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High altitude pulmonary edema (HAPE) is a serious threat to the physical and
mental health of people who quickly enter high plateaus, deserves more attention
and in-depth research. In our study, through the detection of various physiological
indexes and other phenotypes in a HAPE rat model, the HAPE group showed a
significant decrease in oxygen partial pressure and oxygen saturation, and a
significant increase in pulmonary artery pressure and lung tissue water content.
The lung histomorphology showed characteristics such as pulmonary interstitial
thickening and inflammatory cell infiltration. We applied quasi-targeted
metabolomics to compare and analyze the components of metabolites in
arterial–veinous blood in control rats and HAPE rats. Using kyoto Encyclopedia
of Genes Genomes (KEGG) enrichment analysis and two machine algorithms, we
speculate that after hypoxic stress and comparing arterial blood and venous blood
products in rats, the metabolites were richer, indicating that normal physiological
activities, such asmetabolism and pulmonary circulationhad a greater impact after
hypoxic stress; D-mannoseDOWN, oxidized glutathioneDOWN, glutathione
disulfideDOWN, and dehydrocholic acidDOWN in arterial blood play key roles in
predicting the occurrence of HAPE; in venous blood, L-leucineDOWN,
L-thyroxineDOWN, and cis-4-hydroxy- D-prolineDOWN may have key roles, which
can be considered biomarkers of HAPE. This result provides a new perspective for
the further diagnosis and treatment of plateau disease and lays a strong foundation
for further research.
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1 Introduction

Acute mountain sickness is a serious threat to the physical and mental health of people who
quickly enter high plateaus. As a severe type of acute altitude sickness, HAPE can occur in first-
time visitors or in those who return to high plateaus after living at lower altitudes (Jensen and
Vincent, 2022). HAPE is caused by sudden exposure to the plateau environment, which causes
pulmonary artery pressure, pulmonary blood volume, pulmonary circulation disorders, and
microcirculation internal fluid leakage to the lung interstitia and alveoli (Gudbjartsson et al., 2019).

As the final product of gene expression, metabolites have become the main focus in related
diseases in recent years. And with the continuous development of metabolomics, more andmore
evidence shows that metabolites play an important role in the development of diseases. For
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example, untargetedmetabolomics analysis of lung tumors showed that
compared with normal lung tissue of mice, glutathione was increased in
tumors and accumulated in NSCLC lesions (Luengo et al., 2019). The
study of Schaarschmidt B et al. also suggested that targeted
metabolomics are an emerging field and can be used to diagnose or
assess stages and severity of different liver diseases such as cirrhosis and
fibrosis (Schaarschmidt et al., 2018). Hocher B et al. reviewed the
metabonomic characteristics of non-diabetes chronic kidney disease
(CKD) such as IgA nephropathy, and revealing amino acids and their
metabolites, tryptophan metabolites, uric acid and other purine
metabolites, lipids and acylcarnitines as promising markers (Hocher
and Adamski, 2017). While, there are few studies on the changes of
metabolites in the process of HAPE. In 2012, Luo Y et al. (Luo et al.,
2012) found the changes of some metabolites in the plasma of HAPE
patients by using proton (1H) NMR metabolomics. However, the
related components of metabolites in arterial and venous blood
during HAPE are not clear. We used quasi-targeted metabolomics
of metabolites in normal rats and HAPE blood to further clarify the
metabolism changes and preliminarily screen for biomarkers of HAPE.
Our findings could have great clinical importance in studying the
pathogenesis and treatment of HAPE.

2 Materials and methods

2.1 Animals

60 specific pathogen-free (SPF) Sprague–Dawley rats, weighing
180–220g, were purchased from the Laboratory Animal Center of
Beijing Weitong Lihua Experimental Animal Technology Co., Ltd.
License No. SCXK (Beijing) 2021–0011. The feeding environment
was 25°C ± 1°C, relative humidity 50%–60%, and light/darkness for
12 h circulation. Rats are allowed to eat and drink freely. Before
treatment, the body quality of rats was monitored. Animals and
experimental protocol were conducted according to the guidelines
and ethical standards of the Animal Care and Use Ethics
Committees and were approved by the Science and Technology
Ethics Committee of Qinghai University.

2.2 Establishment and grouping of animal
models

60 rats were randomly divided into two groups: the control group
and the HAPE group. Control rats were kept in the animal room of the
Medical College of Qinghai University. The HAPE model rats were
treated in a 6,000 m, 0.6 m/s hypobaric chamber with hypoxic stress for
48 h to establish a lung injury rat model. Rat weights in each groupwere
measured daily at a fixed point during rearing. After treatment, the rats
were anesthetized via intraperitoneal injection of pentobarbital sodium
at 45 mg/kg. The arterial blood and venous blood of the rats were
collected in a heparin sodium collector, and the control group was
randomly divided into a blank control venous blood group (CV group)
and an arterial blood group (CA group). The HAPE group was
randomly divided into a HAPE venous blood group (HV group)
and a HAPE arterial blood group (HA group). Whole blood was
extracted from the abdominal aorta using a blood collector, and 1 ml of
blood was taken for analysis of oxygen saturation and partial pressure of

oxygen in the abdominal aorta using an automatic blood gas analyzer
(Sysmex, Japan). The remaining whole blood was centrifuged at
3,000 rpm for 10 min at 4°C, and the serum was collected and
stored at −20°C. In addition, changes in pulmonary arterial pressure
waveforms were observed using PowerLab physiological loggers (ADI,
Australia), and pulmonary arterial pressure was measured using a
pressure sensor. Finally, the lung tissue was collected, and the water
content of the lung was calculated; the lung tissue was used for
subsequent experiments.

2.3 Hematoxylin and eosin (H&E) staining

Lung tissue sections were dewaxed and stained with H&E
staining (Servicebio, China) for pathological studies. Each lung
tissue section was evaluated using a trinocular microscope
(BA200Digital, Mike Audi, China).

2.4 Transmission electronmicroscope (TEM)

Lung tissue was taken from the lower tip of the right lung, cut
into a 1-mm three tissue block, and fixed in a frozen tube with
precooled 2.5% glutaraldehyde solution for 10 h and washed with
PBS buffer. Tissue sections were fixed in osmic acid, dehydrated
using gradient alcohol, embedded in pure acetone and mixed
embedded liquid for 4 h, and then embedded overnight. Lead
staining solution was used, and ultrastructural changes in the
lung tissue were visualized using a TEM.

2.5 Metabolomics and LC-MS analysis

The samples (100 μL) were placed in the EP tubes and resuspended
with prechilled 80%methanol by a good vortex. Then the samples were
incubated on ice for 5 min and centrifuged at 15,000 g, 4°C for 20 min.
Some of the supernatant was diluted to a final concentration containing
53% methanol by LC-MS grade water. The samples were subsequently
transferred to a fresh Eppendorf tube and then were centrifuged at
15,000 g, 4°C for 20 min. Finally, LC-MS/MS (Want et al., 2010; Dunn
et al., 2011) analyses were performed using an ExionLC™ AD system
(SCIEX) coupled with a QTRAP® 6,500 + mass spectrometer (SCIEX)
in Novogene Co., Ltd. (Beijing, China). The detection of the
experimental samples using Multiple Reaction Monitoring (MRM)
was based on a novocaine in-house database. The data files
generated by HPLC-MS/MS were processed using the SCIEX OS
Version 1.4 to integrate and correct the peak.

These metabolites were annotated using the KEGG database.
Partial least squares discriminant analysis (PLS-DA) was performed
at metaX. We applied univariate analysis (t-test) to calculate the
statistical significance (p-value). The metabolites with VIP > 1 and
p < 0.05 and fold change ≥ 2 or FC ≤ 0.5 (Sreekumar et al., 2009;
Haspel et al., 2014; Heischmann et al., 2016) were considered to be
differential metabolites. Volcano plots were used to filter metabolites
of interest-based on Log2 (FC) and -log10 (p-value) of metabolites
by ggplot2 in R language. The functions of these metabolites and
metabolic pathways were studied using the KEGG database. The
metabolic pathways enrichment of differential metabolites was
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performed, when the ratio was satisfied by x/n > y/n, metabolic
pathways were considered as enrichment, when p < 0.05, metabolic
pathways were considered statistically significant enrichment.

2.6 Biomarker screening

Two machine learning methods were selected to construct the
prediction model. Differential biomarkers in the top 15 positions
were screened by two researchers: random forest (RF) and support
vector machines (SVM), which had a key role in the grouping. Then,
we used receiver operating characteristic curve to screen the
biomarkers for HAPE.

2.7 Statistical analysis

All data were analyzed using SPSS 22.0 (IBM, USA) statistical
analysis software, and shown as mean ± standard deviation (SD).
The one-way analysis of variance (ANOVA) and two-tailed
Student’s t-test were applied to analyze the significant differences
between the groups. p < 0.05 was significant difference.

3 Result

3.1 Physiological indexes and lung tissue
morphology of HAPE rats

On analyzing blood gas in the rats, we found that the oxygen
saturation and oxygen partial pressure in the venous blood
(Figure 1A) of the HAPE and control groups were
significantly lower than that in the arterial blood (p < 0.01).
Through comparative analysis of the body weight of rats in each
group (Figure 1B), we found that body weight in control rats
increased gradually with an increasing feeding time (p < 0.01),
whereas the body weight of rats in the HAPE group did not
increase significantly with an increasing feeding time, and there
was no significant difference in body weight within 3 days.
However, compared with controls, the body weight of rats
was significantly decreased (p < 0.01 or p < 0.05). Compared
with controls, the oxygen partial pressure and oxygen saturation
in the HAPE group were significantly decreased (p < 0.01).
Compared with controls, water content of the lung tissue
(Figure 1C) and the pulmonary artery pressure (Figure 1D)
in HAPE rats were increased significantly (p < 0.01).

FIGURE 1
Physiological indexes and Lung tissue morphology of HAPE rats.
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3.2 Morphological characteristics of lung
tissue in HAPE rats

After H&E staining, the morphology of the rat lung tissue was
observed under a light microscope, and the ultrastructural
changes of the rat lung tissue were observed under a TEM.
The lung tissue of the control group showed normal alveolar
structure under a photoelectric microscope. Rats in the HAPE
group showed injuries such as widening of the alveolar septum,
infiltration of a large number of red blood cells, and
inflammatory cells under light microscopy. Obvious swelling
of mitochondria and shedding of lamellar bodies were
observed via TEM (Figure 1E).

3.3 Analysis of the metabolome data

3.3.1 QC analysis
TIC overlapping display analysis shows that the technical

repeatability of metabolites is good (Figure 2A; Figure 2B). The
Pearson correlation coefficients of QC samples calculated by the
relative quantitative values of metabolites are between 0.989–1.000
(Figure 2C), suggesting that the better the stability of the whole
detection process, the higher the data quality. The above data
indicate that the quality of this data is high, laying the
foundation for follow-up relevant research.

3.3.2 Basic information of differential metabolites
We applied PLS-DA to each of the four groups for statistical

analysis (Figures 3A–D), and obtained model evaluation parameters
R2 and Q2 by 7-fold cross-validation(Figures 3E–H), with the
results suggesting that the models were all over-fitted and could

proceed to the next step of analysis. After perfecting the analysis of
targeted metabolic data, we found that the difference in metabolites
between groups was obvious, among which a total of 664 metabolites
were tested (Figures 3I–3L; Supplementary Figure S1). The total
difference in metabolites in CV versus CA was 74, of which
52 metabolites showed an upward trend and 22 metabolites
showed a downward trend. HV versus HA totaled 36 differential
metabolites, among which 11 metabolites showed an upward trend
and 25 metabolites showed a downward trend. For CA versus HA, a
total of 217 differential metabolites were observed, of which
155 metabolites showed an upward trend, and 62 metabolites
showed a downward trend. For CV versus HV, the total
difference in metabolites was 195, of which 113 metabolites
showed an upward trend, and 82 metabolites showed a
downward trend. In a comparison among groups, the differences
of different products among groups were further clarified.

We found that differences in the composition of arterial blood
and venous blood metabolites in rats after hypoxic stress tended to
decline compared with that in rats in the normal group. However,
after hypoxic stress and comparing arterial blood and venous blood
products in rats with normal rats, the metabolites were richer,
indicating that normal physiological activities, such as
metabolism and pulmonary circulation after hypoxic stress, had a
greater impact.

3.3.3 KEGG enrichment analysis in different groups
After KEGG enrichment analysis of differential metabolites

(Figure 4), compared with the CA group, the CV group had
differential metabolites that were mainly enriched in lysine (Lys)
degradation and in a wide range of metabolic pathways (p < 0.05).
The difference between the HV group and CV group was mainly
enriched arginine (Arg) and proline (Pro) metabolism, tryptophan

FIGURE 2
QC analysis of the metabolome data.
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(Trp) metabolism, and the protein digestion and absorption
pathway (p < 0.05), metabolites were also enriched and
differentially expressed in central carbon metabolism and thyroid
hormone (TH) synthesis in cancer (p > 0.05). Comparing the HA
group with the CA group, differential metabolites were mainly
enriched in TH synthesis and fructose and mannose metabolic
pathways (p < 0.05), metabolites were also enriched and
differentially expressed in the central carbon metabolism and in
starch and sucrose metabolic pathways in cancer (p > 0.05).
Compared with the HA group, starch and sucrose metabolism,
synthesis and degradation of ketone bodies, the FC εRI signaling
pathway, asthma, fructose and mannose metabolism, propanoate
metabolism, and other metabolic pathways were mainly enriched in
the HV group, but with p > 0.05, suggesting no statistical
significance.

3.3.4 Analysis of the key metabolites
Key differential metabolic pathways were screened based on

KEGG enrichment analysis, and the key metabolites in the pathway
were screened for further analysis (Supplementary Figure S2), the
percentage stacking map of metabolites is shown in Figure 5.

3.3.4.1 Three major nutrients
Glucose metabolism is the core of body metabolism. Sequencing

data of quasi-targeted metabolomics in the arteriovenous blood of
the normal body show that the levels of glucose-related metabolites
in venous blood are significantly higher than those in arterial blood,
which is mainly related to micro-circulation in the body. After
hypoxia stimulation, glucose metabolism obviously strengthens,
such as D-glucose 6-phosphate (G6P), D-mannose 6-phosphate
(M6P), D-fructose 6-phosphate (F6P), with the levels of glucose-
related metabolites in both arterial blood and venous blood
significantly higher than those in normal controls.

Levels of acetoacetate (ACAC) and other ketones in arterial
blood were significantly higher than those in venous blood in the
present study. After hypoxia stress, the level of ACAC in the arterial
and venous blood of the body was significantly higher than that in
the control group, suggesting that ketone metabolism in the body is
further activated after hypoxia stimulation.

The KEGG enrichment analysis of the metabolome data of amino
acids showed that serum differential products in the hypoxia group
were mainly enriched in the metabolic pathways of Arg, Lys, Trp and
revealed disorders of Arg and histidine (His) metabolism. Specifically,

FIGURE 3
Basic information of differential metabolites.
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under hypoxia stress, the expression of key amino acids, such as
citrulline (Ccp), Lys, Pro, alanine (Ala), glycine (Gly), cystine (Cys),
Arg, aspartic acid (Asp), and n-acetyl-l-tyrosine (N-Ac-L-Tyr) in rat
arterial serum was increased significantly, whereas the expression of
lysine butyric acid, sodium glutamate (MSG), isoleucine (Ile), and
acetylneuraminic acid (ANA) decreased significantly.

3.3.4.2 Antioxidant substances
Compared with the control group, the concentrations of

glutathione (GSH) and oxidized glutathione (GSSG) in the serum
of HAPE rats were decreased significantly in both arterial blood and
venous blood. In addition to GSH, lipoic acid (ALA) and other
antioxidants were significantly decreased in the serum of the HAPE
rat model. Interestingly, however, the concentration of vitamin C
(VC), with strong antioxidant capacity, increased in rats of HAPE.

3.3.4.3 Bile acid
Through analysis of quasi-targeted metabolomics data of

arteriovenous blood in HAPE rats, we monitored 27 kinds of
bile acids (BA). The specific results are as follows: no difference
was found for BA in arterio and venous blood of normal rats;
however, there were significant changes in BA metabolism
components in the arteriovenous blood of HAPE rats. Among
them, levels of taurocholic acid (TCA) and sodium
taurodeoxycholate (TUDCA) in the arterial group were
significantly higher than those in the venous group, with
glycodeoxycholic acid (GDCA) concentrations decreased
significantly. After hypoxia stimulation, compared with the
control group, Chenodeoxycholic acid (CDCA), deoxycholic
acid (DCA), 3β-ursodeoxycholic acid (3β-UDCA), and sodium
taurine porcine deoxycholic acid (THDCA) showed a significant

FIGURE 4
KEGG Enrichment analysis in different groups.
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upward trend; 3α,6α,7α-trihydroxy-5β-cholic acid and beta
mouse cholic acid (β-MCA) showed a significant downward
trend, which suggested that significant changes take place in
the BA pool during HAPE.

3.3.4.4 Others
In the HAPE rat model, serum levothyroxine (L-T4) in both the

HA group and HV group showed a significant downward trend
compared with the control group, and the level of vitamin B2 (VB2)
in rat venous blood decreased significantly in HAPE rats.

3.3.5 Machine algorithms for HAPE biomarkers
prediction

The metabolites with variable importance in projection (VIP) >
1.5 and p < 0.01 and fold change ≥ 2 or FC ≤ 0.5 were chosen and
comparisons made among each group using RF (Figures 6A,B) and
SVM (Figures 6C,D) to screen the top 15 metabolites. After
combined analysis of the two machine algorithms, the
representative difference products between the CA and HA
groups were L-(−)-glyceric acid (L-GA), imatinib (IMA), lysoPC
16:1 (Lyp 16:1), oleoylcarnitine, 4-hydroxyphenylpyruvate (4-
HPPA), D-mannose, arachidonoylcarnitine, glutathione disulfide,
GSSG, dehydrocholic acid (DHCA), and nicotinate ribonucleoside
(NAR). The representative difference products between the CV and
HV groups were piperidine (PIP), O-acetyl-L-serine (OAS),

N-acetyl-asp-glu (NAAG), lysoPC 20:0 (Lyp 20:0), lysine
butyrate, L-T4, L-octanoylcarnitine, L-leucine (L-Leu), L-allo-
isoleucine(L-allo-Ile), DL-leucine(DL-Leu), cis-4-hydroxy-
D-proline (4-D-Hyp), and 2-pyrrolidinone (2-P). We combined
RF and SVM to screen out relevant metabolites and estimate AUC
values (Table 1).

4 Discussion

With rapid ascent to high altitudes, HAPE seriously threatens
the physical and mental health of people. We placed rats in a
simulated low-pressure oxygen chamber at an altitude of
6,000 m, after hypoxic stress for 48 h. The blood oxygen
saturation and oxygen partial pressure of rats decreased
significantly, the pulmonary artery pressure and lung tissue water
content increased significantly, and the morphology of lung tissues
showed a state of injury and edema, suggesting that this method can
successfully result in the construction of a HAPE rat model, thereby
laying a foundation for further study of this disease.

During the occurrence and development of HAPE, changes in
metabolites of the body are obvious. These changes are related to the
body’s adaptation to the hypoxic environment, the body’s
inflammatory damage, and so on. Herein, we discuss different
types of metabolites as follows.

FIGURE 5
The key percentage stacking map of metabolites based on the KEGG pathways.
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4.1 Three major nutrients

The normal metabolism of three major nutrients (sugar, fat, and
amino acids) of the human body is an important basis for the survival
of the organism. Glucose metabolism is the core of body metabolism.
In the rat control group, the glucose-related metabolites in venous
blood were significantly higher than those in arterial blood, which is
mainly related to microcirculation in the body. Under the condition of
hypoxia, the metabolic law of the normal state of body changes
indicates that more energy will be consumed to meet its metabolic
needs (Webster Keith, 2003). After hypoxia stimulation, the glucose-
related metabolites in both arterial blood and venous blood were
significantly higher those in the normal control group, suggesting
enhanced glycolytic activity in the body. Glycogen and gluconeogenesis
are enhanced to maintain the stability of blood glucose, which helps to
improve acute hypoxia tolerance and lung gas exchange and has a good
effect on the advanced neural activities of hypoxic animals.

Among all ketones, those produced by fat metabolism play an
important role in the energy homeostasis of the organism (Prins, 2008;
Puchalska and Peter, 2017). AcAc, a key ketone, in the arterial blood
was significantly higher than that in the venous blood in our study,
which is related to normal microcirculation in the body. After hypoxic
stress, the level of AcAc in the arterial and venous blood in the body was
significantly higher than that in the control group, suggesting that
ketone metabolism in the body is further activated after hypoxia
stimulation. Previous studies have shown that ketone metabolism
requires only a small amount of enzymatic reaction (Maalouf et al.,
2007), which can efficiently complete productivity activities under
hypoxia, improve metabolic efficiency, and reduce the production of
reactive oxygen species (Gano Lindsey et al., 2014; Parra et al., 2017),

suggesting that the activation of ketone metabolism is an adaptive
regulation mode of the body in a hypoxic environment.

A high-altitude hypoxic environment has a certain impact on the
metabolism of normal amino acids, but there are few amino acid
metabolisms and specific regulation mechanisms in a hypoxic
environment (Dahl Rasmus et al., 2019). When the body first
enters the plateau, the metabolism of proteins is characterized by
weakened synthesis and enhanced decomposition (Gibson et al.,
1981). The levels of endogenous glycogenic amino acids (e.g., Gly,
valine (Val), serine(Ser)) were significantly decreased after hypoxic
stress, which may be related to the increase in gluconeogenesis of
glycogenic amino acids caused by hypoxia (Panjwani et al., 2007);
With the sensitivity of Ala aminotransferase to hypoxia, Ala
metabolism is inhibited after hypoxia stress (Akshay et al., 2021),
resulting in the accumulation of Ala in the body and a significant
increase of Ala in the body. Tyrosine (Tyr) can improve the working
ability of the body in cold and high-altitude environments and reduce
symptoms in a reaction to high altitude (Cooper et al., 2018). After
hypoxic stress, the levels of Tyr and its related derivatives in the serum
were significantly decreased, suggesting that the body’s hypoxia
tolerance decreased significantly or high-altitude injury had
occurred in rats. Amino acids such as Asp are excitatory
transmitters of the central nervous system. After hypoxia
stimulation, metabolic disorders occur and amino acid levels
increase significantly. Melatonin (MT) (Claustrat and Leston,
2015), which reduces the release of excitatory amino acids and
which was significantly decreased in the body of the hypoxia
group, further mediates the accumulation and neurotoxicity of
excitatory amino acids and may even induce the occurrence of
high-altitude cerebral edema (Ruan et al., 2000; Zhu and Xu, 2019).

FIGURE 6
Machine Algorithms for HAPE biomarkers prediction.
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It is worth noting that a large number of B vitamins can reduce
disorders of amino acid metabolism caused by hypoxia and that
appropriate supplementation of vitamin B (VB) may play a certain
role against hypoxic injury in the body (Liu et al., 2018). Our
metabolome data results showed that VB2 in rat venous blood
decreased significantly in HAPE, suggesting that VB2 levels may
decrease exhaustively in a hypoxic environment. This may be related
to the degree of injury and prognosis.

4.2 Thyroid hormone

To adapt to the hypoxic environment at high altitudes, a series of
changes will take place in the body, including complex changes in the
endocrine system and metabolic function. Produced by the largest
endocrine gland in the human body, TH has many biological effects on
the body. Research shows that it has excitatory effects on almost all
tissues and has a certain correlation with energy metabolism (proteins,
sugars, and fats), thermoregulation, tissue differentiation, and growth
and development of bodies (Maria et al., 2019). Hypoxia at high
altitudes leads to changes in thyroid function and structure (Naeije,
2010); however, the results of previous studies on the changes in TH
caused by hypoxia are inconsistent (Rawal et al., 1993; Savourey et al.,
2004; Barnholt et al., 2006). Thyroid function has been shown to be

enhanced, weakened, or even unchanged, which is related to many
factors such as the exposure mode of hypoxia, altitude, duration, and
availability of altitude adaptive training. Naoto Tani et al. (Tani et al.,
2020a) found that an increase in thyroid-related hormonesmay indicate
systemic hypoxia/ischemia, that is, thyroid-related hormones may be a
marker of acute systemic hypoxia/ischemia. The metabolism in HAPE
rats suggested that this may be an adaptive regulation method for cells
to reduce the basicmetabolic rate in a hypoxic environment and that the
level of thyroid-stimulating hormone is closely related to the severity of
hypoxia and prognosis of the disease. The lower the circulating levels of
TH, the more serious the hypoxic injury (Tani et al., 2020b; Zeng et al.,
2021). In conclusion, improving the examination of TH may further
clarify the severity of hypoxia in patients with HAPE, suggesting that it
may be used as a new biomarker for HAPE diagnosis.

4.3 Antioxidant substances

Under normal physiological conditions, the oxidation and
antioxidant systems of the body are in dynamic balance. Previous
studies have confirmed that hypoxic stress can induce oxidative stress in
the body (Lin et al., 2020), in whichGSH is a representative substance of
antioxidants. It can directly remove reactive oxygen species (ROS) and
protect cells from ROS damage under the action of GSH peroxidase.
Under the stimulation of hypoxia, the levels of antioxidants such as
GSH andGSSG in the bodywill decrease significantly, further leading to
oxidative damage and inflammatory responses (Sinha et al., 2009; Chu
et al., 2016). Compared with the control group, the levels of GSH and
GSSG in the serum of HAPE rats were significantly decreased in both
arterial blood and venous blood, suggesting that the antioxidant
capacity of the body decreased. At present, GSH and GSSG are
considered to be the main biomarkers after oxidative stress injury to
tissues and cells (Coimbra-Costa et al., 2017). The above also further
clarified the oxidative damage and inflammatory response in the
process of HAPE occurrence and development.

In addition toGSH, ALA and other antioxidants were significantly
decreased in the serum of HAPE model rats. Interestingly, however,
VC levels, which have strong antioxidant capacity, increased in rats
after hypoxia stimulation, which is inconsistent with some previous
research results (Sureda et al., 2004; Wu et al., 2022). This may be
related to the long half-life of VC and adaptive regulation of the body;
however, further studies are needed to clarify this.

4.4 Bile acid

BA is a key component of the body’s normal metabolism. In recent
years, many studies have shown that metabolic disorders of BA are
related to a variety of disease states in the body (Jia et al., 2017), and the
hypoxic environment also leads to disorders of the BA pool in the body
(Ramakrishnan et al., 2014). Zhang et al. (Staley et al., 2017) found that
this may be related to the change in intestinal flora caused by hypoxia.
When the body is in a hypoxic environment, the composition and
quantity of intestinal microorganisms in the body change significantly.
Additionally, as the key material of BA transformation, intestinal
microorganisms will inevitably affect the normal steady state of the
BA pool. Significant changes take place in the BA pool during HAPE
that further affect the activation of various receptors and metabolism of

TABLE 1 ROC of the key metabolites based on RF and SVM.

Group Metabolites ROC (AUC) Trend

HV vs. CV L-allo-Isoleucine 0.92 down

L-Leucine 0.92 down

N-Acetyl-Asp-Glu 1.00 up

Lysine Butyrate 0.98 down

L-Thyroxine 0.94 down

O-Aceyl-L-Serine 0.92 down

Lysopc 20–0 1.00 up

cis-4-Hydroxy-D-proline 0.94 down

L-Octanoylcarnitine 0.98 down

HA vs. CA Lysopc 16–1 1.00 down

Imatinib 1.00 down

D-Mannose 1.00 down

4-Hydroxyphenylpyruvate 1.00 down

Oleoylcarnitine 1.00 down

Nicotinate ribonucleoside 0.98 down

Arachidonoylcarnitine 1.00 down

L-(−)-Glyceric acid 1.00 up

7-Ketocholesterol 1.00 down

Oxidized glutathione 0.96 down

glutathione disulfide 0.96 down

Dehydrocholic acid 0.98 down
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the abovementioned three major nutrients in the body (Xu, 2018). As
an amphiphilic steroidmolecule, metabolic disorders of BA lead to poor
metabolism of fat and cholesterol (CHOL) (You et al., 2017; Jia et al.,
2020). Previous studies have found that the steroid hormone synthesis
pathway has a key role in acute hypoxic injury, and inflammatory
factors in HAPE are significantly upregulated (Qian et al., 2018). The
CHOL regulatory element protein 1c, a key molecule in themetabolism
of CHOL and BA, can inhibit the over-activation of p38MAPK/NF-KB
(Chen et.al., 2004; Li et al., 2015), which has a role in inhibiting the
inflammatory response in HAPE. As a target closely related to
inflammatory factors, BA may provide a new direction for the
prevention and treatment of altitude sickness. However, the specific
reasons why all types of BA show different change characteristics in a
hypoxic environment require further in-depth investigation, as do the
differential changes in the BA pool; thesemay be related tomany factors
such as the hypoxic stressmode (time, altitude, speed of entry into high-
altitude areas) and body physiological state.

There are obvious changes in the metabolites in the organism
during the occurrence of HAPE, and the differences of metabolites
in arteriovenous blood are also obvious. Combined with two
machine algorithms and KEGG enrichment analysis, we speculate
that D-mannoseDOWN, GSSGDOWN, glutathione disulfideDOWN, and
DHCADOWN in arterial blood play key roles in predicting the
occurrence of HAPE, whereas in venous blood, L-LeuDOWN,
L-T4DOWN, and 4-D-HypDOWN play key roles in predicting the
occurrence of HAPE.

5 Conclusion

At present, the complex pathogenesis of HAPE remains unclear.
This study systematically analyzed the metabolites of HAPE model rats
using class-targeted metabolomics data, further clarifying the changes in
metabolism of the body duringHAPE and preliminarily confirming that
D-mannoseDOWN, GSSGDOWN, glutathione disulfideDOWN, and
DHCADOWN in arterial blood and L-LeuDOWN, L-T4DOWN, and 4-D-
HypDOWN in venous blood play key roles in predicting the occurrence of
HAPE. Our results lay a strong foundation for further research.
Interestingly, the biomarkers in arteriovenous blood after HAPE were
inconsistent, which provides new ideas for clinical diagnosis and
treatment and also points to the need for further research on this
mechanism. Our findings may help in identifying useful molecular
targets in the diagnosis and treatment of HAPE, providing a new
perspective for further diagnosis and treatment of plateau disease.
However, owing to the complexity of metabolomics data, not all
metabolites were systematically analyzed in this study, only the key
metabolites presented in this data were analyzed. In the follow-up study,
we will further analyze various metabolites in the arteriovenous blood of
HAPE ratmodel and people who rush to plateau, and further reveal their
changes and mechanisms.
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Glossary

AMS Acute mountain sickness

HAPE High altitude pulmonary edema

KEGG Kyoto Encyclopedia of Genes and Genomes

CKD chronic kidney disease

SPF Specific pathogen-free

H&E Hematoxylin and eosin

TEM Transmission electron microscope

MRM Multiple Reaction Monitoring

PLS-DA Partial least squares discriminant analysis

RF Random forest

SVM Support vector machines

ANOVA The one-way analysis of variance

Lys Lysine

Arg Arginine

Pro Proline

Trp Tryptophan

TH Thyroid hormone

G6P D-glucose 6-phosphate

M6P D-mannose 6-phosphate

F6P D-fructose 6-phosphate

ACAC Acetoacetate

His Histidine

Ccp Citrulline

Ala Alanine

Gly Glycine

Cys Cystine

Asp Aspartic acid

N-Ac-L-Tyr N-acetyl-l-tyrosine

MSG Sodium glutamate

Ile Isoleucine

ANA Acetylneuraminic acid

GSH Glutathione

GSSG Oxidized glutathione

ALA Lipoic acid

VC Vitamin C

BA Bile acid

TCA Taurocholic acid

TUDCA Sodium taurodeoxycholate

GDCA Glycodeoxycholic acid

CDCA Chenodeoxycholic acid

DCA Deoxycholic acid

3β-UDCA 3β-Ursodeoxycholic acid

THDCA Sodium taurine porcine deoxycholic acid

β-MCA Beta mouse cholic acid

L-T4 Levothyroxine

VB2 Vitamin B2

L-GA L-(−)-Glyceric acid

IMA Imatinib

Lyp 16:1 LysoPC 16:1

4-HPPA 4- Hydroxyphenylpyruvate

DHCA Dehydrocholic acid

NAR Nicotinate ribonucleoside

PIP Piperidine

OAS O- acetyl-L-serine

NAAG N- acetyl-asp-glu

Lyp 20:0 LysoPC 20:0

L-Leu L- Leucine

L-allo-Ile L-allo-isoleucine

DL-Leu DL-Leucine

4-D-Hyp Cis-4-hydroxy-D-proline

2-P 2- Pyrrolidinone

Val Valine

Ser Serine

Tyr Tyrosine

MT Melatonin

VB Vitamin B

ROS Oxygen species

CHOL Cholesterol
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