
Concurrent validity of machine
learning-classified functional
upper extremity use from
accelerometry in chronic stroke

Shashwati Geed  1,2*, Megan L. Grainger2, Abigail Mitchell2,
Cassidy C. Anderson2, Henrike L. Schmaulfuss3,
Seraphina A. Culp3, Eilis R. McCormick3, Maureen R. McGarry3,
Mystee N. Delgado3, Allysa D. Noccioli3, Julia Shelepov3,
Alexander W. Dromerick1,2 and Peter S. Lum2,3

1Department of Rehabilitation Medicine, Georgetown University, Washington, DC, United States,
2MedStar National Rehabilitation Hospital, Washington, DC, United States, 3Department of Biomedical
Engineering, The Catholic University of America, Washington, DC, United States

Objective: This study aims to investigate the validity of machine learning-derived
amount of real-world functional upper extremity (UE) use in individuals with
stroke. We hypothesized that machine learning classification of wrist-worn
accelerometry will be as accurate as frame-by-frame video labeling (ground
truth). A second objective was to validate the machine learning classification
against measures of impairment, function, dexterity, and self-reported UE use.

Design: Cross-sectional and convenience sampling.

Setting: Outpatient rehabilitation.

Participants: Individuals (>18 years) with neuroimaging-confirmed ischemic or
hemorrhagic stroke >6-months prior (n = 31) with persistent impairment of the
hemiparetic arm and upper extremity Fugl-Meyer (UEFM) score = 12–57.

Methods: Participants wore an accelerometer on each arm and were video
recorded while completing an “activity script” comprising activities and
instrumental activities of daily living in a simulated apartment in outpatient
rehabilitation. The video was annotated to determine the ground-truth amount
of functional UE use.

Main outcomemeasures: The amount of real-world UE usewas estimated using a
random forest classifier trained on the accelerometry data. UEmotor function was
measured with the Action Research Arm Test (ARAT), UEFM, and nine-hole peg
test (9HPT). The amount of real-world UE use was measured using the Motor
Activity Log (MAL).

Results: The machine learning estimated use ratio was significantly correlated
with the use ratio derived from video annotation, ARAT, UEFM, 9HPT, and to a
lesser extent, MAL. Bland–Altman plots showed excellent agreement between use
ratios calculated from video-annotated and machine-learning classification.
Factor analysis showed that machine learning use ratios capture the same
construct as ARAT, UEFM, 9HPT, and MAL and explain 83% of the variance in
UE motor performance.
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Conclusion:Ourmachine learning approach provides a validmeasure of functional
UE use. The accuracy, validity, and small footprint of this machine learning
approach makes it feasible for measurement of UE recovery in stroke
rehabilitation trials.

KEYWORDS

accelerometry, stroke rehabilitation, psychometrics, paresis/rehabilitation, sensors,
disability evaluation, machine learning, ADLs

1 Introduction

The cornerstone of rehabilitation effectiveness lies in the answer
to “how much did the individual use their affected upper extremity
(UE) during functional activities in their environment?” Stroke
rehabilitation trialists evaluate UE motor performance using
clinical scales such as the Action Research Arm Test (ARAT)
(Stinear et al., 2020) or self-reports of spontaneous UE use such
as the Motor Activity Log (MAL) (Uswatte et al., 2006b). However,
there are contextual differences between real-world UE use and UE
motor performance in the clinic, completed following precise
instructions as in the ARAT. In-clinic performance (capacity)
does not always translate well to real-world use (performance)
(Lundquist et al., 2022). The MAL suffers from biases associated
with self-report scales (Prince et al., 2008) and disordered item
difficulties that make the use of summed MAL scores a problem in
measuring a meaningful change in clinical trials (van der Lee et al.,
2004; Chuang et al., 2017). Furthermore, correlations between
accelerometry, using the count thresholding method to quantify
the amount of UE use, and the MAL are 0.52 (Uswatte et al., 2006a).
Correlations between the ARAT and the MAL are reported to be 0.6
(van der Lee et al., 2004). Thus, the MAL has only fair to moderate
validity and sensitivity for measuring real-world UE use (Uswatte
et al., 2006b; Hammer and Lindmark, 2010). These limitations in
clinical and self-report scales emphasize the need for alternative
methods of directly measuring real-world functional use of the
extremities.

Accelerometry is portable, unobtrusive, and suitable for 24/
7 monitoring of patient activity. In the present report, to better
quantify functional UE use in the community, we have advanced
current accelerometry methods by validating a machine learning
approach to classify UE movement as “functional” or “non-
functional” in individuals with persistent motor impairment due
to stroke at least 6 months prior (McLeod et al., 2016; Bochniewicz
et al., 2017; Lum et al., 2020). Conventionally, quantifying UE use
requires frame-by-frame video labeling for ground-truth validation.
Video labeling, although ideal, is tedious and time-consuming,
which makes it impractical for extended periods of home
monitoring. Our machine learning approach identifies the
amount of functional UE use in accelerometry data (test set)
based on features of meaningful UE use extracted from a training
dataset (labeled frame-by-frame using video ground truth). This
advancement allows the estimation of functional UE use instead of
just movement counts using accelerometry. In the present report,
our purpose was to establish the concurrent validity of our machine
learning estimate of functional UE use with respect to clinical
measures of UE motor function (ARAT) and self-reported UE
use (MAL). We hypothesized that machine learning-estimated

characterization of real-world UE use will show significantly high
correlation (r > 0.7) with ARAT and self-reported UE use. In a
subset of the sample, we also validated our machine learning
estimates with clinical measures of impairment (UEFM) and
manual dexterity (nine-hole peg test) (Reuben et al., 2013; Wang
et al., 2015).

2 Materials and methods

2.1 Participants

Individuals were recruited from the MedStar National
Rehabilitation Hospital in Washington, DC. The inclusion criteria
were 1) neuroimaging-confirmed ischemic or hemorrhagic stroke at
least 6 months prior to study enrollment, 2) age >18 years old, 3) no
known orthopedic or neuromuscular injuries that interfered with
completion of study procedures, and 4) Mini-Mental Status
Examination score >24 (Cumming et al., 2013). Individuals were
excluded if 1) they exhibited neglect as determined by an
asymmetry >3 errors on the Mesulam’s symbol cancellation test
(Mesulam, 1985), 2) experienced dense sensory loss (NIHSS sensory
item score ≥2) (Brott et al., 1989), 3) had prior stroke with persistent
motor impairments, and 4) received botulinum toxin within 6 months
of stroke or during study participation. The study was approved by the
MedStar-Georgetown Universities Institutional Ethics Committee. All
individuals provided written informed consent.

2.2 Power and sample size considerations

Sample sizes were calculated using the software program
G*Power (Faul et al., 2007) to test if use ratios were significantly
correlated with the Action Research Arm Test scale to demonstrate
concurrent validity. We used a moderate effect size (0.4), power =
0.8, and alpha = 0.05/2, leading to a required sample size of
approximately 17 participants. For a power of 0.95 at alpha =
0.05/2, we would have required a sample of approximately
30 participants. We report results from a cohort of 31 stroke
patients with a wide range of UE motor impairments measured
by ARAT.

2.3 Apparatus and measures

2.3.1 Clinical testing
Data were collected over a single session when participants

completed the activity script (Lum et al., 2020) and tests of UE
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motor function (ARAT) (van der Lee et al., 2001; Yozbatiran et al.,
2008) impairment via UEFM (Fugl-Meyer et al., 1975; Weerdt and
Harrison, 1985; Duncan et al., 1992) and manual dexterity (nine-
hole peg test) (Wang et al., 2011; Reuben et al., 2013; Wang et al.,
2015). Participants also completed the Motor Activity Log(MAL), a
self-reported outcome of “how much” the impaired UE was used in
the previous 7 days (Uswatte et al., 2006b). Ten out of
31 participants completed only the activity script and the ARAT,
whereas the remaining participants completed all tests. Data from
these 10 participants were part of a prior publication (Lum et al.,
2020).

2.3.2 Accelerometers
Wireless accelerometers (ActiGraph GT9X Link, Pensacola, FL),

similar in appearance to a smartwatch, were worn on both wrists.
The accelerometers are sensitive to movement in three axes, and raw
acceleration is sampled and stored internally at 50 Hz.

2.4 Procedures

Activity script: all participants completed the activity script, a set
of activities and instrumental activities of daily living (ADLs/
IADLs), to simulate functional UE use in the community. These
procedures have been described previously (Lum et al., 2020). The
activity script was completed in a simulated apartment in an
outpatient rehabilitation setting (Figure 1). The simulated
apartment houses a fully functional “living space,” including a
kitchen, bedroom, store for shopping activities, and a car to
practice transfers. Individuals were instructed to perform the
following IADLs: 1) laundry task, 2) linen management and
folding, 3) grocery shopping, 4) kitchen task, 5) financial
management, 6) medication management, and 7) typing task (see
Supplementary Table S1).

Participants performed the activity script tasks as they would
naturally complete them at home. No specific instructions were

FIGURE 1
Simulated apartment in outpatient rehabilitation. (A) Laundry task. (B) Shopping task. (C) Kitchen task. (D) Bed-making and laundry-folding tasks.
Activity scripts are completed using the facilities at MedStar National Rehabilitation Hospital, Washington DC.
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given as to which arm to use for any task. Between the activity script
tasks, when participants sat, experimenters engaged them in
conversation, and they walked around the facility to collect non-
functional UE use data. There was no set time limit to complete the
activity script. Participants wore the sensors throughout the
experiment and were videotaped at 30 Hz.

2.5 Data processing

2.5.1 Video annotation
The video was annotated by trained research assistants using a

standardized coding scheme based on the Functional Arm Activity
Behavioral Observation System (FAABOS) (Uswatte and Hobbs
Qadri, 2009). Three independent annotators watched the video. All
frames were labeled according to the five FAABOS categories and
subsequently collapsed into three categories: functional, non-
functional, or unknown. The functional category included
gesturing, reaching to grasp, pushing open a door, etc. The non-
functional category included arm movements associated with gait,
sit-to-stand, or whole-body movement that did not include
functional arm movement. No movement was labeled non-
functional. Each limb was coded separately, and the final coding
for each video frame was determined by a majority vote. The final
coding values allowed calculation of %functional use ratio: %
functional use in the paretic limb normalized to the less-affected
limb. Video-annotated use ratios are referred to as ground-truth use
ratios.

2.5.2 Application ofmachine learning algorithms to
accelerometer data

The video was synchronized with accelerometry data, and
ground-truth labels of functional or non-functional activity were
transferred to the accelerometry data. Synchronization of
accelerometry and video was achieved by oscillating the
accelerometers rapidly in the z direction of the sensors five times
prior to placing them on the subject and again after their removal.
This created five large peaks in the z-axis data that were easily
identified and marked. The sensor peaks correspond to reversal
points in the oscillation, which were marked on the video. Data were
partitioned into 2-second blocks. If >90% of labels within the block
were the same class (functional or non-functional), the entire block
was labeled accordingly. The remainder of the blocks were not used
for training the model but were used during the testing phase. We
computed 17 features from each 2-second block of sensor data.
Similar to prior reports, the features were mean, variance, maximum
and minimum of each accelerometer axis, Shannon entropy and
mean, variance, and maximum and minimum of the Euclidean
norm of the three accelerometer axes (Lum et al., 2020). We built a
separate model for each limb, using stratified 5-fold cross-validation
testing. We used a random forest classifier because in prior work,
this approach yielded the highest overall accuracy. Importantly,
when calculating accuracy and %functional use ratio, the classifier
was applied to data that are not part of the training set used to train
the model, simulating the case where a model trained on labeled data
collected in the lab can be applied to accelerometry data collected in
the home and community. Machine learning-estimated use ratios
are referred to as the estimated use ratios.

For each random forest classifier, we calculated several
performance metrics assuming functional use as the positive class
and non-functional as the negative class. Accuracy is the ratio of
correct classifications to total cases. Sensitivity is the ratio of true-
positive classifications to all positive cases. Specificity is the ratio of
true-negative classifications to all negative cases.

2.5.3 Data analysis
We calculated the accuracy of machine learning-estimated use-

ratio variables with respect to the ground-truth use ratios.
Concurrent validity was assessed between estimated use ratios
and ARAT in all participants (n = 31) using Pearson’s
correlation coefficients. UEFM, nine-hole peg test, and MAL
scores were available in a subset of the sample (n = 21); these
were used to evaluate the validity of the estimated use ratios with
respect to impairment, manual dexterity, and self-reported UE use,
respectively. An r value ≥ 0.7 was considered a high correlation
(Portney and Watkins, 2009).

To evaluate if our accelerometry approach measures the same
construct as the clinical scales, factor analysis was applied to UE
clinical measures and accelerometry data. A principal component
analysis with varimax factor rotation was applied to ARAT, UEFM,
nine-hole peg test, MAL scores, video-labeled accelerometry use
ratio, and machine learning-estimated use ratios. Factors were
retained if the eigenvalue exceeded 1. We also redefined the
factor analysis to extract at least two factors irrespective of the
eigenvalues to test if accelerometry measures are still separated from
the clinical measures in an independent component.

Bland–Altman plots were used to estimate the degree of
agreement between use ratios calculated with the machine
learning algorithms versus video-labeled use ratios.
Bland–Altman is a quantitative method to evaluate the
agreement between two different approaches to measure the
same construct. We calculated the mean difference between
use ratios calculated by machine learning or video-labeled
data (bias) and the standard deviation of the difference
(random fluctuations around this mean difference). In
addition, we computed the limits of agreement between
methods as the 95% confidence intervals around the mean
difference.

3 Results

Demographic, clinical, and UE activity characteristics of the
participants are shown in Table 1. We enrolled 31 individuals
(22 male, mean age ± SD = 60.38 ± 11.94 year, range =
32–83 year) with ischemic or hemorrhagic stroke (mean time
since stroke = 23.8 ± 22.5 months). Participants showed
moderate UE impairment, with mean ARAT ± SD = 28.96 ±
14.41, UEFM = 41.8 ± 9.4, and nine-hole peg test average time
(sec) = 166.2 ± 117.5 s. Average MAL scores = 1.67 ± 1.07.

3.1 Classification performance

The performance metrics for the classifier can be found in
Supplementary Table S2. Average accuracy (SD) was 90.9% (4.8)
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in the paretic limb and 94.6% (6.2) in the less-affected limb.
Sensitivity was 90.2% (6.5) in the paretic limb and 96% (4.4) in
the less-affected limb. Specificity was 89.8% (6.0) and 91.9% (9.9).
The video-based and estimated use ratios can be found in
Supplementary Table S3. The 95% confidence interval for error
in the estimated use ratio was (0.32%–2.26%), indicating that the
model, on average, slightly underestimates the functional use ratio.

3.2 Validity of machine learning use ratio

Table 2 shows Pearson’s correlation between machine learning-
estimated use ratio with corresponding measures from video-labeled
ground truth data, ARAT, UEFM, nine-hole peg test, and MAL.
Machine learning-estimated use ratio was significantly correlated
with video-labeled use ratio (r = 0.99, p < 0.001), ARAT (r = 0.82, p <

TABLE 1 Stroke participant demographic, stroke-related, and impairment data.

pID Age
(years)

Sex Race Affected
limb

Handedness Edinburgh
handedness (pre-
stroke)

Time post
stroke (mo)

ARAT
(affected)

MAL

1 64 Male African American Right Left −70 11 32 1.268

2 56 Female African American Left Left −100 25.9 38 1.018

3 71 Male African American Right Right 100 14.8 53 3.357

4 77 Female African American Right Right 100 13.6 7 0.75

5 65 Male African American Left Right 100 17.6 27 1.071

6 54 Female White Right Right 100 24.1 23 1.44

7 32 Female Asian Left Right 70 6.1 6 0.464

8 53 Male African American Right Right 70 12.3 29 1.179

9 50 Male White Right Right 90 36.5 5 0.304

10 83 Female African American Left Left 80 6.5 48 1.038

11 64 Male African American Right Right 80 14 42 2.881

12 57 Male White Left Right 100 17.7 32 1.32

13 78 Male African American Left Right 80 18.5 52 2.571

14 66 Male African American Left Right 50 13.73 0.821

15 77 Male African American Left Right 90 10.1 54 3.946

16 64 Female African American Left Right 100 7.2 24 2.167

17 64 Male African American Right Right 100 8.1 2.893

18 48 Male African American Left Right 70 9.2 47 2.786

19 77 Male African American Right Right 23 41

20 35 Male White Left Right 35 23

21 56 Male African American Left Right 17 19

22 49 Female African American Left Right 19 20

23 57 Male White Right Right 104 16

24 63 Male White Right Right 77 32

25 47 Female African American Right Right 12 33

26 50 Male African American Right Right 53 15

27 66 Male African American Right Right 69 5

28 65 Male White Right Right 20 42

29 66 Male American Indian or
Alaskan Native

Left Right −50 13.7 12 0.82

30 68 Female African American Left Right −100 13.9 34 2.36

31 57 Male White Right Right −100 17.03 23 1.38

Table 1. Participant characteristics. Empty cells indicate missing data.
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0.001), UEFM (r = 0.77, p < 0.001), nine-hole peg test (r = −0.77, p <
0.001), and MAL (r = 0.61, p = 0.001).

Figure 2 shows scatter plots of video-labeled or machine learning
estimates of UE use ratio with ARAT (Figure 2A) and MAL
(Figure 2B). ARAT and use ratios showed a significant linear line
of best fit (R2 = 0.63). MAL showed a significant linear line of best fit
with R2 = 0.34.

A factor analysis was applied to UE behavioral measures to
determine if use ratios measured the same construct as the clinical
scales. We found a single factor with eigenvalues >1 and high factor
loadings on the MAL, UEFM, ARAT, nine-hole peg test, and use
ratios; this component explained 83% of the variance in UE motor

performance. We also tested if redefining the factor analysis to
extract two factors leads to use ratios splitting from the clinical scales
given in our prior report (Barth et al., 2020). Table 3 shows varimax
rotated factor loadings from 1- or 2-component factor solutions.
The 2-factor solution accounted for 94% of the variability in UE
behavioral outcomes, with use ratios, UEFM, and ARAT showing
high factor loadings on component 1. MAL and nine-hole peg test
showed high loading on a second maximally independent
component.

The Bland–Altman plot (Bland and Altman, 1986) quantifies the
agreement between two variables measuring the same construct. The
Bland–Altman plot in Figure 3 shows, for each individual, the
difference between video-labeled versus machine learning use
ratios [mean difference ± SD = 0.004 ± 0.04 (95% CI =
0.08, −0.08)] as a function of the average use ratio calculated
with two methods (0.54 ± 0.31). All but one data points fall
inside the Bland–Altman limits of agreement, which suggests an
excellent agreement between video-labeled and machine learning
estimates of use ratio.

4 Discussion

Machine learning predictions of functional UE use were highly
correlated with video-based annotations (r = .99). This demonstrates
that a classifier based on accelerometry features can very accurately
detect periods of functional limb use in participants across a wide
range of UE impairments. The amount of paretic limb functional use
correlated significantly with clinical scales of impairment (Fugl-
Meyer), function (ARAT), and manual dexterity (nine-hole peg test
with r values between 0.77 and 0.82), while correlations with the
MAL were lower (r = 0.61) but still significant. These results confirm
the validity of the accelerometry method against existing clinical
scales. The high correlations with clinical function scales and
accuracy against ground-truth video annotation reflect the
improvement our approach brings to accelerometry: accurate
quantification of functional UE use in chronic stroke with a
relatively small burden of frame-by-frame video labeling.

In prior work, we tested the performance of machine learning
algorithms that separate functional from non-functional periods in
accelerometry data using video annotation as ground truth and
compared machine learning classifiers with the conventional count
thresholding method. In this study, we applied the best-performing
machine learning classifier to a larger sample of stroke participants

TABLE 2 Pearson’s correlations between clinical measures and UE use ratio.

Concurrent validity against (clinical or ground-truth variable) Domain Machine learning estimated use ratio (95% CI)

Video-labeled (N = 31) Ground truth 0.99, p < 0.001, (0.99–0.99)

ARAT (N = 31) Prehension function 0.82, p < 0.001, (0.66–0.91)

UEFM (N = 21) UE impairment 0.77, p < 0.001, (0.51–0.90)

Nine-hole peg test (N = 20) Manual dexterity −0.77, p = 0.001, (−0.91 to −0.49)

Motor Activity Log (N = 21) Self-reported use 0.61, p = 0.001, (0.31–0.85)

Table 2. Pearson’s correlation between use ratios from video-labeled or machine learning estimates with paretic UE Action Research Arm Test (ARAT), paretic side upper extremity Fugl-Meyer

(UEFM), and Motor Activity Log (MAL). The nine-hole peg test correlations are negative because the data are recorded in seconds taken to complete the task, inversely correlated with ARAT,

UEFM, and use ratio. Numbers in parentheses are the 95% confidence intervals. N indicates the number of cases included in each pairwise correlation.

FIGURE 2
Scatter plots of video-labeled or estimated use ratios with (A)
ARAT and (B) MAL.
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that spanned the full impairment range and tested for concurrent
validity against other clinical scales. In previously reported work, we
demonstrated the feasibility of using a single wrist-worn
accelerometer to detect periods of functional arm activity in a
sample of 10 severe-moderately impaired stroke subjects and
10 controls (Bochniewicz et al., 2017). Using a random forest
classifier, subject-specific models had accuracies of 94.8% in
controls and 88.4% in the affected limb of stroke participants. In
leave-one-out modeling, accuracies were 91.5% in controls and
70.2% in stroke patients. In a follow-up study, we analyzed data
from the less-affected limb and the paretic limb in order to calculate
ratio metrics, explored a variety of different classifiers, features, and
epoch lengths (1–5 s), and compared machine learning to the
conventional counts thresholding method for detecting functional
use (Tran et al., 2018; Lum et al., 2020). We found that the best-
performing model was random forest, which had subject-specific
modeling accuracies of 96.1% and 92.6% in controls and stroke
subjects, respectively. Accuracy in the dominant limb of controls
and less-affected limb of stroke subjects was higher at 96.6% and
94.6%, respectively. Importantly, when calculating the functional
use ratio between paretic and less-affected limbs, the conventional

count method dramatically overestimated the ratio when compared
to video-based ground truth. Subsequent analysis showed this
overestimation was caused by the misclassification of non-
functional limb movements (whole-body movements) that
exceeded the threshold in the count method. In contrast,
functional use ratios based on machine learning were highly
accurate, with correlations of r = 99 with ground truth. In this
study, we only focused on subject-specific modeling and expanded
the sample size from 10 to 31 stroke participants spanning the full
range of UE impairment. With this larger sample, the random forest
classifier accuracies were comparable to prior reports, at 94.6% in
the less-affected limb and 90.9% in the paretic limb. The functional
use ratio continues to be highly correlated with ground truth (r =
99). This larger sample allowed concurrent validity testing,
comparing the functional use ratio to clinical scales. We found
significant correlations with tests of impairment (FM), function
(ARAT), and self-reported amount of functional use (MAL),
establishing concurrent validity.

Our results are consistent with prior studies reporting significant
correlations between accelerometry-based metrics and clinical scales. A
recent review paper of 34 studies reported a wide range of correlations

TABLE 3 Principal component loadings for 1- and 2-factor solutions.

Variable One-factor solution Forced two-factor solution

Component 1 Component 1 Component 2

MAL 0.831 0.330 0.910

UEFM 0.916 0.748 0.533

ARAT 0.944 0.731 0.597

Nine-hole peg test −0.887 −0.557 −0.721

Use ratio 0.940 0.912 0.370

Estimated use ratio 0.943 0.911 0.374

Table 3. Principal component and varimax rotated factor loadings for 1- and 2-factor solutions. High factor loadings (large contribution >0.6) (Reyment, 1996) are shown in bold numbers.

FIGURE 3
Bland–Altman plots. Difference in use ratios calculated using machine learning versus video-labeled accelerometry data are shown on the y-axis.
The mean of use ratios calculated using machine learning and video-labeled accelerometry are shown on the x-axis. Solid gray line shows mean
difference (mean ± SD = 0.004 ± 0.0.04) between use ratios calculated by the two methods; solid red lines show the 95% CI for the mean difference.
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between accelerometry and the MAL (0.31 < r < 0.84) and between
accelerometry and the ARAT (0.15 < r < 0.79) (Heye et al., 2022). Our
correlations are at the high end of the ARAT range reported by this
review and near the middle of the range for the MAL. The large
variability in these reported r values is concerning, especially for the
MAL, which one would expect to have the strongest correlation with
accelerometry. The large variability in prior studies could be due in part
to the accelerometers responding towhole-bodymovements that do not
incorporate functional use of the paretic limb.We previously found that
the count method grossly overestimates the duration of functional UE
movement compared to the ground truth based on video annotation
(McLeod et al., 2016). This was due to the movement of the wrist-
mounted accelerometers resulting from whole-body movements, such
as ambulation. Normalizing by values from the opposite limb did not
improve the estimate. Contamination of the accelerometer
measurement from whole-body movements was also reported by
Regterschot et al. (2021), and some methods rely on a third
accelerometer on the thigh to eliminate periods of ambulation (Heye
et al., 2022). Importantly, our machine learning approach overcomes
these limitations by training a model that rejects accelerometer patterns
from whole-body movements and only specifically detects periods of
functional limb use during activities and instrumental activities of daily
living.

A recent publication by Pohl et al. (2022) separated functional
from non-functional movements during ADL performance in the
home in individuals with stroke. They compared conventional
count thresholding, optimal thresholding, and a logistic regression
classifier applied to multiple IMU sensor signals. They report
classification accuracy of around 80% when using an optimal
threshold (>20.1 and >38.6 counts for the affected and less-
affected sides, respectively). The machine learning classifier
achieved similar accuracy in leave-one-out testing. Both these
methods were found to be superior to the conventional
thresholding method (>2 counts). Their optimal thresholding

method can significantly increase the accuracy of metrics
targeting the amount of functional limb use by removing slow
movements that are not likely functional in nature and has the
advantage of easy implementation on already collected data sets.
One important difference between Pohl and our study is that their
study is testing the performance of several classification schemes
against video annotations. We also report the performance of our
random forest classifier against video annotation ground truth, but
the main purpose of our study is testing concurrent validity,
correlating our results with several clinical scales. The Pohl
study notes that in future work, concurrent validity with
benchmark clinical outcome measures is needed. An important
technical difference between studies is that their non-functional
category includes minimal motion, while a third category of whole-
body movements (gait, transfers, etc.) was excluded from the
analysis. They note that detection and removal of whole-body
movements in a pre-processing step might be needed before
applying their optimal thresholding scheme; otherwise, these
movements might be misclassified as functional. In contrast,
our non-functional class includes minimal or no movement,
and arm movements resulting from whole-body movements. So
our classifier is already attempting to classify whole-body
movements as non-functional, based on sensor data, and
another level of pre-processing is not needed. Future work is
needed to determine which approach is superior.

Our prior report on accelerometry outcomes within the first
week of stroke showed conventionally used accelerometry counts,
and the clinical scales (UEFM/ARAT) fall along two independent
axes reflecting “quantity” (use ratio) versus “quality” (UEFM/
ARAT) of movement (Barth et al., 2020). In the current report,
factor analysis showed a single construct containing UEFM, ARAT,
nine-hole peg test scores, MAL, and estimated use ratios, which
captured 83% of the variance in impaired limb activity. Thus, the
estimated use ratio captures a similar construct as the clinical scales,

FIGURE 4
Component plot in rotated factor space. A single component accounts for 83% of the variance in UE behavioral measures of UEFM, ARAT, nine-hole
peg test, self-reported MAL, and the use ratios. This is evidenced on the component plot. Forcing a 2-component solution results in MAL and nine-hole
peg test scores splitting from the UEFM, ARAT, and use ratios, evidenced by MAL falling closer to component 1 axis, as shown here.
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unlike the counts approach. Figure 4 shows the component plots
from the 2-factor solution: MAL is relatively closer to component
2 in the rotated factor space, whereas the use ratio is closer to
component 1. ARAT and UEFM fall along the midline between
components 1 and 2, whereas the nine-hole peg test mirrors ARAT/
UEFM scores along the negative axes being inversely correlated with
ARAT and UEFM. Thus, the forced 2-factor solutions suggest
differences in measurement properties of the MAL compared to
functional UE use, and further investigation is warranted.

In our data, more than 37% of the variance in paretic limb use was
not explained by ARAT scores (R-sq = 0.63). Importantly,
examination of the scatter plots in Figure 2A shows that
participants with similar ARAT scores can have very different
paretic limb use patterns. For example, four subjects had ARAT
scores between 38 and 42, but had a paretic limb use ratio between
0.42 and 1.1. Similarly, six subjects had functional use scores between
0.57 and 0.63, and ARAT scores that ranged from 7 to 36. These
differences between ARAT and accelerometry, despite them
measuring the same construct (as indicated by the factor analysis
in present report), may result from the differing resolutions of
measurement provided by accelerometry vs ARAT. Additionally,
in ARAT, subtasks of varying difficulties are graded on a 0-1-
2 Likert scale, and a sum score is created by simple summation
assuming a 1-unit increase on easier and more difficult items
representing the same amount of recovery. This approach, at least
in the UEFM leads to significant measurement errors (Geed et al.,
2020). The discrepancy between clinical scales and the range of actual
UE use is particularly problematic for clinical studies that use
neuroimaging or neurophysiology with ARAT/UEFM to
understand the mechanisms of post-stroke recovery. If commonly
used clinical scales do not capture true UE use, results from
neurophysiology may be confounded by using only the ARAT or
UEFM as the proxy for recovery.

4.1 Limitations

These data were collected in a simulated apartment during
outpatient rehabilitation. Our next step is to acquire 24-h
accelerometry data from individuals with stroke living in the
community who engage in the full spectrum of ADLs/IADLs to
better validate our machine learning methods for measurement of
UEmotor function post-stroke. In terms of the potential adoption of
this method, the need for video annotation to train subject-specific
classifiers limits the applicability of this method to clinical practice.
However, use in clinical trials is possible, as the data collection only
takes around 30 min, and a trained annotator can complete an
activity script in about 2.3 h. We are currently investigating a
generalizable model that can be applied to new participant data
without the need for subject-specific video annotation. This may be
possible if the sample size can be further increased.

5 Conclusion

We validated an approach to monitor long periods of functional
arm use via accelerometers and using a machine learning classifier
trained on a short period of annotated video. Our results

demonstrate the feasibility of this method for the measurement
of UE motor recovery in stroke rehabilitation trials.
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