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The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-
component syndrome occurring during kidney disease and its progression. Here, we
update progress in the components of the syndrome, and synthesize recent
investigations, which suggest a potential mechanism of the bone-vascular
paradox. The discovery that calcified arteries in chronic kidney disease inhibit
bone remodeling lead to the identification of factors produced by the vasculature
that inhibit the skeleton, thus providing a potential explanation for the bone-vascular
paradox. Among the factors produced by calcifying arteries, sclerostin secretion is
especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an
osteocyte specific protein. Its production by the vasculature in chronic kidney
disease identifies the key role of vascular cell osteoblastic/osteocytic
transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent
studies showing that inhibition of sclerostin activity by a monoclonal antibody
improved bone remodeling as expected, but stimulated vascular calcification,
demonstrate that vascular sclerostin functions to brake the Wnt stimulation of
the calcification milieu. Thus, the target of therapy in the chronic kidney disease-
mineral bone disorder is not inhibition of sclerostin function, which would intensify
vascular calcification. Rather, decreasing sclerostin production by decreasing the
vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease
vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy,
decrease sclerostin production, reduce serum sclerostin and improve skeletal
remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral
bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin
levels may be a useful biomarker for the diagnosis of the chronic kidney disease-
mineral bone disorder and the progress of its therapy.
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Introduction

The Chronic Kidney Disease–Mineral Bone Disorder (CKD-
MBD) is an important contributor to the mortality associated with
CKD. Matsushita et al. (2015); Block et al. (2013) Specifically, the
CKD-MBD contributes to cardiovascular mortality, the major cause of
death in patients with CKD; Go et al. (2004); Tonelli et al. (2006);
Navaneethan et al. (2015) The CKD-MBD is a multi-component
syndrome consisting of: disordered mineral metabolism,
hyperphosphatemia, calcitriol and vitamin D deficiency, secondary
hyperparathyroidism, elevated fibroblast growth factor 23 (FGF23),
Klotho deficiency, renal osteodystrophy, vascular calcification and
cardiac disease, complicating CKD (Figure 1). Hruska et al. (2022) Up
to the present - 2022, treatment of the CKD-MBD has focused on the
components that develop late in the course of the syndrome. That is,
nephrologists use phosphate binders, calcimimetics and calcitriol to
control hyperphosphatemia, secondary hyperparathyroidism and
treat renal osteodystrophy. Inhibitors of hydroxyapatite are
proposed to approach vascular calcification. Raggi et al. (2020)
However, these treatments have not affected cardiovascular
outcomes in clinical trials (Figure 2).Raggi et al. (2011),
Investigators et al. (2012), Raggi et al. (2020), Ogata et al. (2021),
Sutherland et al. (2022) This raises the question as to the appropriate
outcome of trials to treat the CKD-MBD. Hedayati (2020) As a result,
the CKD-MBD is a syndrome without an effective therapy, and in
need of therapeutic target identification. Additionally, the field needs
biomarker development to guide diagnosis, treatment and prognosis.

The finding that in the face of normal Ca, Pi, calcitriol, and PTH,
CKD still produced renal osteodystrophy lead to the hypothesis that
renal injury/repair factors released to the circulation produce systemic
complications of CKD. Lund et al. (2004) Renal development factors
reactivated during injury and attempted repair in kidney disease
include members of the Wnt and TGFβ families (Surendran et al.,
2002; Surendran et al., 2005; Lima et al., 2019; Malik et al., 2020).
Reactivation of Wnts and Activin (TGFβ family) transcriptionally
stimulate the family of Wnt inhibitors in the process of attempted
repair and progression of disease (Niida et al., 2004; Kamiya et al.,
2010; Loots et al., 2012; Edeling et al., 2016; Sebastian and Loots, 2017;
Zuo and Liu, 2018; Malik et al., 2020). For example, TGFβ and Activin
stimulate sclerostin expression (Figure 3). Additionally, other Wnt
and BMP inhibitors such as Sostdc1 (also known as USAG-1 and
Wise) are induced in diseased kidneys. Yanagita et al. (2004); Yanagita
et al. (2006) The Wnt and BMP inhibitors appear in the circulation
and contribute to the pathogenesis of renal osteodystrophy
(Surendran et al., 2005; Sabbagh et al., 2012; Fang et al., 2014a;
Graciolli et al., 2017). The Wnt inhibitor family members produced
in kidney disease include sclerostin, Sostdc1, DKK1 (Dickkopf 1), and
SFRP4 (Soluble frizzled related protein 4). Surendran et al. (2005);
Hruska et al. (2017) In relation to CKD, Dkk1 and sclerostin have been
studied, and even though both inhibit the Wnt ligand–LRP5/
6–Frizzled interaction, their downstream responses are different
(Evenepoel et al., 2015; Behets et al., 2017). In CKD patients, the
association of serum Dkk1 with mineral and bone parameters is
minimal, while sclerostin strongly associates (Cejka et al., 2011;
Behets et al., 2017). There is a consensus that, activation of Wnts
and TGFβ family members (Activin A) during kidney diseases
produce circulating Wnt inhibitors, inhibiting skeletal remodeling
and contributing early in disease to the development of the
CKD-MBD.

Here, in providing updates on the CKD-MBD components,
focusing on vascular calcification and the concept of kidney disease
produced disruption of homeostasis; the bone vascular paradox is
potentially explained. The synthesis of recent studies involving Wnt
inhibitors produces the suggestion of the putative CKD-MBD
therapeutic target and the identification of sclerostin levels as a
useful biomarker for diagnosis and progress of therapy.

Updates in the chronic kidney disease-
mineral bone disorder components

Vascular

Vascular calcification (VC) has been extensively studied since its
addition to the CKD-MBD. Moe et al. (2006), Olgaard and Olgaard
(2006) Numerous investigators show that it is an organized cellular based
program rather than a passive process; that reduction of inhibitors is
cellular function based; and that VC is related to autophagy and matrix
vesicles. There are many excellent reviews, including recent ones (Paloian
andGiachelli, 2014; Lee et al., 2020; Nelson et al., 2020; Lanzer et al., 2021).
The science shows that vascular calcification is an important factor in the
progression of CKD and the development of cardiac complications of
CKD (Yun et al., 2022). The pathogenesis of vascular calcification in CKD
is complex, and pathologically, is of two types, neointimal and arterial
medial (Shanahan et al., 2011; Lanzer et al., 2021). The pathogenesis of
atherosclerotic neointimal and arterial medial calcification involves
activation of an osteoblastic differentiation program in cells of the
neointima of atherosclerotic plaques and in cells of arterial media
(Shanahan et al., 1994; Demer, 1995). In translational models of
atherosclerosis and diabetes, mild renal insufficiency (equivalent to
human stage 2 CKD) reduces the levels of aortic proteins involved in
the contractile apparatus of smooth muscle. Fang et al. (2014b) This is in
agreement with evidence that vascular smooth muscle cells move into a
dedifferentiated synthetic state from their normal contractile
differentiated state in disease (Towler et al., 1998; Kokubo et al., 2009).
Thus, early in kidney disease arterial smooth muscle dedifferentiation is
present (Fang et al., 2014b; Monroy et al., 2015). Dedifferentiated vascular
smooth muscle cells are susceptible to lineage transition within the
developmental programs of mesenchymal stem cells and early
progenitor cells, including the lineage program of osteoblasts.
Osteoblastic transition of cells in the arterial walls produces CKD
stimulated calcification of atherosclerotic plaques and the vascular
media (Giachelli et al., 1993; Shanahan et al., 1994; Shanahan et al.,
1999; Moe et al., 2002; Davies et al., 2003; Williams et al., 2018). In
addition, vascular cell osteoblastic differentiation proceeds to osteocytic
differentiation, just as in the skeleton, as shown by vascular expression of
osteocyte specific genes such as SOST (gene for sclerostin) and E11 (gene
regulating osteocytogenesis) (Staines et al., 2016; Bisson et al., 2019). SOST
expression in VSMC subtypes was confirmed by single cell transcriptome
analysis in aortas of high fat fed mice (Kan et al., 2021). The source of the
osteoblastic differentiating cells may be mesenchymal progenitors from
the adventia moving into the media and expressing both smooth muscle
and osteoblastic transcriptional programs, Kramann et al. (2016) although
other lineage tracing studies support vascular smooth muscle cell
transdifferentiation (Speer et al., 2009; Naik et al., 2012; Durham et al.,
2018).

In osteoblastic differentiation, Wnt/β-catenin signaling is
critical for differentiation from mesenchymal stem cells, Gaur
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FIGURE 1
The components of the CKD-MBD— 3 organ dysfunctions, 4 endocrine factors and 2 mineral metabolism dysfunctions. Green arrows show direct
effects of renal injury/repair on individual syndrome components, dotted arrows indirect effects. Thick gray arrow indicates that each of the endocrine
components regulate mineral homeostasis. Blue arrows show effects of FGF23 and αklotho on organ dysfunction.

FIGURE 2
The components of the CKD-MBD, and the targets of clinical trials of attempted therapy. Clinical trials in the CKD-MBD to date have targeted late
components of the syndrome, and have not altered cardiovascular outcomes. Small observational trials of romosozumab targeting the skeleton in dialysis
patients (not shown in the figure) reveal increased bone mineral density at lumbar and femoral bone sites at 12 and 24 mos. See section on bone—vascular
paradox.
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et al. (2005) and it induces RUNX2, a master transcription factor of
the osteoblast transcriptome (Franceschi and Xiao, 2003; Komori,
2010; Cai et al., 2016). RUNX2 regulates osteoblastic
differentiation through stimulating expression of several bone-
important proteins, such as osterix, osteocalcin, alkaline
phosphatase and sclerostin. RUNX2 is critical for VSMC
transdifferentiation, and in turn is epigenetically regulated, also
critical in VSMC transdifferentiation (Xia et al., 2015; Liu et al.,
2021; Li et al., 2022). Sclerostin expression by inhibiting Lrp5/6, the
co-receptors with Frizzled for Wnts, antagonizes canonical Wnt
signaling providing a feedback break on RUNX2 induction and
RUNX2 mediated VSMC transdifferentiation (Li et al., 2005).

In early CKD, the increase in circulating Wnt inhibitors directly
affects the skeleton through Wnt inhibition, de Oliveira et al. (2013)
but sinceWnt signaling induces RUNX2, theWnt inhibitors cannot be
the basis for the vascular RUNX2 expression. RUNX2 is Wnt
stimulated, and Wnts and RUNX2 are at the start of vascular
osteoblastic/osteocytic transdifferentiation. So how does CKD
activate vascular Wnt signaling? There are other signals from

kidney disease, besides the Wnt inhibitors, activating vascular Wnts
or other pathways leading to RUNX2 expression.

The transcriptome stimulated by vascular RUNX2 includes
alkaline phosphatase, an important contributor to the CKD-
induced decrease in inhibitors of calcification since it catabolizes
pyrophosphate. Other inhibitors of calcification diminished in the
circulation during CKD include fetuin-A (Shroff et al., 2008). Fetuin-
A, synthesized in the liver, is glycoprotein that binds calcium in
calciprotein complexes and prevents calcium salt crystallization
(Heiss et al., 2010). Other inhibitors of calcification during CKD,
such as osteopontin and MGP (matrix gla protein), are more complex
than mere association with their circulating levels. MGP is discussed
below in the skeletal section on Gla proteins. Osteopontin is a very
complex protein in regards to vascular calcification. It is highly
phosphorylated (thus Ca binding), exists as multiple splice variants
with different functionality, is a cytokine stimulating the immune
system, has an RGD integrin and CD44 binding domain, and is a
SIBLING protein. SIBLING proteins (small integrin-binding ligand,
N-linked glycoprotein) are components of the extracellular matrix of

FIGURE 3
Transcriptional regulation of SOST in the CKD-MBD context: Parathyroid hormone (PTH) inhibits SOST expression through a HDAC5 effect on MEF2
which regulates ECR5. Depending on the cellular context, TGFβ/Activin signaling (via Smad2/3) either up-regulates SOST expression by acting through ECR5
or down-regulates SOST. Hypoxia (via HIF-1α), glucocorticoids and Vitamin D up- or down-regulate SOST expression in a context-dependent manner. TNFα,
through a NF-κβ dependent mechanism, and BMP signaling, via Smad1/5/8, increase SOST transcription by targeting the promoter. SOST transcription is
negatively regulated by mechanical loading, promoter methylation (DNA-Met) and by epigenetic modifications induced by SIRT1. Zfp467 and transcription
factors RUNX2 and SP7 bind to the SOST promoter and activate SOST expression. Adapted from Sebastian and Loots (Bone 96: 76-84, 2018). Graphic created
with BioRender.com
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bone. There they play key roles in the mineralization of the tissue.
Osteopontin is upregulated in calcified vessels as part of osteoblastic
differentiation (Shen and Christakos, 2005), but serum levels do not
correlate with calcific burden (Giachelli et al., 2005; Barreto et al.,
2011). Osteopontin null mice have increased vascular calcification
(Speer et al., 2002). In vitro and in vivo studies suggest that osteopontin
not only inhibits mineral deposition but also actively promotes its
dissolution by physically blocking hydroxyapatite crystal growth and
inducing expression of carbonic anhydrase II in monocytic cells and
promoting acidification of the extracellular milieu (Steitz et al., 2002).
Despite its protective role in vascular calcification, circulating
osteopontin has been implicated in the lung disease stimulated by
kidney injury (Khamissi et al., 2022).

In VSMC transdifferentiation, there is an increase in the release of
matrix vesicles, which resemble those released by osteoblasts
(Kapustin et al., 2015). Matrix vesicles are a form of extracellular
vesicle implicated in both apoptosis and the calcification environment
(Figure 4). Schurgers et al. (2018) They colocalize with collagen and
elastin fibrils, and they have phospholipid membranes containing
molecular cargo (protein, RNA, or lipid). Some of the matrix vesicles
are exosomes formed by the endosomal pathway through
multivesicular bodies (MVB) (Figure 4). In the pathway of CKD
stimulation of osteoblastic exosome production, tumor necrosis
factor α (TNFα) stimulates neutral sphingomyelinase 2 (nSM2)
(Figure 4). Many cells and cell types release matrix vesicles in
response to cell activation or apoptosis. These vesicles act serve as
nucleation sites in calcification. They have the capacity for

extracellular matrix production. Evidence suggests that these
vesicles may permit cross-talk among VSMCs and between
endothelial cells and VSMC (Lin et al., 2016; Chen et al., 2018a).
This may support bidirectional positive feedback between intimal and
medial calcification (Bardeesi et al., 2017). Also, nanotubes bridging
cells are another potential mechanism of cell to cell communication in
calcification (Figure 4). Vesicles that contain genotypic and/or
phenotypic information such as microRNA, may either induce or
inhibit nearby pro-calcific phenotypic change depending on the
sequences released by VSMC (Goettsch et al., 2013; Dusso et al.,
2018). Changes in relative collagen composition and the degradation
of elastin produced by the vesicles may promote hydroxyapatite
formation and provide scaffolding for further mineralization (Pai
and Giachelli, 2010; Hodroge et al., 2017).

Besides matrix vesicles, apoptotic cell bodies can act similarly
(Proudfoot et al., 2000). Furthermore, under the stress of CKD,
autophagy is impaired, promoting DNA damage and leading to
increased apoptosis (Tang et al., 2020). CKD is a state of early
senescence, which impairs autophagy, promotes apoptosis and
vascular calcification (Dai et al., 2019). In CKD, increased activin
may affect negatively vascular autophagy through inhibition of
MTORC2 (Chang et al., 2020).

Clinically, abnormalities of the vasculature found in early CKD,
produce vascular stiffness and contribute to left ventricular
hypertrophy (Mitsnefes et al., 2005; Ix et al., 2009; Seifert et al.,
2013). Vascular calcification further intensifies stiffness and
development of left ventricular hypertrophy, all processes that

FIGURE 4
Vascular smooth muscle cell (VSMC) exosome biogenesis and release. See text for interpretation. miR145, micro RNA 145; ER, endoplasmic reticulum;
TNF-α, tumor necrosis factor alpha; MVB, multivesicular bodies; nSM2, neutral sphingomyelinase 2; SNARES (Soluble NSF Attachment protein Receptor
Superfamily). Adapted from Dusso et al. (2018) with permission.
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contribute to cardiovascular risk and excess cardiac mortality. The
surprising fact is that despite many clinical trials targeting vascular
calcification, there has been modest at best attenuation of the process
and no demonstration of improved cardiovascular outcomes
(Figure 2). Raggi et al. (2020), Xu et al. (2022) Thus, there is dire
need for refocus on the therapeutic target, and new therapeutic
approaches.

Skeletal

Abnormalities of bone in the CKD-MBD begin with the renal
response to injury due to activation of Wnt pathways in the kidney.
Surendran et al. (2004), Zhou et al. (2016) Canonical Wnt signaling
transcriptionally stimulates production of DKK1, Aaron (2001), Niida
et al. (2004), Fang et al. (2014a) and DKK1 and SOST are both
downstream targets of TGFβ family signaling activated by renal injury
(Figure 3). Kamiya et al. (2010) Since the Wnt inhibitors are
circulating factors, kidney injury directly inhibits bone remodeling
which is homeostatically Wnt dependent. Bafico et al. (2001), Gong
et al. (2001), Little et al. (2002) Inhibition of Beta catenin signaling in
the skeleton, increased SOST expression, and increased expression of
osteocytic FGF23 are seen after a relatively mild reduction in the
glomerular filtration rate (GFR), as seen in stage 2 CKD. Pereira et al.
(2009), Graciolli et al. (2010), Sabbagh et al. (2012) These
abnormalities predominately affect cortical bone where osteocytes
reside in early CKD, and progress to decreased cortical bone
volume and porosity. Malluche et al. (2013), Nickolas et al. (2013),
Fang et al. (2014b) Abnormalities of remodeling, mineralization and
the material properties of bone develop in CKD, leading to major
decreases in structural strength, fractures and deformity associated
with long term disease. Moe and Nickolas (2016), Damasiewicz and
Nickolas (2018), El-Husseini et al. (2022) Recent studies demonstrate
the progressive development of a remodeling imbalance during CKD
due to stimulation of osteoclast number and function, but a relative
decrease in osteoblast function in view of increased osteoblast number
that fails to increase bone formation as expected. Sugatani et al. (2017),
Williams et al. (2018) This is fueled by acidosis and
hyperparathyroidism in collaboration with activin/activin receptor
type II signaling. Williams et al. (2018), Levy et al. (2023) The
progression of the skeletal remodeling disorder in CKD to the
familiar high turnover state related to hyperparathyroidism begins
from a low turnover state produced by CKD induced Wnt inhibition
in early CKD. Graciolli et al. (2010), Sabbagh et al. (2012), Fang et al.
(2014a) The effect of PTH to stimulate remodeling in CKD is in part
due to suppression of osteocyte SOST expression (Figure 3). SOST is
regulated by a distal enhancer, ECR5, a 255-base pair evolutionarily
conserved sequence within the von Buchanan deletion region.
ECR5 contains a response element for the MEF2 family of
transcription factors (MEF2A–D) (Leupin et al., 2007). In mice,
deletion of Mef2c in the osteoblast/osteocyte lineage cells results in
a high bone mass phenotype, suggesting that MEF2C is a major
regulator of ECR5 dependent SOST expression (Collette et al.,
2012). The class IIa histone deacetylase, HDAC5, is a negative
regulator of MEF2C driven SOST expression in osteocytes (Wein
et al., 2015). PTH stimulation of HDAC5 is a mechanism of its
inhibition of SOST expression (Leupin et al., 2007).

Included in the abnormalities of skeletal remodeling and
mineralization in CKD are disorders in the non-collagenous bone

matrix proteins, matrix Gla protein (MGP) and osteocalcin (OC).
MGP and OC belong to the mineral-binding Gla-protein family.
These proteins contain a variable number (from 3 in osteocalcin to
5 in MGP) of glutamic acid (Gla) residues. Gla residues undergo γ-
carboxylation making the proteins active in calcium binding. γ-
Carboxylation is vitamin K–dependent. Undercarboxylated Gla
proteins are less active.

OC is an abundant non-collagenous protein of bone. Its association
with bone remodeling rates has made it a biomarker of renal
osteodystrophy. OC is involved with the mineralization process
through modulation of the shape and size of hydroxyapatite crystals.
The mineralization function of OC requires activation through vitamin
K–dependent carboxylation of Gla residues. Additionally, OC also
modulates osteoblast and osteoclast activity, interacting with the
G-protein–coupled receptor 6A (GPRC6A). Hormonal activity of
OC was discovered by the finding that OC null mice develop a type
2 diabetes-like phenotype. The concept is that under-carboxylated OC
(ucOC) acts as a hormone to increase pancreatic β-cell growth, insulin
secretion, and insulin sensitivity. However, this concept is controversial
and confirmatory research has not uniformly supported it. Karsenty
(2020); Manolagas (2020) Circulating ucOC originates from bone,
where osteoclastic bone resorption produces under carboxylation and
renders the molecule able to reach the circulation. Plasma levels of OC
have been linked with glucose homeostasis in type 2 diabetes and with
metabolic syndrome (Saleem et al., 2010). These data suggest that bone
is not only essential in mineral metabolism, but also regulates glucose
and energymetabolism. Thismay be true independent of whether ucOC
is a hormonal factor.

Besides bone, MGP is synthesized in several tissues, including
VSMCs. Mice lacking MGP have intense medial calcification,
demonstrating the role of MGP in VC (Luo et al., 1997), The
mechanism of MGP and OC action include inhibition of calcium
phosphate recipitation, regulation of osteoblastic differentiation,
VSMC transdifferentiation, and regulation of osteoblast and
VSMC-derived matrix vesicles (MVs), which, in turn, affect
calcification. MGP binds to bone morphogenetic protein (BMP)-2,
thus inhibiting the osteo-inductive properties of this cytokine (Wallin
et al., 2000). MGP prevents VSMC apoptosis, and apoptotic bodies
induce calcification. Studies in CKD-5D patients show increased levels
of under carboxylated MGP (ucMGP, ie, non-functional) (Westenfeld
et al., 2012). ucMGP correlated significantly with mineralization and
cardiovascular disease in CKD (Cranenburg et al., 2008).

Cardiac

Cardiac hypertrophy is highly prevalent in CKD. We found in a
cohort of patients with CKD stage 3 from a single center clinic and a
mean eGFR of 50 mL/min/1.73m2, an 80% incidence of left
ventricular hypertrophy (LVH) by CT scanning (Seifert et al.,
2014). This is in concert with larger population studies (Foley
et al., 1998; Di Lullo et al., 2015). Cardiac hypertrophy is an early
stage of cardiovascular disease leading to high rates of heart failure,
sudden death, and even ischemic myocardial infarction (Foley et al.,
1998). The causes of cardiac hypertrophy in CKD are multifactorial
including vascular stiffness, FGF23, Gutierrez et al. (2009) valvular
calcification and decreased αklotho - all components of the CKD-
MBD (Figure 1). Increased vascular stiffness is a result of vascular
calcification. The high levels of FGF23 causing cardiomyocyte
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hypertrophy are also late in CKD compared to the early elevations in
FGF23 referred to above and elsewhere in this review (Chmielewski
et al., 2009). Cardiac valvular calcification is not distinct from the
vascular calcification pathogenesis discussed above in terms of the role
of osteoblastic differentiation of cells in the valvular interstitium
(Marwick et al., 2019). However, the CaLIPSO study found a major
difference in SNF472 effect between the aortic valve and thoracic
aorta, perhaps challenging this concept (Raggi et al., 2020). The role of
αklotho in cardiac hypertrophy is discussed below in the FGF23 and
αklotho sections.

Endocrine components of the chronic
kidney disease-mineral bone disorder:
Fibroblast growth factor 23, klotho,
calcitriol, parathyroid hormone (PTH)

FGF23 (fibroblast growth factor 23)

FGF23 was discovered as the cause of autosomal dominant
hypophosphatemic rickets in 2000 (ADHR Consortium, 2000).
Shortly, thereafter it was shown to be dysregulated in CKD (Fliser
et al., 2007). Its circulating levels strongly associate with mortality and
CV outcome in CKD (Gutierrez et al., 2008; Isakova et al., 2018).
Furthermore, the elevations in FGF23 begin prior to abnormalities in
Ca, Pi, calcitriol and PTH in early CKD (Isakova et al., 2011). Most
FGF-23 is produced by skeletal osteoblasts and osteocytes. The
mediators of its release remain incompletely understood (Martin
et al., 2012). Associations of FGF23 levels with PTH (Kawata et al.,
2007), iron deficiency (Wolf and White, 2014), calcium (David et al.,
2013), and vitamin D, Liu et al. (2006) have been consistently
observed. The main functions of FGF-23 are to regulate phosphate
and calcium homeostasis by stimulating urinary phosphate excretion
and decreasing calcitriol levels (Wolf, 2012). The activity of FGF-23 to
regulate phosphate homeostasis in the kidney requires the presence of
αklotho, a co-receptor that facilitates binding of FGF-23 to the FGF-
receptors (FGFR-1-3) (Cancilla et al., 2001; Chen et al., 2018b). FGF-
23 excess is associated with poor outcomes in CKD, but its role in
vascular calcification is less clear. Multiple studies have produced
conflicting results. Human and animal VSMCs exposed to FGF-23 in
the presence or absence of αklotho, and in the presence of normal or
high phosphate, reveal increased, decreased, or no effect at all on
mineralization of the matrix (Moe and Nickolas, 2016; Sugatani et al.,
2017; Damasiewicz and Nickolas, 2018; El-Husseini et al., 2022; Levy
et al., 2023). These conflicting results suggest a complex role of FGF-23
in vascular calcification, or the possibility that FGF-23 is not a causal
factor.

FGF23 may be a causal factor in the LVH associated with CKD.
Faul et al., demonstrate in studies in vitro and in vivo that
FGF23 stimulates cardiomyocyte hypertrophy through the
FGFR4 independent of klotho (Faul et al., 2011; Grabner et al.,
2015). However, following the studies of Chen et al. (2018b)
showing that soluble klotho was a co-receptor for FGF23 this
concept has been modified, and it is discussed below in the
αklotho section. It appears that the function of FGF23/FGFR4 is
dependent on the co-receptor. When co-receptor function is served
by heparin sulfate, myocyte hypertrophy is stimulated through
activation of NFATC1, but if klotho serves as the co-receptor,
hypertrophy is not stimulated (Leifheit-Nestler et al., 2021).

αklotho (hereafter klotho)

In 1997, Kuro-o et al., reported a klotho hypomorph mouse
displaying a phenotype of shortened lifespan, multiple organ
degeneration, vascular calcification (VC), cardiovascular disease
(CVD), abnormal phosphate and mineral regulation and frailty,
similar to that of premature aging in humans (Kuro-o et al., 1997).
Klotho is produced as a transmembrane protein of renal epithelial
cells, with a large extracellular domain and only a few intracellular
amino acids. Klotho serves as the cofactor for fibroblast growth factor
23 (FGF-23) to bind to its cognate receptor and regulate phosphorus
and vitamin D metabolism (Kurosu et al., 2006; Urakawa et al., 2006).
Cleavage of the extracellular domain produces the soluble form of
klotho, which has been shown to be an endocrine factor. Klotho has
antiaging properties, which are mediated by multiple systemic effects
including regulation of insulin signaling, Wnt signaling, and
prevention of vascular calcium deposits, oxidative stress, and
fibrosis (Kuro-o et al., 1997; Kurosu et al., 2005; Doi et al., 2011;
Hu et al., 2011). The kidney has the highest levels of klotho expression
and is the major source of soluble klotho (Lindberg et al., 2014; Hu
et al., 2016) by proteolytic cleavage of the transmembrane form as well
as alternative gene transcription (Imura et al., 2004). CKD has been
reported as a condition of klotho deficiency, with animal models of
CKD demonstrating decreased klotho gene expression, lower klotho
levels in kidney tissue, and lower circulating soluble klotho (Asai et al.,
2012; Sakan et al., 2014). The decrease in renal Klotho in CKDmay be
stimulated Wnt signaling activation. This suggests the design of new
strategies directed to increase Klotho levels could be considered as a
strategy to reduce morbidity and mortality associated with kidney and
heart diseases. Recent studies of a peptide from the KL1 domain of
klotho show that it inhibits formation of TGFβ signal complex and
decreases renal fibrosis confirming previous studies of sKL actions
(Yuan et al., 2022).

Regarding vascular calcification, unlike FGF-23, evidence in vitro
and in vivo support a protective role of klotho. (Toussaint et al., 2020).
Klotho directly suppressed Pit-1 and Pit-2 activity and subsequently
prevented phosphate-induced osteogenic transdifferentiation when
added to a rodent VSMC line. In addition, models of klotho
deficiency demonstrate increased expression of Pit-1 and Pit-2
receptors. This suggests that the klotho deficiency observed in
CKD might result in upregulation of these receptors, promoting
phosphate uptake and driving VSMC transdifferentiation.

Soluble Klotho protects against cardiomyopathy in CKD
independent of FGF23 and phosphate (Xie et al., 2015). The
mechanism may be through downregulation of TRPC6 channels
in cardiomyocytes (Xie et al., 2012). However, recent studies show
that the FGF23/FGFR4 stimulation of cardiomyocyte hypertrophy
is dependent on co-receptors (Yanucil et al., 2022). FGF23/FGFR4/
heparin sulfate complexes stimulate hypertrophy, while FGF23/
FGFR4/klotho complexes inhibit it. Yanucil et al. (2022) All These
studies have led to the development of recombinant klotho and
klotho derived peptides as therapeutic approaches to progression of
CKD and associated cardiomyopathy (Zhou et al., 2015; Hu et al.,
2017; Yuan et al., 2022). The Alpha Young LLC is a biotech start up
developing a klotho mimetic as a CKD therapeutic agent. However,
as Isakova et al. point out, pharmacological properties of the agents,
including bioactivity and stability, need to be improved, and the
mechanism of action still needs further elucidation (Isakova et al.,
2022).

Frontiers in Physiology frontiersin.org07

Williams et al. 10.3389/fphys.2023.1120308

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1120308


Calcitriol, vitamin D

Because of the elevations in FGF23 in early CKD, and its function
to stimulate hydroxylation of 25-hydroxy vitamin D to 24,25-
dihydroxy vitamin D in the catabolic pathway, vitamin D
deficiency is a uniform complication of CKD. In addition,
inhibition of proximal tubular 1alpha hydroxylase by
FGF23 produces calcitriol (1,25 dihydroxy cholecalciferol)
deficiency late in the course of CKD and promotes
hyperparathyroidism. Calcitriol deficiency and secondary
hyperparathyroidism were central components to the CKD-MBD,
even before the syndrome was coined, and are critical to the
development of renal osteodystrophy.

The effects of calcitriol are protean. It is a steroid hormone
regulating cellular function through the nuclear vitamin D receptor
(VDR), and VDR response elements (VDRE) in the promotors of
many genes. This includes the PTH gene in which the VDRE serves to
decrease transcription. Its actions on vascular calcification are “U-
shaped”, with both low and high levels promoting medial vascular
calcification. Zittermann et al. (2007) Calcitriol regulation of osteocyte
sclerostin production is a factor in its actions on vascular calcification
(Figure 3). Nguyen-Yamamoto et al. (2019) Osteocyte specific
calcitriol deficiency blocked CKD stimulation of sclerostin levels,
increased BMP2 in the skeleton, and increased CKD stimulated
VC. Recent studies suggest that vitamin D deficiency in CKD
induces reductions in aortic microRNA-145 stimulating osteogenic
differentiation along with hyperphosphatemia (Figure 4). Carrillo-
López et al. (2022).

In tubulopathies producing the Fanconi syndrome, calcitriol
deficiency is associated with childhood osteomalacia.

Calcitriol is thought to regulate cardiac hypertrophy, see Covic
et al. for review.Covic et al. (2010) Observational studies have
indicated that vitamin D treatment was associated with a
significant reduction of cardiovascular death among dialysis
patients, and a reduction in LVH (Shoji et al., 2004). However, the
PRIMO clinical trial looked to analyze this effect in CKD, and benefit
of an active Vit D analogue (paricalcitol) on LVH was not detected
(Figure 2) (Thadhani et al., 2012). A modern non-linear Mendelian
randomization study continues to show that vitamin D deficiency
increases mortality (Sutherland et al., 2022).

PTH

PTH is a central component of the pathogenesis of renal
osteodystrophy and it is the major factor driving the high turnover
remodeling state seen in late CKD and CKD treated with
hemodialysis. The mechanism of transition from the early CKD
low turnover state produced by Wnt inhibitors including sclerostin,
to the high turnover state stimulated by PTH was discussed above in
the skeletal section. PTH has also been implicated in vascular
calcification, although the effects are complex. Several lines of
evidence support a direct role of PTH. Elevated PTH is associated
with higher rates of vascular atherosclerotic disease (Hagström et al.,
2014). Animal models with synthetic PTH infusion develop extensive
calcification independent of hypercalcemia (Neves et al., 2007). In
subtotally nephrectomized rats, suppression of PTH by treatment with
a calcimimetic or parathyroidectomy slows aortic calcification
independent of serum calcium and phosphate concentrations

(Kawata et al., 2008; Jung et al., 2012). Clinical trials using
cinacalcet have not successfully affected vascular calcification or
cardiovascular outcomes despite lowering PTH levels (Figure 2)
(Raggi et al., 2011; Investigators et al., 2012).

Treatment of hyperparathyroidism in CKD, with use of calcium-
containing phosphate binders, can result in low bone turnover and
reduced mineralization. This may potentiate vascular calcification
(Raggi et al., 2005). States of low bone turnover and reduced
mineralization are likely to attenuate the skeletal capacity for
effective calcium and phosphate buffering and homeostasis. A
reduction in skeletal buffering capacity exposes the vasculature to
greater fluctuations in extracellular calcium and phosphate, thereby
increasing the propensity for vascular calcification (Persy and
D’Haese, 2009).

Mineral components of the chronic
kidney disease-mineral bone disorder:
phosphate (Pi), calcium (Ca)

The proximal tubule of the kidney regulates phosphate excretion.
However, the balance of bone formation and resorption is also a
contributor to serum levels (Mathew et al., 2008). Hormonal
regulation of phosphate at the renal and gastrointestinal levels by
parathyroid hormone (PTH), fibroblast growth factor-23 (FGF-23),
klotho and 1,25-dihydroxyvitamin D (calcitriol) maintains phosphate
levels in serum from 2.5 to 4.5 mg/dl. As impaired kidney function
progresses to advanced stages, with reduction in functional nephron
mass, phosphate excretion is impaired, PTH is stimulated, bone
remodeling produces excess resorption, and together with
persistent dietary intake, serum phosphate concentrations rise.

FIGURE 5
A potential explanation of the CKD-MBD bone-vascular paradox.
CKD induces osteoblastic/osteocytic transdifferentiation of vascular
smooth muscle cells. The osteoblastic/osteocytic cells stimulate
vascular calcification and express high levels of sclerostin as shown
by Mace et al. (2021); Mace et al. (2022) and others. Sclerostin secretion
to the circulation decreases skeletal remodeling and inhibits skeletal
calcification (an explanation of the paradox). Skeletal osteocytes also
contribute to the elevated circulating sclerostin levels in CKD. How CKD
stimulates VSMC transdifferentiation is unknown, although
hyperphosphatemia is a contributor in the late stages of the syndrome.
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Multiple studies demonstrate the association between
hyperphosphatemia and vascular calcification (Raggi et al., 2002;
Adeney et al., 2009), especially in patients on hemodialysis (Block
et al., 2004; Chertow et al., 2004). Since phosphate is a component of
hydroxyapatite crystals, it is conceivable that increased serum levels
alone in the context of CKD could contribute directly to precipitation
of hydroxyapatite in tissue (Shanahan et al., 2011). Despite this
possibility, not all patients with sustained hyperphosphatemia
develop vascular calcification.

Furthermore, hyperphosphatemia is an active stimulator of signal
transduction leading to vascular calcification. Seminal observations
in vitro demonstrated a process wherein exposure to elevated
phosphate stimulated a dose- and time-dependent phenotypic
change in vascular smooth muscle cells (VSMCs) (Jono et al., 2000;
Steitz et al., 2001). Upregulation of phosphate transporters (Pit-1 and
Pit-2) occurs in the context of hyperphosphatemia. Signal
transduction from Pit-1 and Pit-2 mediate transdifferentiation of
VSMCs to an osteochodrogenic cell phenotype (Figure 5) (Villa-
Bellosta et al., 2007; Pai and Giachelli, 2010). The VSMC
transdifferentiation is inhibited by competitive antagonism of Pit-1.
Furthermore, phosphate-induced autophagy counteracts vascular
calcification by reducing matrix vesicle release (Dai et al., 2013).

Phosphate overload downregulates renal Klotho expression
through inhibition of peroxisome proliferator-activated receptor
gamma (PPARγ) and the activation of the Wnt/β-catenin signaling
pathway, thus contributing to the development of vascular
calcification and the alteration of the regulation of mineral
metabolism (Hu et al., 2013; Liu et al., 2018; Maique et al., 2020;
Muñoz-Castañeda et al., 2020). Failure of clinical trials directed at
hyperphosphatemia to affect vascular calcification may be related to
the minimal to modest effect of interventions on hyperphosphatemia
(Figure 2) (Toussaint et al., 2020; Ogata et al., 2021; Xu et al., 2022).
However, an open label trial comparing sevelamer and calcium
carbonate has detected an effect on all cause mortality, while others
have failed (Di Iorio et al., 2012). Recent progress has lead to a FDA
advisory committee recommendation of an NHE3 inhibitor
(tenapanor) producing decreased intestinal sodium absorption and
secondarily phosphate absorption. (Ardelyx press release 17 Nov
2022) The effect on serum phosphate is similar to that of
phosphate binders, and tenapanor can be combined with
phosphate binders for increased effect (Pergola et al., 2021). The
effects of this approach on clinical outcomes will be forthcoming in the
next years.

The bone—vascular paradox and
possible identification of the chronic
kidney disease-mineral bone disorder
therapeutic target along with a
biomarker

The bone–vascular paradox (also referred to as the calcification
paradox and the bone vascular axis) in the CKD-MBD consists of the
observation that as vascular calcification (heterotopic mineralization)
is stimulated, bone formation (orthotopic mineralization) is inhibited
(Persy and D’Haese, 2009; Evenepoel et al., 2019). In this scenario, the
worse the vascular calcification the greater the inhibition of skeletal
remodeling (El-Husseini et al., 2022). In agreement with this concept,
patients with the worst vascular calcification are often osteoporotic.

Recent studies have provided insight and a possible basis of the
paradox (Figure 5). Mace et al. used the novel model of aortic
transplantation (Atx) in isogenic rats (Mace et al., 2021). Using
aortas from rats with CKD and severe vascular calcification
transplanted into normal rats (uremic Atx), they demonstrated
decreased trabecular bone mineral density (BMD) 14 weeks
following aortic transplantation (Mace et al., 2021). Bone
histomorphometry analysis showed significant lower osteoid area in
uremic ATx compared with normal ATx along with a trend toward
fewer osteoblasts as well as more osteoclasts in the erosion lacunae.
Furthermore, skeletal RUNX2, osteopontin, ANKH (progressive
ankyloses protein), alkaline phosphatase, and type 1 collagen alpha
2 genes and proteins were induced in rats transplanted with calcified
aortas from uremic rats. This is a key observation demonstrating that
the calcified transplanted vasculature from rats with CKD regulated
skeletal gene expression, transcription and bone resorption leading to
decreased BMD. Transplantation of aortas from normal rats into
normal rats produced no effects. Tissue culture of calcified aortic rings
from rats with CKD revealed secretion of large amounts of sclerostin
into the media, while the aortic ring cultures derived from normal rats
did not secrete sclerostin. Studies in vitro showed that the calcified
uremic aortic rings inhibited matrix mineralization by osteoblast cell
lines compared to aortic rings from normal rats (Mace et al., 2022).
The uremic calcified aortic rings stimulated the same gene expression
and protein levels that were demonstrated in the experiments in vivo,
and inhibited canonical Wnt/Beta catenin signaling and activated
activin receptor signaling.

The high levels of sclerostin secretion from the calcified uremic
aortas are in agreement with studies from other investigators, showing
that sclerostin is expressed in association with vascular calcification
vasculature (Zhu et al., 2011; Rukov et al., 2016; Bisson et al., 2019).
This suggests that a significant portion of the elevated sclerostin levels
in patients with CKD may derive from vascular and non-skeletal
sources, (Zhou et al., 2017; Li et al., 2019). Although, not all human
investigations have found high levels of vascular sclerostin (Qureshi
et al., 2015) However, the strong direct association between circulating
sclerostin levels and vascular calcification are much more a consensus
(Qureshi et al., 2015; Zhou et al., 2017; Li et al., 2019). The studies raise
the question of the role of vascular sclerostin (Claes et al., 2013) and
FGF23 (Fang et al., 2014b) in the process of vascular calcification. The
vascular expression of these mineralization inhibitors would be
expected to be protective against vascular calcification, acting as a
brake on Wnt stimulation of vascular RUNX2 and osteoblastic
transdifferentiation (Figure 5).

Recent studies analyzing vascular calcification models in SOST
deficient mice and sclerostin antibody treated mice confirm the
expectations. De Mare et al., show that adenine-exposed Sost−/−

mice compared to adenine exposed wild type mice had much more
CKD-induced cardiac vessel and renal artery calcification (De Maré
et al., 2022). They also showed that the vascular calcification produced
by the warfarin model of rat vascular calcification was intensified by
treatment with a neutralizing antibody to sclerostin (De Maré et al.,
2022). Thus, inhibition of sclerostin activity may not the objective of
CKD-MBD treatment, rather reduction of sclerostin levels by
inhibition of its production may be the goal (Figure 6).

The role of sclerostin in cardiovascular disease has been studied in
other settings outside of CKD; see Golledge and Thanigaimani for an
exhaustive review (Golledge and Thanigaimani, 2022).
Developmentally, sclerostin is widely expressed in VSMC
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throughout the cardiovascular system, and postnatally, it is implicated
in a number of vascular diseases. Despite some conflicting studies, the
majority of animal models suggest that sclerostin deficiency increases
aortic aneurysm, atherosclerosis, and cardiac rupture, and have found
its upregulation at sites of arterial calcification.

Golledge and Thanigaimani state that “human studies report that
genetic variants causing lower arterial sclerostin expression increase
the prevalence of hypertension and diabetes and elevate the risk of
cardiovascular events.” Other “human studies have associated high
circulating sclerostin levels with the diagnosis of a variety of different

cardiovascular diseases, surrogate markers of cardiovascular disease
and high risk of cardiovascular events in some populations.” There are
a number of possible explanations for the findings of human genetic
studies, which suggest that low arterial sclerostin promotes
cardiovascular disease, but human biomarker studies showing high
serum sclerostin is associated with cardiovascular disease and events.
One explanation is that the high blood sclerostin concentrations in
participants with cardiovascular disease represent a response to the
disease serving as a brake rather than a cause. The De Mare et al.
studies discussed above support this concept (De Maré et al., 2022).

Romosozumab is an anti-sclerostin antibody approved for the
treatment of osteoporosis, Cosman et al. (2016) but the label contains a
black box warning about a potential increase in cardiovascular events.
This has led to additional studies and controversy (Hólm et al., 2021).
In a meta-analysis of randomized controlled trials of romosozumab,
administration of the sclerostin blocking antibody may have increased
the risk of major adverse cardiovascular events or cardiovascular death
(Bovijn et al., 2020; Lv et al., 2020). Overall, currently available data as
reviewed elsewhere, including the aforementioned metanalyses
(Golledge and Thanigaimani, 2022) does not show conclusive
evidence that sclerostin inhibition increases the risk of
cardiovascular events. Limited data on the use of romosozumab in
CKD patients on dialysis is emerging (Figure 7) (Sato et al., 2021; Saito
et al., 2022). There is progression of vascular calcification, but no
evidence of increased cardiovascular events, though the study sizes are
small.

The structural properties of the 24 kDa sclerostin protein reveal a
tertiary structure consisting of three loops, a cysteine-knot motif with
three disulfide bonds and N- and C-terminal spacer arms (Wijenayaka
et al., 2016; Omran et al., 2022). Sclerostin interacts with heparin
sulfate mediating transportation to the cell surface and embedding in
the extracellular matrix. Sclerostin interacts also with the co-receptors
LRP4, 5, and 6 and thereby impedes the binding of mainly Wnt1 but
also Wnt3a. Both Wnt1 and sclerostin interact with the E1 and
E2 ectodomains of LRP6 (Boschert et al., 2013). This interaction

FIGURE 6
Treatment of the CKD-MBD inhibits VSMC transdifferentiation to osteocytic type cells, inhibiting vascular calcification, decreasing sclerostin secretion,
and stimulating bone formation. This would produce expected efficacy in cardiovascular and skeletal outcomes. The changes in sclerostin levels during
treatment make it a biomarker of progress.

FIGURE 7
Treatment of the CKD-MBD using the antibody to sclerostin
increases VSMC Wnt activity and osteoblastic transdifferentiation,
stimulating vascular calcification, but blocking systemic and skeletal
sclerostin effects, thus stimulating bone formation. This would
produce expected efficacy in skeletal outcomes but worsen
cardiovascular disease.
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inhibits directly the binding of Wnt1 and allosterically prevents the
binding of Wnt3a to LRP6 and thereby prevents receptor-coupling
with Frizzled on osteoblasts. Recent studies dissecting the functions of
components of the sclerostin protein suggest that while the loop
3 peptide is inhibitory to the skeleton, it did not protect in an
aortic aneurysm model (Yu et al., 2022). In the ApoE −/−model of
atherosclerosis, inhibiting the sclerostin loop 3 did not increase
vascular calcification, but did increase bone remodeling (Yu et al.,
2022). These studies, if confirmed, provide a new approach to
targeting sclerostin with a therapeutic agent.

The idea that sclerostin might be a biomarker of the CKD-MBD was
originally put forth by Cejka et al. (2011) and by others (Behets et al., 2017;
Figurek et al., 2020; Omran et al., 2022). The recent studies clarify this
potential role and clarify the path forward. Elevated sclerostin levels in
CKD could indicate that VSMC transdifferentiation has occurred, and
treatment showing a reduction in levels could indicate decreased vascular
calcification and improved skeletal homeostasis. The multi-site
production of sclerostin in CKD weakens the possibilities of a clear
biomarker status, but future research needs to clarify the possibility. The
clinical application of sclerostin levels has not yet occurred due in part to
variability and lack of reproducibility between various sclerostin assays.
The topic of sclerostin assay is beyond the scope of this review and has
been analyzed in depth recently (Omran et al., 2022).

Conclusion

The CKD-MBD is a complex multifactorial syndrome. Recent
progress continues to clarify its pathophysiology, and suggests that a
target of therapy would be to reduce the vascular injury associated with
CKD. Reduction of vascular osteoblastic/osteocytic transdifferentiation
would decrease, possibly prevent, vascular calcification and stimulate
skeletal homeostasis (Figure 6). Reduction of sclerostin levels due to
inhibition of osteocytic vascular transdifferentiation would be associated
with reduced vascular calcification and improved bone remodeling in the
CKD-MBD.Whereas, if significant portions of circulating sclerostin are of
vascular origin in CKD, inhibition of sclerostin function by a monoclonal

antibody would worsen vascular calcification while improving bone
remodeling/formation (Figure 7). This suggests that the therapeutic
target of the CKD-MBD may be osteoblastic/osteocytic vascular cell
transdifferentiation with the primary outcome of clinical trials being
cardiovascular events. Furthermore, sclerostin levels may be a useful
biomarker, both diagnostically and as a means of following therapeutic
efficacy. Successful studies in the treatment of the CKD-MBD would lead
to studies proving or not, that CKD-MBD treatment independent of other
mechanisms decreases the mortality associated with CKD.
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