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To support the increased calcium demands for milk production during lactation, a
dramatic and reversible physiological response occurs to alter bone and mineral
metabolism. This coordinated process involves a brain-breast-bone axis that
integrates hormonal signals that allow for adequate calcium delivery to milk
yet also protects the maternal skeletal from excessive bone loss or decreases in
bone quality or function. Here, we review the current knowledge on the crosstalk
between the hypothalamus, mammary gland, and skeleton during lactation. We
discuss the rare entity of pregnancy and lactation associated osteoporosis and
consider how the physiology of bone turnover in lactation may impact the
pathophysiology of postmenopausal osteoporosis. Further understanding of the
regulators of bone loss during lactation, particularly in humans, may provide
insights into new therapies for osteoporosis and other diseases of excess bone loss.
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Introduction

The synthesis and secretion of milk is an essential aspect of mammalian reproduction as
milk supplies the complete nutritional requirements for neonatal survival and growth. Given
that the neonatal period represents the most rapid period of skeletal growth, milk must supply
large amounts of calcium. Exporting calcium to offspring in this manner stresses maternal
calcium and bone metabolism, requiring adaptations to avoid hypocalcemia. Meeting this
challenge requires activation of a brain-breast-bone circuit in lactating mothers that coordinates
changes in systemic hormones, the availability of dietary calcium, skeletal turnover and calcium
transport into milk (Wysolmerski, 2010). Classically, it has been taught that intestinal calcium
absorption satisfies extra calcium needs during pregnancy and that increased bone resorption is
the main source of calcium for milk production during lactation (Kovacs, 2016). In truth, both
mechanisms provide calcium for the fetus and neonate during reproductive cycles and likely
provide redundancy to ensure adequate supplies of calcium for the synthesis of new bone
needed for linear growth of the offspring both in the latter part of gestation as well as during
preweaning growth. Therefore, lactation is associated with rapid bone loss that, fortunately, is
fully restored after weaning. Milk production does not usually result in permanent bone loss
and does not predispose to fractures either during reproductive life or to post-menopausal
osteoporosis in later life. However, in very rare instances, women can develop pregnancy and
lactation-associated osteoporosis (PLO) accompanied by fractures during the third trimester of
pregnancy or during breastfeeding (Smith et al., 1995; Stumpf et al., 2007; Pola et al., 2016; Hadji
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et al., 2017; Laroche et al., 2017; Kyvernitakis et al., 2018; Hardcastle
et al., 2019; Tuna et al., 2020).

Over the past few decades, investigators have described many
aspects of the integrated physiology of bone and mineral metabolism
associated with reproductive cycles, but there remain many
unanswered questions. Clinical studies in nursing women have
measured bone density and bone turnover markers, but few
mechanistic studies (e.g., involving bone biopsies) exist. As a result,
our current models rely mostly on data derived from rodent models.
However, there are key differences in the physiological response to
support a single human baby compared to a litter of 8–12 rodent
offspring. With that caveat in mind, in this review, we will discuss
elements of the brain-breast-bone circuit that regulates bone and
mineral metabolism during lactation and post-weaning in rodent
models, review the changes described in women, and highlight
unanswered questions for future research. Finally, we will
underscore how the pathophysiology of post-menopausal
osteoporosis represents the reactivation of physiologic responses to
the demands of milk production.

Bone loss during lactation

Bone loss during lactation has been extensively documented in
experimental mice and rats. Mice lose between 20% and 33% of their
bone mass as assessed by dual energy X-ray absorptiometry (DXA) at
different skeletal sites as compared to age-matched nulliparous
controls (Kovacs and Kronenberg, 1997; Woodrow et al., 2006;
Qing et al., 2012). Loss of bone mineral density (BMD) by DXA
has been noted to be maximal at mid-lactation (12 days postpartum),
but then plateaus between 12 and 18 days of lactation. In mice, greater
losses in BMD during lactation occur at trabecular-rich sites
(spine −10.9%, distal femur −12.6%, and proximal tibia −19.9%)
compared to less significant losses in BMD at predominantly
cortical sites (distal tibia and middle tibia, −5% each) (Zeni et al.,
1999). Changes in BMD are paralleled by similar reductions in
trabecular volume, trabecular number and trabecular thickness
when bones are examined histologically (VanHouten and
Wysolmerski, 2003). In addition, micro-computed tomography
(CT) imaging of bone has demonstrated deterioration in trabecular
microarchitecture as well as a decrease in cortical thickness and an
increase in cortical porosity in lactating as compared to nulliparous
mice (Liu et al., 2012). Similarly, studies in rats have demonstrated
15%–35% reductions in BMD at the spine, hip and total body as well as
reductions in trabecular thickness, trabecular number and cortical
thickness in lactating versus nulliparous animals (Warnock and
Duckworth, 1944; Ellinger et al., 1952; Miller et al., 1986; Tojo
et al., 1998; Honda et al., 2000). The degree of bone loss is
modulated by suckling intensity as the duration of lactation and
differences in the number of suckling pups have been shown to
affect the degree of bone loss (Peng et al., 1988). The dramatic
changes in bone mass and structure are accompanied by changes
in the material properties and mechanical strength of bone. Studies on
mouse femurs or vertebrae have documented reductions in the elastic
modulus (de Bakker et al., 2017; Kaya et al., 2017), while 3-point
bending studies of femurs and compression studies on vertebrae have
demonstrated reductions in stiffness and ultimate load at mid-
lactation in mice and rats (Vajda et al., 2001; Kaya et al., 2017).
Thus, bone loss during lactation is associated with clear changes in

bone strength and mechanical susceptibility to fracture that are
reversible post weaning (see below).

Bone loss is also well documented in women, although the rates
and magnitude of skeletal catabolism are lower in nursing humans
than in lactating rodents. Women typically lose between 5% and 10%
of bone mineral content (BMC) with 3–6 months of exclusive
breastfeeding, which is fully recovered within 6–12 months after
weaning (Kalkwarf and Specker, 1995; Polatti et al., 1999; Kovacs,
2011; Brembeck et al., 2015; Bjørnerem et al., 2017). As in rodents,
women lose more bone at trabecular-rich sites such as the spine and
hip (Laskey et al., 1998), with a mean loss of 4% in lumbar spine bone
mineral density after 3 months of breastfeeding (Kalkwarf and
Specker, 1995; Laskey et al., 1998; Polatti et al., 1999). The
magnitude of bone loss is positively correlated with the amount of
milk production, with women nursing twins or triplets losing more
bone than women nursing one baby (Kalkwarf and Specker, 1995;
Brembeck et al., 2015; Bjørnerem et al., 2017), and greater bone loss
occurring in women with exclusive versus intermittent breastfeeding
(Bjørnerem et al., 2017) or a longer duration of breastfeeding (More
et al., 2001; Brembeck et al., 2015). In contrast, women who feed their
child with formula do not experience a significant decline in BMD,
demonstrating that postpartum bone loss is a consequence of lactation
rather than of delivery itself (Kalkwarf and Specker, 1995; Laskey et al.,
1998; Polatti et al., 1999). Studies of bone microstructure have been
performed in humans using high-resolution peripheral quantitative
computed tomography (HR-pQCT) and document increased cortical
porosity and declines in cortical thickness, trabecular number, bone
volume, bone mineral density, and mineralization (Brembeck et al.,
2015; Bjørnerem et al., 2017). Bone loss during lactation is obligate and
cannot be prevented or significantly reduced by increasing dietary
calcium in nursing humans. Both randomized and observational
studies have shown that neither high nor low dietary calcium
intake influence loss of BMD in nursing women, although low
calcium diets have been shown to dramatically accelerate bone loss
in lactating rodents (Ellinger et al., 1952; Bawden and McIver, 1964;
Rasmussen, 1977a; Rasmussen, 1977b; Cross et al., 1995; Kalkwarf
et al., 1997). Finally, there are no studies of bone mass by
histomorphometry in nursing women nor are there any direct
measurements of bone strength in women. Bone strength is likely
to be reduced even though women do not typically fracture while
nursing except in very rare cases of pregnancy and lactation associated
osteoporosis (Smith et al., 1995; Stumpf et al., 2007; Pola et al., 2016;
Hadji et al., 2017; Laroche et al., 2017; Kyvernitakis et al., 2018;
Hardcastle et al., 2019; Tuna et al., 2020), which will be discussed in a
subsequent section.

Skeletal remodeling during lactation

Rapid bone loss is associated with increased bone turnover in
lactating rats and mice. Studies in rodents using biochemical markers
of bone resorption and bone formation have shown that rates of both
bone formation and bone resorption are elevated (VanHouten and
Wysolmerski, 2003; Woodrow et al., 2006; Ardeshirpour et al., 2007;
Kirby et al., 2011; Bornstein et al., 2014; Gillies et al., 2018). In
addition, both static and dynamic histomorphometry has
demonstrated increased numbers of osteoclasts, increased numbers
of osteoblasts and increased rates of bone formation in lactating
animals despite the reductions in bone mass itself. Bone resorption
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occurs primarily along trabecular surfaces and endocortical surfaces of
long bones. Bone formation is observed in the same areas, although
bone resorption clearly outpaces bone formation during this period of
rapid bone loss. The increases in osteoclast and osteoblast numbers on
bone surfaces are also mirrored by increased numbers of osteoclast
and osteoblast precursors that can be recovered from the bone marrow
of lactating versus nulliparous mice (Kirby et al., 2011).

As with bone density data, bone turnover studies in nursing
women largely mirror the findings in experimental animals.
Circulating levels of bone formation markers, such as procollagen
1 Intact N-terminal propeptide (P1NP) or osteocalcin, as well as
circulating levels of bone resorption markers, such as collagen type
1 c-telopeptide (CTX) and n-telopeptide (NTX), have been shown to
be elevated in nursing women (Sowers et al., 1995). There are no
studies that have performed bone biopsies in normal lactating women,
so we do not have histomorphometric studies to correlate with bone
turnover markers. However, in other settings, osteoclast and osteoblast
numbers as well as bone formation rates generally parallel bone
turnover markers in women (Parfitt et al., 1987; Eriksen et al.,
1993). Furthermore, HR-pQCT data showing trabecular thinning
and loss along with increased cortical porosity support increased
rates of bone resorption both on surfaces and within the cortices of
long bones in lactating women (Brembeck et al., 2015; Bjørnerem
et al., 2017).

In addition to increased rates of osteoclastic resorption on bone
surfaces, lactation is also associated with an increase in osteocyte
lacunar-canalicular remodeling, also referred to as osteocytic
osteolysis. The ability of osteocytes to resorb minerals from the
surrounding bone was first described by Rigal and Vignal who
observed widened lacunae around osteocytes in 1881 (Rigal and
Vignal, 1881). Subsequently, von Recklinghausen hypothesized that
osteocytes could digest their perilacunar matrix during times of
increased mineral demand (Von Recklinghausen, 1910). Although
the concept never completely disappeared, in the ensuing decades, the
validity of osteocytic osteolysis was questioned as an artifact from
sample processing and bone resorption was thought to be solely due to
the activity of surface osteoclasts (Parfitt, 1977; van der Plas et al.,
1994). However, a series of reports over the last decade have again
highlighted the potential importance of osteocytic osteolysis during
lactation. Qing and colleagues convincingly demonstrated that, during
lactation, osteocytes express osteoclast-like genes and enzymes that
allow them to demineralize and resorb the bone surrounding their
lacunae as well as around the canalicular network (Qing et al., 2012).
As a result, the osteocyte lacunae and canaliculi increase in size at mid-
lactation as compared with nulliparous controls. Subsequent studies
have shown that osteocytes upregulate proton pumps that allow them
to acidify their microenvironment (Jähn et al., 2017) and they also
secrete Cathepsin K and matrix metallopeptidase 13 (MMP13), which
are required for enlargement of the lacunae (Tang et al., 2012; Lotinun
et al., 2019). Osteocyte-specific deletion of the Type 1 PTH/PTHrP
receptor (PTHR1) reduces the amount of bone mineral density lost
during lactation by 50%. Although DMP1-cre used to target osteocytes
in this study may also affect endosteal osteoblasts, results from the
deletion of PTHR1 in osteocytes suggest that osteocytic osteolysis,
directly or indirectly, may contribute to net bone loss during lactation
(Qing et al., 2012). Interestingly, deletion of the PTHR1 or cathepsin K
in osteocytes not only blunts the changes in lacunar size during
lactation but also reduced osteoblast and osteoclast numbers and
activity associated with lactation (Qing et al., 2012; Lotinun et al.,

2019). Osteocytes are well known to respond to mechanical forces and
to regulate the activity of surface bone cells influencing overall bone
turnover. Therefore, it is likely that the phenotypic change in osteocyte
differentiation during lactation as well as the alterations in lacunar and
canalicular volumes associated with osteocytic osteolysis, modulate
how these cells integrate hormonal changes, local cytokine alterations,
and the effects of microstrain related to mechanical forces. In a recent
review, Liu and colleagues suggest that the increased osteocytic fluid
space resulting from osteocytic osteolysis might make osteocytes more
sensitive to mechanical signals, an idea that is partly supported by
animal studies demonstrating that increased loading can reduce bone
loss during lactation and enhance bone recovery after weaning (Liu
et al., 2019). This is an interesting area that underscores the
interconnectedness of bone cell activity and structural changes in
the skeleton. A limitation of studying rodent bone is the lack of osteons
and the Haversian canal system. Unfortunately, to date, there are no
human studies on osteocytic osteolysis in lactation, so it is unclear
whether similar changes in the osteocyte lacunar-canalicular network
occur in nursing women.

Skeletal recovering in the post-weaning
period

Fortunately, bone loss during pregnancy and lactation is followed
by a remarkable period of bone recovery after weaning that appears to
restore bone mass and strength back to its pre-pregnancy baseline
(Kovacs and Kronenberg, 1997; Bowman et al., 2002; Miller et al.,
2005; Ardeshirpour et al., 2007). Rats and mice recover the bone that
was lost during lactation within 4 weeks after either forced withdrawal
of pups or “natural weaning” (Ardeshirpour et al., 2007; Liu et al.,
2012). As detailed previously, both osteoblast and osteoclast cell
numbers and activity are increased during lactation.
Mechanistically, weaning triggers a sudden and coordinated wave
of osteoclast apoptosis, leading to a dramatic reduction in osteoclastic
bone resorption (Ardeshirpour et al., 2007;Miller and Bowman, 2007).
At the same time, bone formation rates are either unaffected or
increase, resulting in a period of unopposed bone formation. Data
differ on whether osteoblast numbers increase further or remain at
their already increased levels upon weaning. Ardeshirpour and
colleagues found that, in mice, osteoblast numbers and bone
formation rates at 3 days following forced weaning were no
different than at mid-lactation. However, the numbers of osteoblast
progenitors within the bone marrow at 3 days were further increased
over the already increased numbers during lactation (Ardeshirpour
et al., 2007). In rats, Bowman andMiller showed that an increase in the
proliferation of osteoblast progenitors after weaning gives rise to an
expansion of the osteoblast population (Miller and Bowman, 2007).
Within 25 h after weaning, they found a 20%–24% increase in newly
formed osteoblasts and that 75% of bone surfaces became covered with
osteoid. From day 2 to day 7 post-weaning, there was a doubling of
bone formation indices by histomorphometry (Miller et al., 2005).
This anabolic phase of bone recovery may rely on prior bone
resorption and/or bone loss. Our laboratory reported that
administration of osteoprotegerin (OPG), a decoy RANKL receptor
that inhibits bone resorption, during lactation not only lowered
osteoblast numbers during lactation but also prevented the typical
increase in bone formation post-weaning, (Ardeshirpour et al., 2015).
In contrast, Wendelbow and colleagues found that inhibiting bone
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resorption with zoledronic acid, a bisphosphonate that is a
pharmacological inhibitor of bone resorption, prevented bone loss
during lactation but, in contrast to our findings, bone mass increased
over baseline after weaning (Wendelboe et al., 2016). Comparing these
two studies suggests that RANKL-RANK signaling may somehow be
involved both in regulating bone resorption during lactation and in
allowing its recovery after weaning. Finally, weaning also leads to a
reversal in the changes that occur in the osteocyte lacunar-canalicular
network during lactation. Upon weaning, osteocytes rapidly lose their
osteoclast-like properties (Qing et al., 2012) and revert to an
osteoblast-like phenotype with the ability to re-mineralize their
lacunae as evidenced by dual tetracycline labeling (Qing and
Bonewald, 2009). The enlarged osteocyte lacunae that occur during
lactation completely revert to their baseline volumes within 1-week
post-weaning (Kaya et al., 2017).

Women also gain bone rapidly after cessation of lactation. Most
studies have found that, after they stop nursing, women experience a
complete recovery of BMD to baseline over a period of 6 months
(Kalkwarf and Specker, 1995; Laskey et al., 1998; Polatti et al., 1999;
Cooke-Hubley et al., 2017). Mirroring the more rapid rate of bone loss
at trabecular-rich sites, it has been suggested that recovery at the
trabecular rich spine occurs faster than at cortical sites. Not all studies
show a complete recovery of bone mass after weaning in women. One
study of 10 adolescent mothers who habitually consumed low calcium
diets reported incomplete recovery with a lower accretion rate than
predicted for age-matched controls (Bezerra et al., 2004). In addition,
studies using HR-pQCT, have suggested that microarchitecture may
not completely revert to the nulliparous state at all sites (Brembeck
et al., 2015). In a longitudinal study with a median follow up period of
3.6 years, cortical porosity remained higher while mineralization
density and trabecular number remained lower in women who had
lactated compared to controls who were non-pregnant non-lactating
premenopausal women (Bjørnerem et al., 2017).

There is no evidence that unresolved microarchitectural changes
from multiple cycles of pregnancy and lactation lead to cumulative
damage that might increase the risk for osteoporosis and fragility
fracture. In fact, epidemiological studies suggest that bone loss during
lactation does not predispose to an increased risk of osteoporosis.
There is a neutral or protective effect of lactation on peak bone mass,
bone density and fracture risk, including in a large study of twins with
discordant lactation history (Paton et al., 2003; Chantry et al., 2004;
Specker and Binkley, 2005; Kovacs, 2016; Song et al., 2017). In the
NHANES III study, women aged 20–25 years who breastfed as
adolescents had higher BMD than their contemporaries who did
not breastfeed or were nulliparous (Chantry et al., 2004). Studies
looking at long term clinical outcomes mostly show that parity and
lactation are not associated with any increase in fracture risk (Specker
and Binkley, 2005; Watts et al., 2021). However, there may be cultural
or genetic differences that modulate whether breastfeeding increases
the risk for later osteoporosis. For example, in a study of a subgroup of
1,342 women from South Korea who were part of the 2010 Korea
National Health and Nutrition Examination Survey, Yeo and
colleagues found that a history of breastfeeding, especially for over
1 year, was an independent predictor of lower spine bone mineral
density after menopause (Yeo et al., 2016). More studies need to be
performed to know whether this study is an outlier or whether there is
a true difference in East Asian women as compared to other racial
groups. In addition, there are rare women who develop pregnancy and
lactation associated osteoporosis, who may have predisposing factors

or clinical circumstances that result in breastfeeding compromising
bone strength and quality after parturition and beyond.

Exactly what stimulates skeletal recovery post-weaning remains
unclear. Animal studies have shown that the classic calciotropic
hormones such as parathyroid hormone (PTH), PTH-related
peptide (PTHrP), calcitonin, vitamin D, vitamin D receptor and
estrogen are not required for the recovery of ash weight, BMC or
bone strength following weaning (Kovacs, 2016). Adequate calcium
intake is necessary as a restricted calcium diet prevented bone recovery
until after the diet was normalized (Hagaman et al., 1990). A recent
study showed that osteoblasts can lay down osteoid independent of
vitamin D but adequate calcium in the diet is required for the
immature bone to become mineralized during the post-weaning
period (Ryan et al., 2022). A low protein diet during lactation and
the post-weaning periods appears to enhance lactation-associated
bone loss and impede post-weaning bone recovery. Osteoblasts

FIGURE 1
A brain-breast-bone axis regulates skeletal andmineralmetabolism
during lactation. Suckling stimulates afferent nerves from the mammary
gland, which relay through the brainstem to the hypothalamus to inhibit
GnRH production, and to stimulate prolactin and oxytocin
secretion. The resulting hypogonadotropic hypogonadism leads to
estrogen deficiency. The mammary gland secretes PTHrP into the
circulation in response to suckling and increased circulating prolactin,
effects that can be inhibited by stimulation of the calcium-sensing
receptor (CaSR) by calcium delivery to the mammary gland. The
combined effect of low estradiol and elevated PTHrP levels in lactation
promote osteoclastic bone resorption as well as osteocytic osteolysis.
These changes are the best studied to date, but they alone do not fully
recapitulate the bone loss that occurs naturally with lactation, indicating
that there are likely additional local or systemic factors that are involved
in this process. PTHrP: Parathyroid hormone-related peptide, GnRH:
Gonadotropic releasing hormone, FSH: Follicle stimulating hormone,
LH: Leutenizing hormone, CaSR: Calcium sensing receptor, RANKL:
Receptor activator of NF-KB ligand, OPG: osteoprotegerin. Image made
with BioRender.
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from animals on a low protein diet showed reduced mineralization
capacity in vitro (Kanakis et al., 2020). Not surprisingly, a comparison
of the tibial transcriptomes between mice after weaning versus pre-
pregnancy, revealed hundreds of differentially regulated genes
involved in osteoblastogenesis, osteoclast inhibition, and the
regulation of energy metabolism (Collins et al., 2013). Clearly,
much more work is required to understand the molecular triggers
that lead to osteoclast apoptosis and the stimulation of osteoblast
differentiation and activity.

Data on the factors that may trigger post-weaning skeletal
recovery in women are even more scarce. While resumption of
menses with rising estradiol levels and falling PTHrP levels have
been suggested to slow osteoclastic bone resorption at the weaning
transition, there is no evidence that these changes stimulate bone
formation. What is clear, and what corroborates findings from animal
models, is that PTH is not required for skeletal recovery following
lactation as women with hypoparathyroidism can recover bone mass
in the lumbar spine and femoral neck normally after weaning (Segal
et al., 2011).

Hormonal regulation of bone turnover during
lactation

The regulation and coordination of calcium and bone metabolism
during lactation relies on interactions among the breast, brain and
bone that regulate systemic bone turnover (Figure 1). Individual
hormonal regulators will be discussed in depth below, but, in
overview, suckling stimulates the pituitary to release prolactin and
oxytocin. In addition, suckling stimulates afferent nerves from the
mammary gland, which relay through the brainstem to the
hypothalamus and inhibit gonadotropic releasing hormone (GnRH)
production. This, in turn, suppresses estradiol production leading to
hypogonadotropic hypogonadism, which is reinforced by elevations in
circulating prolactin. The mammary gland also secretes PTHrP into
the circulation in response to suckling and increased circulating
prolactin, effects that can be inhibited by stimulation of the
calcium-sensing receptor (CaSR) by calcium delivery to the
mammary gland. Clinical and animal studies confirm that the
combined effect of low estradiol and elevated PTHrP levels during
lactation promotes osteoclastic bone resorption as well as osteocytic
osteolysis (Zinaman et al., 1990; Sowers et al., 1996; Kovacs and
Kronenberg, 1997; Kalkwarf, 1999; Kovacs, 2001; VanHouten et al.,
2003; VanHouten and Wysolmerski, 2003; Ardeshirpour et al., 2010).
Furthermore, both prolactin and oxytocin have been shown to have
effects on bone. However, these changes alone do not fully recapitulate
the bone loss that occurs naturally with lactation, indicating that there
are likely additional local or systemic factors that are involved in this
process, but have yet to be defined (Ardeshirpour et al., 2010). There
are a paucity of data on the effect of this breast-brain-bone circuit in
post-weaning skeletal recovery, so we will focus our discussion on
bone loss during lactation.

Estrogen deficiency

Estrogen is a key regulator of bone remodeling, and osteoclasts,
osteocytes and osteoblasts all express the estrogen receptor (Riggs,
2000). The bone sparing effects of estrogen on osteoclasts and

osteocytes is primarily mediated by estrogen receptor alpha
(Movérare et al., 2003; Sims et al., 2003; Vandenput and Ohlsson,
2009; Windahl et al., 2013). The effects of estrogen receptor beta in
bone cells may be to antagonize the effects of estrogen receptor alpha,
but its role is less well characterized (Windahl et al., 1999; Windahl
et al., 2001; Sims et al., 2002; Lindberg et al., 2003). One of the most
important actions of estrogen on bone involves the osteoprotegerin
(OPG)/receptor activator of NF-KB ligand (RANKL) system. RANKL
is a cytokine expressed by osteoblasts, osteocytes and bone marrow
cells, that is essential for osteoclast differentiation, activation, and
survival (Kong et al., 1999). OPG, which is also secreted by osteoblasts,
osteocytes and marrow stromal cells, is a soluble decoy receptor that
binds RANKL to inhibit osteoclastogenesis, protecting the skeleton
from excess bone resorption (Simonet et al., 1997; Lacey et al., 1998).
RANKL acts through its receptor RANK (Receptor Activator of NF-
kB) which is expressed on osteoclast precursors andmature osteoclasts
(Li et al., 2000). RANKL, RANK and OPG are non-redundant and
essential osteoclast factors. The ratio of RANKL/OPG determines the
recruitment and differentiation of precursors to become osteoclasts,
the resorbing activity of mature osteoclasts, and the lifespan of
resorbing osteoclasts. In studies of ovariectomized female mice,
estrogen withdrawal increases RANKL expression and decreases
OPG expression leading to an increase in the RANKL/OPG ratio
and an increase in the numbers and activity of osteoclast and,
subsequently, increased bone resorption (Streicher et al., 2017). The
importance of RANKL in the pathogenesis of estrogen-deficiency
induced bone loss has been translated into therapeutic use of a
humanized monoclonal antibody against RANKL, denosumab, for
the treatment of postmenopausal osteoporosis (Zhang et al., 2020).

Lactation represents the only period of prolonged estrogen
deficiency naturally occurring during the reproductive lifespan.
Low estrogen results from hypogonadotropic hypogonadism that
occurs in response to suckling. Afferent nerves from the breast
relay the suckling reflex through the hindbrain and to the
hypothalamus, where it leads to an increase in the activity of
neuropeptide Y (NPY)/agouti-related protein (AGRP)-positive,
melanin concentrating hormone (MCH)-positive and oxytocin-
positive neurons as well as a decrease in kisspeptin 1 (Kiss1)
secretion (Brown et al., 2014). The increase in NPY is also
reinforced by the reductions in circulating insulin and leptin that
occur during lactation (Brogan et al., 1999; Xu et al., 2009). The
changes in these neurotransmitters lead to a suppression of pulsatile
GnRH secretion, low LH and FSH levels, and decreased ovarian
estrogen secretion. Finally, the increase in prolactin secretion in
response to suckling reinforces the suppression of GnRH secretion
by inhibiting the production and secretion of Kiss1. In women, the
degree of GnRH suppression and hypoestrogenemia is dependent on
the intensity of the suckling signal as well as its timing–as nursing
during nightime is more effective at suppressing GnRH than it is
during daytime (Smith and Grove, 2002; Smith et al., 2010; Brown
et al., 2014).

In lactating mice, estrogen levels are inversely associated with rates
of bone resorption and estrogen replacement reduces bone loss
(VanHouten and Wysolmerski, 2003). In human studies, bone loss
correlates with the duration of postpartum amenorrhea, which reflects
an ongoing low estrogen state (Sowers et al., 1993; Caird et al., 1994;
Kalkwarf and Specker, 1995; Honda et al., 1998; Kolthoff et al., 1998;
Polatti et al., 1999). However, clinical and animal data indicate that
estrogen deficiency is not the only cause of lactational bone loss. Bone

Frontiers in Physiology frontiersin.org05

Athonvarangkul and Wysolmerski 10.3389/fphys.2023.1121579

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1121579


loss also varies with suckling intensity. For instance, mice suckling
larger litters lose more bone and, likewise, so domothers nursing twins
as compared to mothers nursing single infants (Garner et al., 1987;
Peng et al., 1988; Laskey et al., 1998; Kovacs, 2016). Whether this is
related to more effective suppression of estrogen levels is not known.
In addition, women treated with GnRH analogues for endometriosis,
fibroids and severe acne over 6 months have lower circulating levels of
estrogen than lactating women, but experience less bone loss (Rico
et al., 1993; Fogelman et al., 1994; Orwoll et al., 1994; Uemura et al.,
1994; Howell et al., 1995; Newhall-Perry et al., 1995; Roux et al., 1995;
Paoletti et al., 1996; Taga and Minaguchi, 1996). Rodent studies
corroborate these findings and have shown that lactating animals
have greater bone loss than animals rendered estrogen deficient by
ovariectomy (Alles et al., 2010; Ardeshirpour et al., 2010; Duque et al.,
2011). Estrogen replacement in lactating mice reduced bone loss by
~60% but did not completely prevent it which is consistent with the
clinical observation that nursing women can continue to lose bone
after return of menses (Holmberg-Marttila et al., 2003; VanHouten
and Wysolmerski, 2003). Together, these studies show that low
estrogen works in tandem with other lactation hormones or factors
to promote bone loss.

Parathyroid-related peptide hormone
(PTHrP): A signal from the mammary gland to
bone

Parathyroid hormone-related protein (PTHrP) shares sequence
homology with parathyroid hormone (PTH) at its amino terminus
and signals through the common Type 1 PTH/PTHrP receptor
(PTHR1). It was discovered as a cause of humoral hypercalcemia
of malignancy (HHM), a common complication of many cancers
including breast cancer (Burtis et al., 1987; Moseley et al., 1987;
Strewler et al., 1987). Subsequent studies demonstrated that PTHrP
is secreted by normal breast epithelial cells during lactation, where it
becomes a key player regulating systemic calcium and bone
metabolism (VanHouten et al., 2003). Circulating levels of PTHrP
are very low or unmeasurable in nulliparous mice. However, they
become elevated during lactation and are further increased by
suckling and prolactin in both mice and in women (Rakopoulos
et al., 1992; Lippuner et al., 1996; Sowers et al., 1996; VanHouten
et al., 2003; VanHouten, 2005; Ardeshirpour et al., 2010; Vanhouten
and Wysolmerski, 2013). Circulating PTHrP levels have been shown
to correlate positively with bone resorption markers and negatively
with bone mass in mice at mid-lactation (VanHouten and
Wysolmerski, 2003). PTHrP levels in nursing women have also
been shown to correlate with the degree of bone loss and higher
bone turnover during lactation (Lippuner et al., 1996; Sowers et al.,
1996). These studies suggest that increased circulating levels of
PTHrP might synergize with estrogen deficiency to promote bone
loss during lactation.

In order to test whether breast-derived PTHrP acts as a hormone
to increase bone resorption and cause bone loss during lactation,
VanHouten and colleagues disrupted the mouse Pthlh (PTHrP) gene
specifically in mammary epithelial cells during lactation. Deletion of
PTHrP frommammary glands eliminated PTHrP from the circulation
as well as from milk, demonstrating that the mammary gland is the
source of circulating PTHrP during lactation. Bone resorption
assessed by biochemical markers and histomorphometry was

reduced by nearly 50% while bone density measured by DXA was
significantly higher in the absence of mammary gland PTHrP
production as compared to controls (VanHouten et al., 2003).

A study by Ardeshirpour and colleagues found that infusion of
PTHrP into nulliparous mice increases bone resorption rates and
amplifies the bone loss associated with ovariectomy or with treatment
with a GnRH analogue to mimic the hypogonadotropic
hypogonadism associated with lactation. Nulliparous mice were
administered PTHrP via a continuous mini-osmotic pump, either
alone, or with treatment of the GnRH agonist leuprolide or surgical
ovariectomy to lower estrogen levels. Circulating estrogen levels in
mice that were treated with leuprolide, that underwent ovariectomy,
and that lactated were lower than in randomly cycling virgin mice and
comparable among the hypogonadotropic states. Compared to
lactating animals that lost 23% of BMD in the spine and 16% in
the femur over 10 days of lactation, PTHrP decreased BMD by 4%–
5%, whereas leuprolide had a neutral to slightly positive effect on
BMD. The combination of PTHrP via infusion and low estrogen levels
did amplify the bone loss, but the overall magnitude of bone loss did
not equal that of natural lactation. Analysis of histomorphometry
found that leuprolide alone increased osteoclast numbers, whereas

FIGURE 2
Calcium sensing feedback loop between bone and breast. PTHrP
regulates calcium homeostasis during lactation in a classic endocrine
feedback loop. PTHrP is secreted from the mammary epithelial cells
(MEC) into the circulation and stimulates osteoclastic and
osteocytic bone resorption from the skeleton. The free calcium released
into the bloodstream feeds back to the mammary gland where it
activates the CaSR on the MEC to promote transepithelial transport of
calcium into milk, and to inhibit further production and secretion of
PTHrP into the circulation. MEC: Mammary epithelial cell, PTHrP:
Parathyroid hormone-related peptide, CaSR: Calcium sensing receptor,
RANKL: Receptor activator of NF-KB ligand, RANK: Receptor activator of
NF-KB; Ca2+: Ionized calcium. Image made with BioRender.
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PTHrP alone or in combination with leuprolide increased both
osteoclast and osteoblast numbers (Ardeshirpour et al., 2010). A
clinical study by Horowitz et al. also showed that PTHrP infusions
could cause an increase in bone turnover and suppression of bone
formation, as assessed by NTX, CTX, P1NP and bone-specific alkaline
phosphatase in the serum (Horwitz et al., 2011). Clearly, infusion
studies in mice or in humans do not recapitulate true lactation
physiology (Ardeshirpour et al., 2010; Horwitz et al., 2011). For
instance, in the absence of lactation the calcium released by the
skeleton could not go into milk and hypercalcemia ensued
(Horwitz et al., 2011) in both humans and mice. Nevertheless,
these studies show that estrogen deficiency and PTHrP can work
in conjunction to activate bone loss in lactation, but they also suggest
that there may be significant contributions from other local or
systemic factors to the full effects of lactation on the skeleton.

Calcium sensing receptor

The calcium sensing receptor (CaSR) is a G-coupled protein
receptor (GPCR) that signals in response to extracellular calcium
levels. Outside of lactation, the CaSR regulates PTH secretion from
the parathyroid glands and calcium excretion by the renal tubules
(Conigrave, 2016). While the CaSR is expressed at low levels in the
mammary gland of virgin and pregnant animals, its expression
increases many-fold in mammary epithelia during lactation,
where its activation inhibits PTHrP secretion and stimulates
transepithelial calcium transport into milk (VanHouten et al.,
2004; Ardeshirpour et al., 2006). If calcium delivery to the
mammary gland falls, then PTHrP production rises and calcium
transport decreases. These effects, in turn, lower calcium usage by
the gland and increase bone turnover from the maternal skeleton to
liberate calcium into the bloodstream. Circulating calcium provides
negative feedback to the mammary gland to suppress further PTHrP
production but positive feedback to increase calcium transport. This
endocrine and nutrient-sensing feedback loop between the lactating
breast and bone coordinates the supply of calcium with the demands
for calcium during milk production using the CaSR to regulate
PTHrP levels and calcium transport by the mammary epithelia
(Figure 2).

The model for the feedback loop between the mammary gland and
bone during lactation was derived from a study of lactating CaSR+/−

mice as well as mice with mammary-specific deletion of the Casr gene
(CaSR-cKO) at the start of lactation (Mamillapalli et al., 2013)
(Figure 2). Loss of the CaSR on mammary epithelial cells led to
increased PTHrP gene expression, increased milk PTHrP content and
reduced milk calcium content. PTHrP bioactivity, measured by
urinary cyclic AMP production was significantly elevated in CaSR-
cKO animals and they developed hypercalcemia due to reduced
calcium transport into milk. The elevated calcium levels were
transient as circulating calcium levels were normalized as a result
of a compensatory decrease in PTH secretion and an increase in
urinary calcium excretion triggered, in part, by stimulation of the
parathyroid and renal CaSR by elevated circulating calcium. Although
rates of bone loss measured by DXA and bone mass by microCT both
were equivalent in CaSR-cKO animals as compared to lactating
counterparts, histomorphometry revealed reduced trabecular bone
volume, increased trabecular spacing and a decrease in trabecular
number suggesting slightly excessive bone loss. There are no

corresponding genetic experiments in human subjects but the data
from mice confirm that, during lactation, upregulation of CaSR
expression allows the mammary gland to become a calcium-
sensing organ and the CaSR regulates PTHrP production and
calcium transport in response to changes in calcium delivery to the
gland.

Prolactin: Mammary gland to brain to bone

Prolactin is a peptide hormone responsible for promoting breast
development, secretory differentiation of breast epithelial cells, and
milk production. Classically, prolactin is synthesized and secreted by
the anterior pituitary under dopamine-mediated hypothalamic
regulation. However, other tissues including the central nervous
system, the immune system, the uterus, and the mammary gland
are capable of producing prolactin (Al-Chalabi et al., 2022). With the
fall in progesterone at parturition, prolactin receptors on the
mammary alveolar cells are increased, enabling lactogenesis.
Suckling or nipple stimulation is the most potent stimulator of
prolactin production and secretion. Sensory nerves in the nipple
carry the mechanical stimulus signal via the spinal cord to the
arcuate nucleus where dopamine release is inhibited resulting in
removal of its inhibitory effect on prolactin secretion.
Simultaneously, afferent signals from nipple stimulation relay to
the supraoptic and paraventricular nuclei to increase the
production of oxytocin, responsible for milk let down. Increased
oxytocin levels suppress dopamine and allow for further
production of prolactin (Al-Chalabi et al., 2022). To control milk
production, prolactin levels spike with periods of nipple stimulation.
While suckling is maintained, prolactin levels continue to remain
elevated. When suckling stops, prolactin levels decline to a basal level
andmilk production stops (Grosvenor andWhitworth, 1974; Freeman
et al., 2000; Al-Chalabi et al., 2022). If a mother does not continue to
nurse her baby, prolactin levels will fall to non-pregnant levels in 1 to
2 weeks.

Aside from its role in milk production and mammary gland
development, prolactin integrates lactation physiology with bone
metabolism. In mammary tissue, prolactin stimulates PTHrP
production which, as noted above, increases bone turnover for
delivery of calcium towards milk production. Prolactin has been
shown to increase the genes essential for serotonin synthesis
resulting in increased serotonin levels in the mammary epithelium
and in milk (Matsuda et al., 2004). Serotonin, in turn, has been shown
to affect mammary epithelial cell differentiation, alveolar filling and
PTHrP production (Matsuda et al., 2004; Hernandez et al., 2012; Zang
et al., 2018). Several studies in mice, rats, goats, sheep and cows have
demonstrated that administration of serotonin precursors in lactating
animals increases circulating levels of calcium and PTHrP as well as
milk calcium concentrations and bone resorption (Hernandez et al.,
2012; Laporta et al., 2013; Laporta et al., 2014; Jin et al., 2019; Zhang
et al., 2022). In addition, blocking serotonin synthesis by knocking out
the tryptophan hydroxylase 1 gene in mice lowered PTHrP gene
expression in the lactating mammary gland (Laporta et al., 2014).
Finally, it appears that serotonin induces PTHrP expression, in part
through a hedgehog-dependent pathway (Laporta et al., 2014). These
data suggest that prolactin can regulate bone turnover indirectly by
inducing mammary serotonin production, which, in turn stimulates
PTHrP production.
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High serum prolactin levels also contribute to the low estrogen
state of lactation. In both animals and in women, prolactin can inhibit
pulsatile GnRH release by the hypothalamus. In mice and rats, this has
been shown to occur through altering tuberoinfundibular dopamine
turnover, and also inhibiting kisspeptin 1 secretion (Smith and Grove,
2002; Smith et al., 2010; Brown et al., 2014). This reinforces the direct
actions of the suckling reflex (discussed in prior section) reinforcing
hypogonadotropic hypogonadism and low estrogen levels. Prolactin
has also been shown to directly inhibit estradiol production by ovarian
granulosa cells in response to FSH, again reinforcing the reduction in
circulating estrogen concentrations (McNeilly et al., 1982; Nakamura
et al., 2010). Thus, prolactin also can increase bone resorption and
calciummobilization by contributing to the hypogonadism induced by
suckling.

In addition to prolactin’s indirect effect on bone turnover via
lowering estrogen and raising PTHrP levels, it may also have a direct
effect on osteoblasts which express prolactin receptors. Mice with
prolactin receptor deficiency have decreased bone formation
(Clément-Lacroix et al., 1999; Coss et al., 2000; Seriwatanachai
et al., 2008) and rats treated with bromocriptine to lower prolactin
levels had a blunted bone mineral density gain related to pregnancy
(Suntornsaratoon et al., 2009; Suntornsaratoon et al., 2010).
Hyperprolactinemia resulting from anterior pituitary implantation
increases the RANKL/OPG ratio, favoring osteoclastic resorption in
vivo and decreases the mRNA expression of bone mineralization
markers such as osteocalcin and alkaline phosphatase in osteoblast
cell culture (Seriwatanachai et al., 2008). These direct responses to
prolactin may lead to the suppression of bone formation.
Furthermore, prolactin controls intestinal calcium absorption by
increasing active transcellular and passive calcium transport in the
small intestine during pregnancy and lactation (Pahuja and DeLuca,
1981; Charoenphandhu and Krishnamra, 2007; Charoenphandhu
et al., 2009).

Oxytocin

Suckling stimulates the secretion of oxytocin from the posterior
pituitary. This neuropeptide hormone is well known to regulate milk
ejection and to contribute to social bonding between mothers and
infants. Moreover, oxytocin is synthesized in the bone
microenvironment and has direct effects on bone cells. Osteoblasts,
osteoclasts, and both osteoblast and osteoclast progenitors express
oxytocin receptors (Colucci et al., 2002). Oxytocin can stimulate the
expansion of osteoclast progenitors while also inhibiting mature
osteoclast function. However, any effects on bone resorption
appear to be mitigated by the more dominant effects to stimulate
osteoblasts and bone formation (Liu et al., 2009; Tamma et al., 2009).
Disruption of either the oxytocin gene or the oxytocin receptor gene
results in osteoporosis and administration of oxytocin to
ovariectomized mice prevents bone loss caused by estrogen
withdrawal (Liu et al., 2009; Tamma et al., 2009; Beranger et al.,
2015). Thus, on balance, it has been suggested that oxytocin has
primarily an anabolic function on bone. However, Sun and colleagues
found that the specific targeted deletion of the oxytocin receptor in
osteoblasts resulted in attenuation of lactation-induced bone loss
suggesting that oxytocin actions on osteoblasts somehow increased
bone loss, which is the opposite of its effects in the ovariectomy model
and its known effects to increase osteoblast RANKL expression (Sun

et al., 2016). Unfortunately, the authors did not characterize bone
turnover markers or histomorphometric measurements of bone cell
populations in these experiments, so the mechanisms underlying these
observations remain unclear. It is possible that oxytocin may be
another reinforcing factor that contributes to increased bone
turnover and bone loss during lactation.

Calcitonin

Calcitonin is a peptide hormone that is primarily produced by
the parafollicular cells of the thyroid gland and acts to reduce
circulating calcium levels by directly inhibiting the function of
osteoclasts. The presence of calcitonin and its receptor in
mammary tissue (Tverberg et al., 2000), bone and the pituitary
(Sheward et al., 1994; Ren et al., 2001) suggests that calcitonin may
also participate in the regulation of calcium homeostasis during
lactation. In mice, it has been shown that calcitonin protects the
maternal skeleton from excessive bone loss during lactation.
Calcitonin null mice lost 53% of their bone mineral content in
the spine compared to wildtype control mice that lost the expected
26% BMC during lactation (Woodrow et al., 2006). This excess bone
loss could be rescued by administration of salmon calcitonin, the
pharmacological form used to treat bone diseases. Global knockout
of the calcitonin receptor in mice revealed that calcitonin limits
osteocytic osteolysis during lactation by regulating acidification of
the osteocyte lacunae. Lower pH in the osteocyte lacunae and higher
levels of gene expression of the ATPase H+ transporting V0 subunit
D2 (Atp6v0d2) were reported in mice lacking the calcitonin receptor
gene. Finally, calcitonin null mice fully recover bone mass after
weaning to levels consistent with wildtype animals, demonstrating
that it is not required for the anabolic effects of weaning (Woodrow
et al., 2006).

The effect of calcitonin on the pituitary and mammary gland
during lactation are less clear cut. Exogenous calcitonin
administration to lactating rats (Tohei et al., 2000) and targeted
overexpression of calcitonin in pituitary lactotrophs in mice (Yuan
et al., 2005) inhibited prolactin production. Although it was
expected that calcitonin null mice may have enhanced synthesis
of prolactin and even more depressed levels of estrogen contributing
to the exaggerated bone loss during lactation, there was no
significant mean difference in circulating prolactin levels between
calcitonin null animals and wildtype, and estrogen levels were
undetectable in both groups (Woodrow et al., 2006). In the
mammary gland, where calcitonin and its receptor are both
expressed (Tverberg et al., 2000), calcitonin may regulate PTHrP
production. Calcitonin null mice have higher levels of PTHrP
during lactation compared to wildtype, but there are no local
changes in the gene expression of the CaSR, which typically
regulates PTHrP production as described above, or in the gene
expression of calcium regulators or calcium handling proteins
involved in milk production (Woodrow et al., 2006). This
suggests that the effect of calcitonin on PTHrP production may
be through regulation of CaSR activity or independent of the CaSR.

There are no controlled studies in human examining the effect of
calcitonin on lactation-associated bone loss. Future studies on women
with low calcitonin levels as a result of having had a total
thyroidectomy prior to pregnancy may shed light on the role of
calcitonin in skeletal remodeling with breastfeeding.
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Pregnancy and lactation-associated
osteoporosis

Remarkably, the maternal skeleton can undergo multiple rounds
of significant bone loss and replenishment with successive periods of
pregnancy and lactation without clinical consequence. Pregnancy and
lactation associated osteoporosis (PLO) is a rare condition where
women develop fragility fractures associated with significantly low
BMD during pregnancy or the postpartum period. The incidence rate
has been estimated to be 4–8 per 1 million pregnancies. Much of what
is known about PLO derives from observational studies and clinical
case reports or case series, in which little is known about the mother’s
pre-pregnancy or pre-fracture bone quality.

Vertebral fractures occur most commonly in PLO and are
considered the hallmark of this disorder. Furthermore, PLO is
often associated with multiple vertebral fractures, with an average
of three, but up to eight reported in a single patient (Bonacker et al.,
2014; Hadji et al., 2017; Hardcastle et al., 2019). The most vulnerable
vertebral bodies appear to be T11-L4. The high prevalence of multiple
vertebral fractures in PLO may reflect reporting bias as asymptomatic
single vertebral fractures may be underreported or underdiagnosed.
Nevertheless, women with PLO usually present with back pain in late
pregnancy or during early lactation. Other low-trauma fractures have
also been reported in PLO including hip, pelvic, sacral, pubic, humeral,
tibial and foot fractures (Breuil et al., 1997; Aynaci et al., 2008; Laroche
et al., 2017; Kyvernitakis et al., 2018; Cohen et al., 2019; Jun Jie et al.,
2020; Tuna et al., 2020).

Limited studies have looked at bone density and structure in PLO.
Most data have been collected near the time of fracture or remotely
after the fracture without clear relation to the timing of breastfeeding.
Data from published case series have shown that women with PLO
have significantly reduced BMD by DXA, with lower values in the
spine than the total hip (Hardcastle et al., 2019; O’Sullivan et al., 2006;
Hong et al., 2018). Spine z-scores are often −3 or lower, while total hip
z-scores are generally in the −2 range. Bone structure, as assessed by
HR-pQCT, shows reduced cortical density and thickness, as well as
reduced trabecular number, density and thickness in women with PLO
as compared to young, healthy women (Sánchez et al., 2016). A small
number of studies included bone histology from transiliac crest
biopsies of women with PLO. In a study by Smith et al. of eleven
women with PLO, bone biopsies were obtained 2 weeks to 5 years
post-delivery. Four biopsies showed normal bones. Six biopsies
showed osteoporosis without evidence of increased bone activity or
osteoid. One biopsy revealed underlying osteogenesis imperfecta. One
biopsy had evidence of increased osteoblastic and osteoclastic activity;
however this sample was obtained 5 years postpartum. Despite the
heterogeneity, the authors suggested that PLO is a condition of
reduced osteoblastic activity rather than increased bone resorption
(Smith et al., 1995). Cohen et al. performed bone biopsies on seven
women with PLO and compared them to women with premenopausal
osteoporosis unrelated to pregnancy or lactation, and to healthy
women. All bone biopsies from women with PLO were taken at
least 12 months after delivery and six or more months after
weaning from breastfeeding. They found that women with PLO
had significantly lower rates of bone apposition and formation
compared to the other two groups. However, osteoblast numbers
were similar among all the groups suggesting that PLO may be a
condition with a deficit in osteoblast function. In contrast, a bone
biopsy taken 10 weeks postpartum from a woman with PLO showed

features of increased bone turnover including increased numbers of
osteoblasts, osteoclasts, and eroded surfaces (Cohen et al., 2019).
These differences in timing of bone biopsies relative to pregnancy
and lactation, make it difficult to tease out the underlying causes that
are contributing to increased skeletal fragility in PLO. A recent
genetics study of 42 women with PLO from a referral center in
Germany found that 50% of patients had genetic variants of genes
known to play a role in bone formation, supporting the idea that PLO
may represent a condition of “sluggish” osteoblasts that may not be
able to mount enough of a response to match the normal increase in
bone formation seen in lactation, resulting in a larger or more rapid
net loss of bone mass in response to all of the changes that drive bone
resorption during this period (Kyvernitakis et al., 2018).

For women presenting with fracture in pregnancy or lactation, it is
important to have a high clinical index of suspicion for PLO and to
identify any underlying causes of bone fragility and osteoporosis that
are being unmasked by the physiology of pregnancy and lactation. In
addition to a full history and physical exam, it is important to take a
full dietary history including calcium intake. A history of fragility
fractures prior to pregnancy or multiple fractures during childhood,
joint hypermobility or blue sclerae should prompt further evaluation
for osteogenesis imperfecta. A personal or family history of visual
impairment warrants further investigation for mutations in the low-
density lipoprotein-related receptor 5 (LRP5), which causes
osteoporosis-pseudoglioma syndrome. Assuming that BMD is low,
secondary causes of osteoporosis should be considered including
blood screen with full blood count, calcium profile, renal function,
vitamin D and thyroid stimulating hormone. If clinical features are
suggestive, screening for Cushing’s syndrome or multiple myeloma
may be appropriate. Bone turnover markers are often collected but
have limited utility in the acute setting of fracture.

The approach to treating women with PLO remains controversial
and will not be discussed in detail here. Antiresorptive and anabolic
agents used for the treatment of postmenopausal osteoporosis have
been used as therapy for women with PLO even though they are all
considered contraindicated in pregnancy and lactation. The
conservative approach of ensuring adequate calcium and vitamin D
intake appears to be of low risk. It is reasonable to counsel women with
PLO and very low bone density to stop breastfeeding, given that BMD
is expected to decrease by 1%–3% per month of lactation. Some
evidence exists that breastfeeding in the face of PLO may increase
the risk of fractures in subsequent pregnancies (Laroche et al., 2017;
Kyvernitakis et al., 2018; Hardcastle et al., 2019). Bisphosphonates
have been well tolerated in women with PLO but potential safety
concerns in women of childbearing age must be acknowledged since it
is known that bisphosphonates have long skeletal retention times and
readily cross the placenta. Denosumab has been used for treatment of
PLO and is attractive for its quick offset time compared to
bisphosphonates (Ijuin et al., 2017; Cerit and Cerit, 2020; Tuna
et al., 2020). However, the rebound increased bone turnover known
to occur on discontinuation of denosumab is a potential issue,
particularly in women who have already sustained vertebral
fractures. More frequently, anabolic agents are used to treat PLO
and have demonstrated clinical improvement in pain and increases in
BMD (Stumpf et al., 2007; Hellmeyer et al., 2010; Choe et al., 2012;
Lampropoulou-Adamidou et al., 2012; Lee et al., 2013; Bonacker et al.,
2014; Pola et al., 2016; Ijuin et al., 2017; Laroche et al., 2017; Hong
et al., 2018; Cerit and Cerit, 2020; Tuna et al., 2020). Two recently
published studies have demonstrated that use of teriparatide results in
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improved bone density as compared to calcium and vitamin D alone
(Lee et al., 2021; Hadji et al., 2022). It is also notable that the study
from Lee and colleagues demonstrated that teriparatide could be used
in this setting to increase bone density and that subsequent use of an
antiresorptive medication may not be necessary as patients who did
not receive an anti-resorptive agent did not lose bone for up to 2 years
after discontinuing anabolic therapy with PTH (Lee et al., 2021). These
studies suggest that teriparatide should be the preferred therapy for
patients with PLO who require treatment. One caveat is that these
studies did not examine fractures, they just monitored changes in bone
density measurements. To date, there are no reported cases of
romozosumab use for PLO. Clearly more study is required to
better understand the underlying pathophysiology and best
treatment for this rare but devastating condition.

Lactation as an evolutionary template for
bone loss in postmenopausal osteoporosis

Postmenopausal bone loss has been theorized to be an
inappropriate reactivation of the mechanisms designed for
physiological bone loss during lactation. These two reproductive
phases share multiple similarities. First, there is uncoupled bone
turnover leading to net bone loss, which is more prominent at
trabecular-rich sites. Second, estrogen deficiency is one of the main
drivers for unbalanced bone resorption (Kovacs and Kronenberg,
1997; Wysolmerski, 2002). The ability to store and mobilize
calcium during lactation may underlie the skeleton’s estrogen
responsiveness. If this is true, then menopausal bone loss can be
regarded as a post-reproductive consequence of the increase in bone
resorption that normally occurs during lactation in response to
estrogen deficiency. Understanding the mechanisms that mediate
full skeletal recovery post-weaning may thus lead to clinical
interventions for the reversal of osteoporosis.

Conclusion

Coordination of the brain-breast-bone axis during lactation
ensures an adequate supply of calcium for milk production that, in
turn, supports the growth and development of mammalian offspring.

This circuitry contains feedback loops and redundancies that serve to
balance the increased metabolic demands for calcium to supply milk
production with the maintenance of skeletal integrity to allow for
multiple reproductive cycles. Much of our understanding of this brain-
breast-bone circuity is based on rodent models. Clinical studies with
bone biopsies taken during lactation are needed to understand the
cellular andmicrostructural changes that occur in humans as well as to
determine whether osteocytic osteolysis also occurs in nursing
humans. With this knowledge, we may be able to enhance our
approach to the treatment of pregnancy and lactation associated
osteoporosis and/or to develop new therapies and targets for
postmenopausal osteoporosis.
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