated Brain injury; stroke;
hyponatremia;

epilepsy

IC50: 4.1 μM Zhi et al. (2022) Preclinical stage 1 7.14 64 427

IC50: 4.6 μM Shen et al. (2000) Approved drug as an estrogen
modulator for breast cancer
treatment.

0 6.82 12 372

Ki = 6.0 ± 0.5 μM Maertens et al.
(1999)

Approved drugs as selective serotonin
reuptake inhibitors for antidepression

1 4.57 21 309

IC50: 2.1 ± 0.5 μM Maertens et al.
(2002)

1 5.35 12 306
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TABLE 1 (Continued) Summary of chloride channels involved in neurological disorders and their small-molecule modulators with physiochemical properties.

Chloride
channels

Gating
mechanism

Related
neurological
disorders

Small-molecule
modulators

In vitro potency Development stage Physicochemical properties

HBD
(<3)

cLogP
(2.0–4.0)

PSA
(<90)

MW
(<450)

IC50: 2.7 ± 0.2 μM Maertens et al.
(2002)

1 4.24 40 329

IC50: 12.3 ± 1.4 μM Maertens et al.
(2002)

1 3.03 57 318

IC50: 27.7 ± 2.8 μM Maertens et al.
(2002)

0 3.13 36 324

IC50: 1.27 ± 0.18 μM Jeon et al. (2022) Preclinical stage 3 3.78 123 458

GABAA

Receptor
Ligand (GABA)-gated Dementia; primary

insomnia; epilepsy
EC50 α4β3δ: 13 μM
Hoestgaard-Jensen et al. (2014)

No longer in clinical development 2 −0.58 50 140

Partial agonist EC50 α1β1γ2: 10 nM
Puia et al. (1992)

Anxiolytic drug 0 3.07 62 418
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TABLE 1 (Continued) Summary of chloride channels involved in neurological disorders and their small-molecule modulators with physiochemical properties.

Chloride
channels

Gating
mechanism

Related
neurological
disorders

Small-molecule
modulators

In vitro potency Development stage Physicochemical properties

HBD
(<3)

cLogP
(2.0–4.0)

PSA
(<90)

MW
(<450)

EC50 α1β2γ2: 301 nM; α1β2γ3:
554 nM Richter et al. (2020)

Approved drugs for the treatment of
insomnia

0 1.25 90 389

EC50 α1β2γ2: 203 nM; α1β2γ3:
56 nM Richter et al. (2020)

0 1.43 72 305

EC50 α1β2γ2: 230 nM Richter et al.
(2020)

0 3.02 36 307

Antagonist IC50: α3-5 containing
receptors: 37–88 nM;
α1,2,6 containing receptors:
240–790 nM Falk-Petersen et al.
(2020)

Preclinical 2 2.09 61 384

MAC Solute carrier organic
anion transporter

family member 2A1

Cerebral edema;
stroke; inflammation

N/A Preclinical 1 4.55 64 369
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neuronal excitability, suggesting its important role in preventing
neurological disorders such as epilepsy (Rahmati et al., 2018).
Furthermore, a parallel exome sequencing of 237 ion channel
genes verifies that ClC-1 is involved in the pathogenesis of
epilepsy (Chen et al., 2013).

Several drugs targeting ClC-1 have been developed to treat
neuromuscular diseases. Acetazolamide influences the voltage-
dependent gating of ClC-1, elevating open probability and chloride
conductance (Eguchi et al., 2006). Acetazolamide, however, contains a
primary sulfonamide group (see Table 1), which might impact the
permeability across BBB (Wang et al., 2021). NMDPharma, a clinical-
stage biotech company, developed NMD670, a small-molecule
inhibitor against ClC-1, recently granted Orphan Drug Designation
by the Food and Drug Administration (FDA) for the treatment of
myasthenia gravis. Myasthenia gravis is caused by autoimmunity
against nicotinic acetylcholine receptors in skeletal muscle endplates
in most cases (Koneczny and HerbstGravis, 2019). Therefore, the
expected effect of NMD670 would be due to increased muscle
excitability by blocking muscle ClC-1.

2.1.2 ClC-2
In comparison to ClC-1, ClC-2 is abundantly expressed in the

CNS, where it is triggered by negative membrane voltage, cellular
volume change, increased intracellular Cl−, or extracellular
acidification (Grunder et al., 1992; Jordt and Jentsch, 1997),
modulating chloride efflux, neuroexcitation, myelination, and
signaling transduction (Sik et al., 2000; Niemeyer et al., 2004). In
hippocampal neurons, ClC-2 mediates chloride currents, a
substantial part of the background conductance. The loss of
ClC-2 in interneurons induces a dramatic increase of
excitability, causing inhibition of principal neurons, thereby
reducing overall network excitability (Rinke et al., 2010). In
glia, ClC-2 has been identified as a positive modulator of
oligodendrocyte maturation from precursor cells and
subsequent myelin formation, repairing myeline-associated
neurological disorders (Hou et al., 2018). Its function has been
further demonstrated in aging study that identified the
neuroprotective role of ClC-2 in the hippocampus (Cortez
et al., 2010). In addition, ClC-2 is expressed in the end feet of

FIGURE 1
Impacts of dysregulated chloride channels on neurons through glia. Chloride channels in the CNS not only directly modulate neuronal excitability,
but also indirectly impact neuronal functions through the gliotransmitters released from astrocytes via gating organic anions such as glutamate and
GABA. In neurological disorders, dysregulated chloride channels release excessive neurotransmitters, causing neuronal impairment.
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astrocytes surrounding blood vessels, where it regulates chloride
ion and blood flows (Sı´k et al., 2000).

Due to the wide distribution in the CNS, dysregulated ClC-2 may
lead to multiple neurological disorders. ClC-2 mutation, for instance,
has been suggested to be a cause of epilepsy (D’Agostino et al., 2004)
although the mechanism needs further elucidation. In addition, aged
ClC-2 KO mice exhibit perturbed neurotransmission patterns and
increased excitation associated with astrocyte activation and
neuronal degeneration (Cortez et al., 2010). Megalencephalic
leukoencephalopathy with subcortical cysts (MLC) is a disease that
causes seizures and developmental delay in early life, followed by a
deterioration of motor functions and intellectual abilities. Pathology
study identifies vacuolations in the myelin and astrocytes of MLC
patients, suggesting that the disturbed ion homeostasis might be the
reason for MLC development (van der Knaap et al., 1996; Duarri et al.,
2011). Mutation on GLIALCAM is one explanation for MLC
pathogenesis (López-Hernández et al., 2011). GlialCAM is a
molecule that targets ClC-2 to cell junctions and increases ClC-2-
mediated current, altering its functional properties (Jeworutzki et al.,
2012). Aberrant GlialCAM, however, fails to target ClC-2 to cell
junctions, leading to MLC disease. This observation is consistent
with the animal study that shows ClC-2 KO mice develop
widespread vacuolation in the white matter of the brain and spinal
cord, which might be related to defective oligodendrocytes (Blanz et al.,
2007).

AK-42 is a small molecule that inhibits ClC-2 with
nanomolar potency (IC50 = 17 ± 1 nM) and rapidly and
reversibly blocks ClC-2 currents. It displays unprecedented
selectivity over ClC-1 and exhibits no off-target engagement
against a panel of other common channels, receptors, and
transporters expressed in brain tissue (Koster et al., 2020).
This development provides a precise tool for future
investigation on chloride-involved neurophysiology and the
discovery of ClC-2-related therapeutics. In addition, peptide
inhibitors have been developed as a pharmacological tool to
probe ClC-2 structure/function (Thompson et al., 2009). To
deliver the peptide therapeutics across BBB, brain-penetrating
molecular transport vectors, such as BBB shuttle peptides, have
been developed (Oller-Salvia et al., 2016). These brain-permeable
peptides conjugated with therapeutics can traverse BBB through
diverse mechanisms.

2.2 Ca2+-activated Cl− channels (CaCCs)

Ca2+-activated Cl− channels (CaCCs) are activated by
intracellular Ca2+, exhibiting an outwardly rectifying current-
voltage relationship at relatively low Ca2+ concentration while
displaying a linear current-voltage relationship at higher Ca2+

concentration (Huang et al., 2012a).

SCHEME 1
Examples of structure optimization to improve physicochemical properties. (A) Eszopiclone: methyl group (highlighted in red cycle) is replaced with
a different group represented by R1. cLogP value is improved with substitution by ethyl or propyl groups. (B) Elexacaftor: this design replaces the pyrazole
in the middle with a thiazole ring to retain the molecule orientation to the target. (C) Molecule orientation before (left) and after (right) structure
modification for elexacaftor. (D) DCPIB: bio-isosteric replacement of carboxylic acid with oxadiazolone.
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2.2.1 Anoctamins 1 and 2
Among the multiple family members in anoctamin (ANO, also

known as TMEM16) channels, ANO1 and ANO2 are considered as
CaCCs with defined physiological functions (Oh and Jung, 2016). In
the CNS, they have been identified in the cerebellar cortex,
hippocampus, and olfactory bulb, where they modulate synaptic
transmissions and olfaction (Rasche et al., 2010; Huang et al., 2012b;
Zhang et al., 2015). For instance, ANO1 plays a role in the network
of inhibitory interneurons in the cerebellar cortex, while ANO2 may
modulate the inhibitory input to Purkinje cells (Zhang et al., 2015).
During CNS development, ANO1 also involves in the maturation of
radial glial cells contributing to cortex development (Hong et al.,
2019).

ANOs also participate in neurological diseases. For instance,
ANO1 is overexpressed in various cancer cells including
glioblastoma. Under this pathological condition, activation of
tyrosine kinases and G protein-coupled receptors increases
intracellular Ca2+ concentration in glioblastoma cells, triggering
the gating of ANO1 (Kang et al., 2010). ANO1 also promotes
cancer progression by stimulating the signaling pathway of cell
proliferation (Britschgi et al., 2013; Liu et al., 2014). Suppression of
ANO1 activity inhibits migration and invasion of these glioblastoma
cell lines, indicating its therapeutic value (Lee et al., 2016). In
addition, ANO1 elevates the excitability of dorsal-root ganglion
neurons under inflammatory or neuropathic conditions, suggesting
that ANO1 inhibitors can be developed as novel analgesics (Lee
et al., 2014; Pineda-Farias et al., 2015). More recently, ANO2 has
been identified as an autoimmune target in multiple sclerosis
(Ayoglu et al., 2016).

Multiple ANO1 inhibitors have been developed and their
therapeutic values have been investigated in neurological
disorders. CaCCinh-A01 inhibits ANO1 with IC50 at 7.40 μM
(Table 1) (Liu et al., 2015). This inhibitor also blocks another
CaCC, Best1 with similar IC50. In comparison, T16Ainh-
A01 partially inhibits ANO1 but has no activity on Best1 (Liu
et al., 2015). Inhibition of ANO1 activity by CaCCinh-A01 and
T16Ainh-A01 has been demonstrated as a tool to generate analgesia
in nerve injury pain (Pineda-Farias et al., 2015). In addition,
CaCCinh-A01 also preserves BBB integrity, attenuates brain
infract size and neurological deficits after ischemic stroke,
indicating that ANO1 may become a potential target for ischemic
stroke (Liu et al., 2019).

2.2.2 Bestrophin1 (Best1)
Best1 is distributed in the olfactory bulb, hippocampus, and

cerebellum, expressed in both neurons and astrocytes (Park et al.,
2009). Best1 is activated by an increase of Ca2+ and induces Cl−

flux across cell membrane. This action leads to membrane
depolarization or hyperpolarization, depending on the
equilibrium potential. Best1 also plays distinct roles in the
brain, where it exhibits permeabilities for several other
monovalent anions, including Br−, I−, SCN−, HCO3

−, and
NO3

− (Qu and Hartzell, 2008; O’Driscoll et al., 2009). In
addition, Best1 in astrocytes has been reported to regulate
larger anions including GABA (Lee et al., 2010), one major
inhibitory neurotransmitter, and glutamate (Park et al., 2009;
Woo et al., 2012), one excitatory neurotransmitter mediated and
recycled by astrocytes.

Interestingly, the expression and functions of Best1 exhibit
altered patterns in astrocytes under pathological conditions.
Resting astrocytes do not synthesize GABA but express Best1 at
microdomains (astrocytic membrane protrusions enwrapping
synaptic terminals) to regulate glutamate release targeting
NMDA receptors (Oh and Lee, 2017). In Alzheimer’s disease
(AD), however, astrocytes that surround Aβ plaque are activated
to maintain brain homeostasis. This action triggers the synthesis of
GABA in astrocytes and the redistribution of Best1 from
perisynaptic microdomains to soma, from which GABA is
released by astrocytes through Best1 (Oh and Lee, 2017). The
GABA further diminishes the spike probability and synaptic
plasticity, impacting learning and memory function (Jo et al.,
2014). This evidence highlights the role of Best1 in neuron-glia
crosstalk through GABA as a gliotransmitter in AD. Upregulated
Best1 with associated increase of chloride currents has been
observed in dorsal root ganglia after peripheral nerve axotomy
and spinal nerve ligation (Boudes et al., 2009; Pineda-Farias
et al., 2015). Also, Best1 KO mice exhibit decreased neurite
outgrowth velocity in cultured injured sensory neurons,
suggesting a positive role in regeneration (Oh and Lee, 2017).

Sodium phenylbutyrate (4-PBA) appears to act as a chaperone to
improve Best1 protein folding and rescue the function of
Best1 mutants, thereby improving the chloride conductance (Liu
et al., 2020).

2.3 Cystic fibrosis transmembrane
conductance regulator (CFTR)

CFTR, a cAMP-dependent ion channel, transports chloride and
bicarbonate in the epithelial cells of airways, gastrointestinal and
reproductive organs (Verkman and Galietta, 2021). Aberrant CFTR
results in cystic fibrosis (CF) and subsequent impaired fluid and
pH homeostasis, contributing to the pathology in the lungs,
pancreas, livers, intestine, and testis (Verkman and Galietta,
2021). Interestingly, CNS complications occur more frequently in
CF patients than other lung transplant recipients (Goldstein et al.,
2000), suggesting CFTR may exist in the CNS and participate in
neuronal functions. Ex-vivo study has identified the expression of
CFTR in hypothalamus, thalamus, amygdala, and limbic system
(Mulberg et al., 1995; Mulberg et al., 1998; Weyler et al., 1999), the
areas regulating metabolism, food intake, sex differentiation, and
energy expenditure. This distribution seems to explain the
symptoms of growth failure and malnutrition in CF patients.

At the cellular level, CFTR expression has been observed in both
neurons and glia (Liu et al., 2006a; Guo et al., 2009) and its
expression shows different patterns depending on brain
development stage (Marcorelles et al., 2014). Patients with CF
show axonal dystrophy and detectable amyloid precursor protein
(Goldstein et al., 2000), implying that CFTR not only performs
fundamental functions in cell maturation during brain development
but also contributes to neurological disorders. Decreased expression
of CFTR, for instance, has been observed in the astrocytes
differentiated from patients with frontotemporal dementia type 3
(Chandrasekaran et al., 2021). In AD, CFTR gene expression is
downregulated in the hypothalamus, suggesting a potential role in
the regulation of metabolic function during neurodegeneration
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(Lahousse et al., 2003). Mutation in this gene leads to exaggerated
proinflammatory responses in AD (Lahousse et al., 2003). In-vitro
study demonstrates that CFTR suppresses apoptosis of glioma cells;
inhibition of CFTR function or expression suppresses the glioma cell
viability, whereas overexpression of CFTR shows an opposite impact
(Zhao et al., 2020). This observation is consistent with the
immunohistochemistry study on the samples collected from
glioblastoma patients, from which the expression level of CFTR
is significantly increased (Zhao et al., 2020).

More than 2000 CFTR mutants that impact protein synthesis
and stability have been identified (Veit et al., 2016). To restore the
function of CFTR, two types of modulators have been developed.
“Correctors” are the small molecules directly interacting with
mutant CFTR to repair protein folding and improve stability. In
contrast, “potentiators” correct the dysregulation by improving
channel gating. For instance, ivacaftor, a CFTR potentiator,
improves the chloride transport by directly binding to CFTR to
mediate gating, thereby restoring protein functions (Eckford et al.,
2012). Lumacaftor and tezacaftor, CFTR correctors, act as
chaperones during protein folding and increase protein
trafficking to the cell membrane, thereby improving protein
stability (Eckford et al., 2012; Ridley and Condren, 2020). The
combinations of lumacaftor/ivacaftor and tezacaftor/ivacaftor
have been approved by FDA for CF treatments.

2.4 Volume-regulated anion channel (VRAC)

Cell volume is maintained at a dynamic equilibrium through
dedicated mechanisms during transmembrane fluxes of ions and
nutrients, and synthesis/degradation of macromolecules. Among
multiple volume-regulatory proteins, volume-regulated anion
channel (VRAC) is activated by cell swelling and transports
anions including Cl− along electrochemical gradients. This action
leads to the efflux of water to counteract with cell swelling. In the
CNS, VRAC gating triggers the release of organic osmolytes such as
glutamate, impacting neuronal excitability (Kasuya and Nureki,
2022).

VRAC is a heteromeric protein and activated by cell swelling.
Five isoforms named LRRC8A-E have been identified. Functional
VRAC is formed by multiple LRRC8 proteins including the essential
LRRC8A and at least one other family member among LRRC8B-E
(Hyzinski-García et al., 2014; Voss et al., 2014). The expression ratio
and different combinations of LRRC8 isoforms in this complex
result in diverse properties, playing a unique role in the release of
different neurotransmitters such as glutamate, aspartate, GABA, and
taurine. In astrocytes, for example, the LRRC8A/D complex appears
to regulate the release of uncharged osmolytes, while LRRC8A/C/D/
E complex is responsible for charged molecules (Lutter et al., 2017;
Schober et al., 2017).

Under pathological conditions such as traumatic brain injury,
stroke, hyponatremia, and epilepsy, astrocytes swell, invading
extracellular space and impacting neuronal functions (Barron
et al., 1988; Manley et al., 2000; Fabene et al., 2006). These
events result in the buildup of glutamate and aspartate in the
extracellular space, persistently depolarizing neurons. VRACs
appear to play an important role during these neurological
disorders. For instance, VRACs are activated by astrocytic

swelling during stroke and mediate the release of excitatory
amino acids (Kimelberg, 2005) (Basarsky et al., 1999).
Administration of DCPIB, a specific VRAC inhibitor, reduces
infarct size in reversible middle cerebral artery occlusion and the
release of glutamate in the ischemic cortical penumbra, suggesting
neuroprotective effects in brain ischemia. As a fully charged anion at
physiological pH, however, DCPIB is not able to traverse BBB
(Zhang et al., 2008). In comparison, another VRAC inhibitor,
tamoxifen, has been reported to penetrate BBB and reduce brain
infarction in the stroke mouse model (Kimelberg et al., 2003). Some
natural products, such as phloretin, also exhibit inhibition of VRAC
and associated astrocytic amino acid release (Abdullaev et al., 2006).

2.5 GABAA-gated chloride channel (GABAA
receptor)

The activation of GABAARs triggers an alternation of
electrochemical potential, exerting inhibitory functions to regulate
neuronal excitability in the CNS. GABAARs are pentameric receptor
proteins composed of at least three different proteins collected from
19 subunits, α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3 (Brickley and Mody,
2012). The different combination of these subunits results in varying
isoforms with diverse functions (Mortensen et al., 2011; Phulera
et al., 2018). The predominant synaptic GABAARs are composed of
two α1-subunits, two β2-subunits, and one γ2-subunit (Zhu et al.,
2018), in which γ2-subunit is a major component and drives
receptor clustering at synapse (Essrich et al., 1998). In contrast,
the subunit composition of extrasynaptic GABAARs has the high
occurrence of α4, α5, α6, and δ subunits (Brickley and Mody, 2012).
Synaptic GABAARs interact with GABA with a low affinity to
generate phase conductance that inhibits postsynaptic currents in
a transient and rapid manner while extrasynaptic GABAARs
mediate tonic conductance in the presence of ambient GABA
with a high affinity, leading to a persistent inhibition (Lee and
Maguire, 2014).

Disturbances in synaptic and extrasynaptic GABAARs result in
multiple neurological disorders. For instance, patients with early
Parkinson’s disease (PD) develop non-motor symptoms such as
sleep disturbance, olfactory loss, and gastrointestinal abnormalities,
which are related to the deficits of GABAergic system (Błaszczyk,
2016). There is also a correlation between genetic alteration of
GABAARs and neurodevelopmental disorders such as fragile X
syndrome, Rett syndrome, and Dravet syndrome (Braat and
Kooy, 2015). Mutation in extrasynaptic δ-GABAARs leads to
diminished tonic inhibition and epileptic seizures (Chuang and
Reddy, 2018). Recent study has also identified that antipsychotic-
free patients with schizophrenia have lower extrasynaptic α5-
GABAARs in the hippocampus, which is not seen in
antipsychotic-treated schizophrenia patients, highlighting the
potential of GABAergic modulators as therapeutic targets for
schizophrenia (Marques et al., 2021).

The diverse GABAAR subunits create more opportunities for the
development of selective modulators. As GABAARs regulate
neurotransmitters, they are targets of widely-used sedative and
hypnotic drugs including barbiturates and benzodiazepines,
which interact with the interface between α and γ subunits of
GABAARs (May et al., 2013). Ligand binding locks the GABAARs
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into a conformation with a better exposure to GABA to potentiate
inhibitory signals (Phulera et al., 2018). The same site is targeted by
inverse agonists such as β-carbolines, which have an effect opposite
to that of anxiolytic benzodiazepines.

In addition, inverse agonists selective to the α5 subunit of the
GABAAR have been reported to enhance cognition without
anxiogenic and convulsant effects, highlighting the therapeutic
potentials to treat memory impairment associated with AD and
related dementias (Sternfeld et al., 2004). Gaboxadol is a selective
agonist for GABAARs that contain δ subunits, which are mainly
localized in thalamic neurons. Gaboxadol improves sleeping
conditions in the Phase III clinical trial to treat primary
insomnia (Wafford and Ebert, 2006). However, gaboxadol is no
longer in clinical development due to limited or variable efficacy and
psychiatric side effects (Roth et al., 2010).

2.6 Maxi anion channel (MAC)

Maxi anion channels (MACs) are highly effective electrogenic
chloride-transporting systems, involved in multiple physiological
events. MACs are widely expressed throughout the body and
triggered by osmotic cell swelling, apoptosis, ischemia, and
hypoxia (Sabirov and Okada, 2009). Comparing to other chloride
channels, MACs exhibit large single-channel conductance,
functioning as a highly efficient anion-transporting system, and
permeability to large organic anions including pyruvate, glutamate,
and ATP due to their wide pore (Jalonen, 1993; Dutta et al., 2004; Liu
et al., 2008a). MACs play multiple roles in the CNS. In astrocytes,
MACs regulate cell volume against swelling (Jalonen, 1993). Under
ischemic or osmotic stress, MACs serve as a major ATP- and
glutamate-releasing pathway in astrocytes (Liu et al., 2006b; Liu
et al., 2008b), modulating glutamatergic synaptic transmission and
microglia activation (Xiang et al., 2006).

Multiple studies have described small molecules that modulate
MAC functions. L-644-711 blocks MAC in cultured astrocytes and
regulates cell volume (Jalonen, 1993). This activity alleviates brain
edema resulting from traumatic injury and hypoosmotic
hyponatremia (Barron et al., 1988; Trachtman and Cragoe, 1989).
Deltamethrin, a type II pyrethroid pesticide, inhibits MAC activity
by decreasing open probability (Forshaw et al., 1993). In addition,
classical anion-channel blockers such as NPPB, SITS, DIDS, and
DPC inhibit MAC activity (Sabirov and Okada, 2009). In contrast,
tamoxifen, a VRAC blocker used to treat breast cancer, activates
MAC (Sabirov and Okada, 2005). Ivermectin and pentobarbitone
significantly activate MAC, providing a rationale for effective
therapy against pyrethroid-induced neurotoxicity (Forshaw et al.,
2000).

3 Discussion

Chloride channels in the CNS not only directly modulate
neuronal excitability, but also indirectly impact neuronal
functions through the gliotransmitters released from
astrocytes via gating organic anions such as glutamate and
GABA, as depicted in Figure 1. In neurological disorders,
dysregulated chloride channels release excessive

neurotransmitters, causing neuronal impairment. Our
literature survey highlights astrocytic swelling that impacts
brain function. This section further discusses the impacts of
dysregulated chloride channels during astrocytic swelling and
elucidates their contributions to the pathogenesis of
neurological disorders. Along with a summary of the small
molecules that modulate chloride channels, we also propose
the potential strategy of optimizing exiting drugs to brain-
penetrants, supporting future CNS drug discovery.

Astrocytes participate in fundamental roles in the CNS, where
they maintain ion homeostasis, provide essential nutrients, and
mediate neuronal excitability through gliotransmitters such as
glutamate, GABA, and ATP. In physiological conditions,
astrocytes release gliotransmitters to the network with neurons
upon receptor activation (Gordon et al., 2005), osmotic
perturbation (Darby et al., 2003), and deprivation of extracellular
Ca2+ (Suadicani et al., 2006). During neurological disorders such as
ischemia, however, ion-transporting systems of astrocytes and BBB
endothelial cells are dysregulated, contributing to astrocytic swelling
and vasogenic edema. Astrocytes are the major cell type that swells
in gray matter (Kimelberg, 2000). As the most abundant cells in the
CNS, astrocyte swelling significantly invades extracellular space,
elevating intracranial pressure, reducing blood flow, and
subsequently leading to tissue damage. As the CNS is encased
within a rigid skull unlike other tissues, edema in the brain is
life-threatening (Lafrenaye and Simard, 2019). In addition to
these direct impacts, astrocytic swelling also dysregulates its own
cellular function and induces secondary neurotoxicity. Astrocytes
initiate cellular machinery against swelling to re-establish their pre-
swelling volume by losing intracellular ions and excitatory amino
acids such as glutamate, which induces excitotoxicity and
subsequent neuronal injury (Kimelberg, 2000). As discussed in
the last section, multiple chloride channels such as VRAC and
Best1 have been suggested to modulate the release of excitatory
amino acids, highlighting their roles in neuronal function
impairments during neurological disorders and the therapeutic
value of chloride-channel modulators.

In addition to the regulations of membrane potential and gating
anions, chloride channels also participate in cell apoptosis through
endoplasmic reticulum (ER) stress. Ischemia reperfusion injury and
aging generate reactive oxygen species (Octavia et al., 2012; Liochev,
2013), which in turn activate VRACs, further inducing ER stress and
downstream apoptosis (Shen et al., 2014). The role of ER stress in the
pathogenesis of neurological disorders including AD, PD, and
amyotrophic lateral sclerosis, is well documented (Lindholm
et al., 2006). Treatment of chloride-channel blockers appears to
prevent apoptosis through ER-stress pathway, reinforcing their
therapeutic values against neurodegenerative diseases (Shen et al.,
2014).

Designing molecules to traverse the BBB is a challenging
hurdle in CNS drug discovery. The BBB is a layer that prevents
hydrophilic substances, charged molecules, and proteins from
entering into the extracellular fluid of the CNS from the
circulating blood to protect brain tissues from pathogens and
other neurotoxins. The BBB exchanges brain-necessary
substances such as glucose, amino acids, and ions through
selective and active transporting systems. Certain small
molecules may also diffuse passively through the BBB and
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enter the brain. However, the BBB has a dedicated efflux system
composed of breast cancer resistance protein (BCRP) and
multiple drug resistance 1 (MDR1), restricting their substrates
from the CNS.

In past decades, tremendous efforts have been made to regulate
chloride homeostasis. Although most drugs were developed to target
the peripheral systems, they provide a valuable reference for the drug
discovery/repurpose towards CNS diseases. To support structure
optimization for future endeavors, we summarized the small
molecules that modulate chloride channels with appealing
activity and specificity in Table 1 and calculated their
physicochemical properties to identify the property to be
optimized. cLogP stands for calculated logarithm of partition
coefficient P. It is the ratio of compound concentration in a
mixture of two immiscible solvents (such as water and n-octanol)
at equilibrium, evaluating how hydrophobic a compound is.
Hydrogen bond donors (HBDs) are the electronegative atoms,
such as O or N, covalently bonded to hydrogens that can be
donated. HBDs provide opportunities to molecular recognition,
structural stability, drug partition, and permeability (Coimbra
JTSFeghali et al., 2021). However, these polar moieties decrease
the affinity toward the hydrophobic membrane and increase the
energy penalty required to desolvate the molecule from water (Alex
et al., 2011). Consequently, HBD is considered as one important
parameter in medicinal chemistry. Polar surface area (PSA) is the
surface area of all polar atoms in one molecule. CNS drugs usually
have a relatively low PSA value than non-CNS drugs. These
parameters have been integrated in multiple algorithms to predict
compound permeability to BBB (Wager et al., 2010; Gupta et al.,
2019). The preferred ranges of these parameters are as followed: 2 <
cLogP < 4, HBD < 3, PSA < 90, and molecular weight (MW) < 450
(Wager et al., 2010).

By analyzing the structures shown in Table 1, we noticed that
some molecules are built with the moieties that are not favorable
to CNS penetration, such as carboxylate and primary
sulfonamide. Several strategies have been proposed for
structural modification of small molecules to improve BBB
penetration: increasing lipophilicity, reducing hydrogen bond
donor capacity, reducing PSA, enhancing rigidity, and reducing
pKa (Xiong et al., 2021). Herein, we discuss the possible structure
optimization of selected chloride channel mediators from Table 1
as case study and evaluate these modifications using
physicochemical parameters.

Eszopiclone has one methyl group on the piperazine ring as
highlighted in Scheme 1A, which is not directly involved in
binding interactions with its target based on previous docking
studies (Hanson et al., 2008). Substitution of a methyl group with
other aliphatic chains such as an ethyl or propyl group improves
cLogP value from 1.25 to 1.78 or 2.31, respectively. In contrast,
elexacaftor in Scheme 1B shows high cLogP, PSA, and MW. The
binding study has demonstrated that the sulfonamide and amide
groups of elexacaftor form hydrogen bonds with CFTR.
Elexacaftor also interacts with transmembrane helix through
electrostatic and van der Waals interactions (Fiedorczuk and
Chen, 2022), suggesting that all the moieties of elexacaftor
orientate into one docking position and contribute to binding

interactions. In this case, we propose a design to replace the
pyrazole ring in the middle with a thiazole ring, in which the
heteroatoms may serve as hydrogen bond accepters. In addition,
the aromatic system of thiazole may also retain this moiety into a
planer shape and provide hydrophobicity contributing to binding
interaction with CFTR. To determine whether the molecule
retains the comparable pose to fit in the binding pocket, we
compare the 3D structures of elexacaftor before and after the
modification. As shown in Scheme 1C, the molecules
superimpose from the pyridine moiety to the pyrazole ring,
suggesting the modified compound can fit in the same binding
pocket with a similar binding pattern as elexacaftor. In addition
to direct modifications of molecule structure, bio-isosteric
replacement also can create a new molecule with similar
biological properties to the parent compound but with
optimized bioavailability, which has been commonly adopted
in medicinal chemistry. For instance, carboxylate imparts
significant polarity, thereby strongly impacting
pharmacokinetics and drug distribution across BBB.
Carboxylic acid may also undergo glucuronidation during
phase II metabolism facilitating renal clearance, possibly
causing another issue for CNS-drug design. We thereby devise
an optimization of the carboxylic acid moiety in DCPIB to its bio-
isostere oxadiazolone in Scheme 1D. The cLogP value is then
optimized from 7.14 to 4.60.

The rationale of proposed structure optimizations in the
case studies above is solely based on the calculated
physicochemical properties and previous binding studies.
Minor changes on compound structure could change
molecule’s orientation and thereby significantly impact
compound activity. Thus, in vitro as well as in vivo
assessments would be required to validate compound potency
after structure modifications.
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