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The solute-linked carrier 26 (SLC26) protein family is comprised ofmultifunctional
transporters of substrates that include oxalate, sulphate, and chloride. Disorders of
oxalate homeostasis cause hyperoxalemia and hyperoxaluria, leading to urinary
calcium oxalate precipitation and urolithogenesis. SLC26 proteins are aberrantly
expressed during kidney stone formation, and consequently may present
therapeutic targets. SLC26 protein inhibitors are in preclinical development. In
this review, we integrate the findings of recent reports with clinical data to
highlight the role of SLC26 proteins in oxalate metabolism during
urolithogenesis, and discuss limitations of current studies and potential
directions for future research.
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Background

Kidney Stone, also known as urolithiasis, is a common disease that has long threatened
human health. Its current prevalence of 14.8% (RULE et al., 2020) is increasing worldwide,
with a 5-year recurrence rate of up to 50% (URIBARRI et al., 1989). Kidney stones are a
direct cause of substantial morbidity and economic burdens, and may be complicated by
hydronephrosis, urinary tract infections, and neoplasia.

The etiology of urolithiasis is complex and multifactorial. Urolithogenesis often results
from abnormal urine chemistry (HOWLES and THAKKER, 2020). Predispositions include
high urinary concentrations of calcium, oxalate, and uric acid (THONGPRAYOON et al.,
2020). When the kidney is affected by intrinsic factors (including genetics, nutrition,
metabolic abnormalities, urinary tract obstruction, or infection) and extrinsic factors
(including natural and socio-economic environmental stressors), the dynamic balance
between urine constituents and stone-inhibiting molecules (citrate or magnesium) is
disturbed, leading to the precipitation of solutes, cellular debris, bacteria, and other
components (MULAY et al., 2017; HAN et al., 2019).

Transporter proteins play important roles in ion homeostasis that are partially
understood, and that deserve further study. SLC26 proteins are categorized as solute
carriers, the second largest group of human membrane proteins, and affect various
functions (MOUNT and ROMERO, 2004). These multifunctional proteins carry various
substrates; primarily chloride, bicarbonate, oxalate, sulphate, formate, and other anions; and
thereby regulate ion homeostasis (ALPER and SHARMA, 2013).

The SLC26 family of anion transporters plays important roles in the etiology of
urolithiasis, mediating the transport of several key molecules essential to stone
formation, including oxalate (CRIVELLI et al., 2020; WANG et al., 2021). For example,
hyperoxaluria-induced injury of the renal tubular epithelium stimulates expression and
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secretion of macromolecules such as cadherin, osteoprotegrin, and
collagen, thereby promoting the attachment of nascent crystals to
the epithelial surface and consequent crystal nucleation, aggregation,
and growth (JOSHI et al., 2015; HOWLES and THAKKER, 2020;
WITTING et al., 2021). Here, we review the available evidence of the
SLC26 protein family’s relationship to the risk of urolithiasis and
detail the studies of its function.

Oxalate and urolithogenesis

The chemical composition of kidney stones is variable. Calcium,
oxalate, and phosphate account for 80% of stones, while the
remainder are composed of uric acid, struvite, cystine, insoluble
drug molecules (such as the HIV protease inhibitor indinavir) and
metabolites (KHAN et al., 2017). As one of the most prevalent
disorders of ion metabolism in patients with urolithiasis, oxalate
dysregulation has long served as a research priority. Sources of
oxalate are classified as exogenous (e.g., dietary intake) and
endogenous (e.g., hepatic synthesis).

The chronic dietary intake of foods rich in oxalate, especially in
its soluble form (e.g., vegetables, nuts, and some cereals), predisposes
to hyperoxaluria (MITCHELL et al., 2019) (CHEN et al., 2001).
Gastrointestinal diseases and bariatric surgery may increase enteric
epithelial permeability (DUFFEY et al., 2010) (TARPLIN et al.,
2015), thus causing oxalate hyperabsorption that leads to
hyperoxalemia and consequent hyperoxaluria. In addition, gut
dysbiosis has been associated with urolithiasis, and particularly
with calcium oxalate (CaOx) stones (MILLER et al., 2019). The
gut microbiome communicates with enterocytes to perform various
biological processes that may impact oxalate metabolism. For

example, Oxalobacter formingenes stimulates enteric oxalate
excretion/secretion and also consumes oxalate as a carbon source
and thereby reduces oxaluria (HATCH et al., 2006; ARVANS et al.,
2017).

Hepatic synthesis is the primary endogenous source of oxalate.
Several autosomal recessive disorders, such as mutations of alanine/
glyoxylate amino (AGT) transferase (WOOD et al., 2019),
glyoxylate/hydroxypyruvate reductase (HOPPE et al., 2009), and
the liver-specific mitochondrial enzyme 4-hydroxy-2-
ketoglutaratealdolase-1 (4-hydroxy-2-oxoglutaratealdolase,
HOGA1) (MONICO et al., 2011) increase hepatic oxalic acid
production and raise the risk of urolithiasis.

SLC26 family overview

The SLC26 family is an evolutionarily conserved class of
transporter proteins encoded by the APC gene superfamily
(ALPER and SHARMA, 2013) in taxonomically diverse
organisms. Examples include the bacterial protein SLC26/SulP
and the plant/yeast-associated protein SLC26/Sultr. Ten isoforms
have been identified in humans (among them, SLC26A10 is a
transcribed pseudogene), which are expressed across multiple
organ systems (Figure 1). SLC26 proteins operate as anion
exchangers that transport an anion that is coupled to another
anion gradient, but there are a few exceptions. For example,
SLC26A5 (prestin) acts as an electrical stress-sensitive motor
protein responsible for the electrokinetic behavior of outer hair
cells in an anion-dependent manner (BAVI et al., 2021).

SLC26 family members share similar structures, including an
N-terminal structural domain, a segment consisting of

FIGURE 1
Anatomic distribution of SLC26 protein expressions.
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10–14 transmembrane segments, a C-terminal sulfate transporter
and anti-sigma factor antagonist structural domain (STAS), and a
PDZ structural domain (CHANG et al., 2019) (Figure 2).
Remarkably, the highest variability and most functionally
significant variations of STAS structural domains are located in a
defined region designated as the intervening sequence or variable
loop found between the first α-helix and the third β-sheet. This loop
interacts with the cystic fibrosis transmembrane conductance
regulator (R structural domain in the cystic fibrosis
transmembrane regulator) and mediates epithelial chloride and
bicarbonate transport (MOUNT and ROMERO, 2004). This
function may be cross-regulated by SLC26 and related
transporters. SLC26 proteins feature monomeric structures, but
often act by forming structural and functional dimers in lipid
membranes (TOURé, 2019), which may cause structural-
functional alterations of SLC26 in vivo.

Pathogenic mutations have been associated with SLC26A1
(CaOx stones) (WHITTAMORE et al., 2019); SLC26A2 (skeletal
deformities and abnormal cartilage development) (ZHENG et al.,
2019); SLC26A3 (chloride diarrhea) (KUMAR et al., 2021);
SLC26A4 (Pendred syndrome, deafness, enlarged vestibular
aqueduct syndrome, and thyroid lesions) (YUAN et al., 2020;

TREPICCIONE et al., 2021); SLC26A5 (deafness) (BAVI et al.,
2021); SLC26A6 (bicarbonate ion metabolism related diseases)
(SONG et al., 2012); SLC26A7 (hypothyroidism and gastric
neuroendocrine tumors) (CANGUL et al., 2018; ISHII et al.,
2019); SLC26A8 (asthenozoospermia) (GAO et al., 2022); and
SLC26A9 (cystic fibrosis) (PINTO et al., 2021). No pathogenic
SLC26A11 mutants have been reported (Table 1). Accordingly,
all mutations in the SLC26 gene family have been characterized
through their corresponding models. In summary, the study of
SLC26-mediated molecular pathogenesis can elucidate
mechanisms of disease and facilitate the discovery of therapeutic
targets.

SLC26 proteins in the kidney

The major SLC26 proteins expressed in human renal tissue are
SLC26A1, SLC26A3, and SLC26A6. Molecular, cellular, and in vivo
studies have confirmed the regulatory role of SLC26 proteins in
urolithiasis, as detailed below.

SLC26A1

SLC26A1, also known as sulfate anion transporter protein-1
(SAT1), is an epithelial transporter that maintains oxalate and
sulfate homeostasis. It is expressed primarily in the kidney, liver,
and intestine. SLC26A1 exhibits high homology (78% amino acid
identity) and similar tissue distribution between humans and mice
(LEE et al., 2005; SEIDLER and NIKOLOVSKA, 2019), suggests the
usefulness of animal models as preclinical models for studying
SLC26 family proteins. A rat model of CaOx nephrolithiasis
showed that SLC26A1 was expressed primarily on the basolateral
membranes of renal proximal tubular and enteric epithelia, thus
affecting oxalate absorption and excretion (GEE et al., 2016).
SLC26A1 deletion alters the dynamic balance between oxalate
and sulfate, causing hyperoxalemia and consequent
hyperoxaluria, renal calcium deposits, and CaOx urolithiasis, and
may also predispose to acetaminophen-induced hepatotoxicity
(DAWSON et al., 2010). In addition, intense leukocytic
infiltration was detected in the perivascular renal cortex of
SLC26A1-deficient mice, suggesting the involvement of

FIGURE 2
SLC26 protein structure. SLC26 including an N-terminal structural domain, a segment consisting of 10–14 transmembrane segments (the red
square indicates differences in hydrophobic span that may exist between members), a C-terminal sulfate transporter and anti-sigma factor antagonist
structural domain (STAS), and a PDZ structural domain.

TABLE1 SLC26 family member-related diseases.

Protein Main associated diseases

SLC26A1 calcium oxalate stones, hyperoxalemia

SLC26A2 skeletal deformities and abnormal cartilage development

SLC26A3 chloride diarrhea, alkalosis

SLC26A4 Pendred syndrome, deafness, EVA syndrome, and thyroid lesions

SLC26A5 non-comprehensive deafness

SLC26A6 bicarbonate ion metabolism related diseases

SLC26A7 Hypothyroidism

SLC26A8 sperm weakness disorder

SLC26A9 cystic fibrosis

SLC26A10 N/A

SLC26A11 Dysregulation of chloride homeostasis and neuroactivity
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inflammatory pathways in this process. Meanwhile, sulfate
homeostasis, another important factor in lithogenesis, is also
disturbed, shown by hyposulfatemia and hypersulfaturia, which
together with disturbances in oxalate metabolism increased the
risk of stone formation.

The introduction of gene profiling into clinical practice enabled
the identification of SLC26A1abnormalities in patients with kidney
stones. Twenty-one clinically significant missense mutations of
SLC26A1 were identified in patients with nephrolithiasis
(ZIYADOV et al., 2021). Detection of SLC26A1 variant
expression and comparison with the NCBI database showed that
loss of function was associated with decreased protein stability (no
significant difference in the number of transcripts). Notably,
sequencing of a specimen from a patient with severe renal
calcinosis revealed a substitution of a non-conserved amino acid
(M132T) in the transmembrane structural domain of SLC26A1
(DAWSON et al., 2013), thus altering the structure of the
hydrophobic region of the third segment, suggesting that the loss
of SLC26A1 protein function may lead to hyperoxaluria and
urolithiasis. The above evidence suggests that understanding the
function of SLC26A1 at the genetic level may be a useful strategy.

SLC26A3

SLC26A3 mediates chloride and bicarbonate exchange and
regulates the balance between oxalate secretion and reabsorption.
It is expressed primarily in the intestine, kidney, and adrenal glands.
Generally, all human intestinal segments engage in a dynamic
balance of oxalate absorption and secretion to avoid
hyperoxalemia. SLC26A3-KO mice showed a 66% reduction in
daily urinary oxalate excretion compared to wild-type mice,
indicating the importance of the SLC26A3 transporter in
intestinal oxalate uptake. Furthermore, in the same study,
SLC26A6 levels were increased 3-fold in the duodenum and
jejunum, suggesting a possible complementarity between
SLC26A3 and SLC26A6 expressions (FREEL et al., 2013).
However, another study showed that SLC26A3 overexpression in
the murine intestine did not increase oxaluria and also reduced renal
CaOx deposition, suggesting a role in preventing rather than
promoting urolithiasis (LIU et al., 2021). These lines of evidence
suggests that abnormal SLC26A3 expression, a risk factor for
urolithiasis, is related to other mechanisms of urolithogenesis in
addition to the regulation of oxalate metabolism.

Over the past decade, researchers have suggested that
SLC26A3 may serve as a therapeutic target to treat hyperoxaluria
and prevent CaOx urolithiasis. CIL et al. (2022) demonstrated that
DRAinh-A270 selectively inhibits SLC26A3-mediated chloride/
bicarbonate exchange. Notably, the same study reported that the
reduced function of SLC26A3 mutants, which may decrease male
fertility, may be caused by a weakened interaction between the
specific structural domain STAS and the cystic fibrosis
transmembrane conductance-regulated channel, thereby affecting
chloride transport. To date, no studies have confirmed the role of
SLC26A3 in renal physiology, but its role in the regulation of enteric
anion exchange suggests that targeting SLC26A3 may represent a
novel strategy to prevent CaOx urolithiasis, as it regulates oxalic acid
metabolism in the body to reduce the risk of kidney stones caused by

hyperoxaluria. However, further studies are needed to confirm this
hypothesis.

SLC26A6

SLC26A6, also known as PAT-1, is a chloride/oxalate
transporter that is highly expressed in the kidney, pancreas, and
intestine, and plays an important role in urolithogenesis. MONICO
et al. (2008) first identified and characterized a SLC26A6 variant
arising from a mutation in the STAS structural domain (D23H/
D673N) in hyperoxaluric patients. This change impairs
SLC26A6 expression and function, and disrupts the dynamic
balance between citrate and oxalate, thereby promoting
urolithogenesis (MONICO et al., 2008). This missense mutation
is often complicated by hypertension and cystic fibrosis
(SHIMSHILASHVILI et al., 2020). These findings have led to a
growing interest in the relationship between SLC26A6 and kidney
stones. Furthermore, JIANG et al. (2018) showed that renal but not
systemic SLC26A6 hyperexpression increased oxalate secretion by
renal tubular epithelial cells. In vitro experiments showed that
elevated oxalate concentrations stimulated the intracellular
production of reactive oxygen species and pro-inflammatory
factors, leading to further cellular injury and crystal nucleation
(JIANG et al., 2018). This finding also corroborates the above-
mentioned involvement of the SLC26 family in inflammatory
signaling.

Citrate prevents pathological mineralization of CaOx by
inhibiting early nucleation, during the early stages of stone
formation, there is often a dysregulation of citrate metabolism.
Urinary citrate is reabsorbed mainly through NaDC-1, a Na+-
dicarboxylic acid cotransporter in the proximal tubule. Increased
renal NaDC-1 activity enhances tubular reabsorption of citrate and
facilitates CaOx crystallization (JIANG et al., 2018). OHANA et al.
(2013) found that the STAS structural domain of
SLC26A6 interacted with the first intracellular loop (ICL1), a
functional structural domain of NaDC-1, to inhibit NaDC-1
activity, thereby limiting citrate uptake, suggesting that the
STAS-ICL1 interaction underlies the dynamic regulation of
citrate/oxalate exchange by SCL26A6/NaDC-1, and that feedback
between proteins the two balances their expression and function.
This interaction is partially mediated by the scaffolding protein
IRBIT through stimulation of the succinate receptor SUCNR-1
(KHAMAYSI et al., 2019).

SLC26A6 expression is regulated by a variety of factors, such as
inflammation and miRNA. Protein kinases A (PKA) may positively
regulate SLC26A6 levels and alter its intrinsic activity by increasing
its expressions on the apical membranes of renal and intestinal
epithelia. At the initiation of stone formation, PKA activation not
only upregulates SLC26A6 expression, but also enhances the
transporter activity of SLC26A2 and SLC26A6 (ARVANS et al.,
2020). Similarly, in obesity-induced systemic inflammation, high
levels of pro-inflammatory factors can significantly reduce
SLC26A6 levels, reversing oxalate transport from net secretion to
net absorption, leading to hyperoxalemia/uria, thus promoting
urolithogenesis (AMIN et al., 2018). Notably, obesity alters the
gut microbiome (MARUVADA et al., 2017). Furthermore, the
upregulation of SLC26A6 by short-chain fatty acids (acetate,
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propionate, and butyrate) produced by gut microbes (LIU et al.,
2021) reduced renal CaOx crystals in a rat model; this study suggests
a close association between enteric microflora and oxalate
metabolism, and also suggests a role of short-chain fatty acid
food supplements in the prevention of CaOx urolithiasis.

In vivo studies have shown that SLC26A6 is modulated by
molecules other than inflammatory mediators. Urinary glycine
concentrations were significantly lower in patients with
hyperoxaluria and were associated with downregulated
SLC26A6 and NaDC-1 post-transcriptional levels via miRNA-
411-3p linking the 3′ end untranslated regions of both mRNAs,
thus decreasing urinary oxalate/citrate ratios and ultimately
reducing CAOx crystallization in the rat kidney (JUNG et al.,
2018). Moreover, SLC26A6 expression may be endocrine-
dependent, as it may be regulated by parathyroid hormone
(TSENG et al., 2020). In summary, SLC26A6 regulates oxalate
metabolism, and loss of function variants promote the formation
of kidney stones.

Other SLC26 family members associated
with renal calculi

Other proteins of the SLC26 family are closely associated with
kidney stones. For example, HIRATA et al. (2012) identified the role
of SLC26A5 in CaOx urolithiasis by using a Drosophila model that
may facilitate genetic studies regarding renal tubular ion transport
and CaOx crystallization. Another study simulated the human
physiology of SLC26A5 in the Drosophila stone model, and
showed that in addition to transporting oxalate, it also regulates
sulphate levels through competitive transport, thereby decreasing
urinary calcium salt saturation and reducing CaOx precipitation
(LANDRY et al., 2016).

Discussion

Recent research has elucidated the role of SLC26 proteins in
CaOx urolithiasis. These proteins have been increasingly
recognized as important transporters that regulate the
homeostasis of ions associated with stone development and
have become a focus for drug development. SLC26 family
proteins are widely expressed in multiple tissues of the
gastrointestinal, urinary, skeletal, and reproductive systems.
The expressions of SLC26 family members and their
physiologic roles vary considerably between species, suggesting
different pathogenic mechanisms of SLC26 mutants between
humans and animal models (SOLEIMANI, 2013).
Abnormalities of urinary ion concentrations, such as
hyperoxaluria, are important pathogenic factors (SIENER and
Hesse, 2021). The SLC26 family is centrally involved in oxalate
and sulfate ion transport in urolithogenesis, and the STAS
structural domain is an important site of action.

The study of SLC26 transporter proteins is still incomplete. For
example, SLC26A1 is normally expressed in the intestine and kidney
and regulates oxalate absorption and secretion; however, a study that

demonstrated renal tubular deposition of calcium oxalate in
SLC26A1-KO mice could not associate this finding directly to
SLC26A1 deficiency (KO et al., 2012). Concomitant urinary
pH and osmolarity may be altered through SLC26-mediated
transport; however, no studies have been conducted to test this
hypothesis. In addition, SLC26 proteins may reduce the risk of
hyperoxaluria and stones to a greater degree in female compared to
male rats, suggesting sex-based differences in SLC26 family protein
expression and activity (ALPER and SHARMA, 2013).
Unfortunately, most animal studies of SLC26 have used male
mice. On the other hand, the expression patterns of most
SLC26 family proteins are still unclear, which may be due to bias
caused by poor reproducibility in animal models and low specificity
of corresponding antibodies, resulting in divergent results
(DAWSON et al., 2010; KO et al., 2012; GEE et al., 2016;
WHITTAMORE et al., 2019). However, it is noteworthy that
genetic studies of patients and animal models have revealed
multiple variants of specific SLC26 proteins, which may serve as
drug targets for the prevention of urolithiasis. The development of
SLC26 protein-targeting drugs has made some progress, with the
identification of small-molecule drug candidates, such as DRAinh-
A270, which exhibits protein inhibition in vitro. However, potential
side effects and clinical utility are still unknown, and are currently
being explored. Future work will advance the understanding of
SLC26 proteins and the development of therapeutic strategies based
on their multiple physiologic roles.
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