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Background: Chlorothalonil and acetamiprid are chemical pesticides commonly
used in agricultural production and have been shown to have negative effects on
bee’s fitness. Despite many studies have revealed that honey bee (Apis mellifera L.)
larvae are posting a high risk on exposure to pesticides, but the toxicology
information of chlorothalonil and acetamiprid on bee larvae remain limited.

Results: The no observed adverse effect concentration (NOAEC) of chlorothalonil
and acetamiprid for honey bee larvae were 4 μg/mL and 2 μg/mL, respectively.
Except for CarE, the enzymic activities of GST and P450 were not influenced by
chlorothalonil at NOAEC, while chronic exposure to acetamiprid slightly increased
the activities of the three tested enzymes at NOAEC. Further, the exposed larvae
showed significantly higher expression of genes involved in a series of different
toxicologically relevant process following, including caste development (Tor
(GB44905), InR-2 (GB55425), Hr4 (GB47037), Ac3 (GB11637) and ILP-2
(GB10174)), immune system response (abaecin (GB18323), defensin-1
(GB19392), toll-X4 (GB50418)), and oxidative stress response (P450, GSH, GST,
CarE).

Conclusion: Our results suggest that the exposure to chlorothalonil and
acetamiprid, even at concentrations below the NOAEC, showed potentially
effects on bee larvae’s fitness, and more important synergistic and behavioral
effects that can affect larvae fitness should be explored in the further.
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Introduction

Over the last few decades, significant declines in insect
populations and diversity in several regions of the globe have
been alarming, especially for bee species (El-Seedi et al., 2022).
Although multiple factors likely contribute to the observed bee
declines, e.g., the parasitic mite, viruses, pollution and climate
change (Human et al., 2014; Myers et al., 2017; Dolezal et al.,
2019; Traynor et al., 2020), an essential reason is excessive
pesticide use of agrochemicals, which has been proved to lead to
impairment of essential functions, such as reproduction,
foraging and homing, thereby affecting overall health and
population of the bee colony (Wang et al., 2020; Wagner
et al., 2021). Thus, much attention has been directed toward
the safety of pesticides to bees.

Compared to adults, Apis mellifera (honey bee) larvae are more
susceptible to long-term exposure to sublethal doses of pesticides
(Desneux et al., 2007). During flowering period, pollen and nectar
with pesticide residues collected by foragers will be processed by the
nurse bees and fed to developing larvae, providing potential
opportunities for bee larvae to be exposed to pesticides during
whole pre-brood stage (Mullin et al., 2010; Dai et al., 2018;
Quintana et al., 2019). Moreover, high levels of pesticides were
detected in beeswax from the brood nest where larvae develop
(Medici et al., 2012; McAfee et al., 2021). Despite indirectly
exposed to pesticides, larvae are usually less tolerant to pesticides
than adults (Tan et al., 2017; Dai et al., 2018; O’neal et al., 2019;
Tavares et al., 2019), nevertheless, the toxicology information on
honey bee larvae are rare at present.

Pesticides have a range of sublethal effects on larvae of honey
bee. Previous studies have revealed that chronic exposure to
pesticides during the larval period can disrupt the normal
growth and development of honey bee larvae, leading to
malformations, reduced body size, and delayed development
(Wu et al., 2011; Tan et al., 2015; Rosa et al., 2016). Long-term
exposure to pesticides at early life stages can damage the nervous
system of honey bee larvae, leading to behavioral abnormalities and
reduced cognitive function as adult individuals (Tan et al., 2017). In
addition, pesticides can weaken the immune and defense system of
honey bee larvae, making them more susceptible to diseases and
parasites (Tarek et al., 2018). For instance, exposure to sublethal
doses of thiacloprid significantly aggravated the proliferation of
black queen cell virus (BQCV) on host larval and boost the harmful
effects of the virus on honey bees (Doublet et al., 2015). Sublethal
pesticide exposure in honey bees larvae can cause oxidative stress by
increasing the levels of reactive oxygen species (ROS) in the bees’
bodies, which can cause damage to cellular components such as
DNA, proteins, and lipids (Prezenska et al., 2019; Yu et al., 2021).
The GST (glutathione S-transferase) gene family encodes enzymes
that participates in the process of ROS removal by interaction with
glutathione (Schultzhaus et al., 2017). Catalase (CAT) and
superoxide dismutase (SOD) are important enzymes establishing
the first line of antioxidant defense systems. Previous studies have
demonstrated that when exposed to low doses of pesticides, honey
bee larvae are able to neutralize harmful oxidative compounds
produced by oxidative stress via upregulating the expression of
these enzymes or elevating their activities (du Rand et al., 2017; Yu
et al., 2021).

Fungicides and neonicotinoid insecticides are common
xenobiotics detected in bee products (Pareja et al., 2011; Bridi
et al., 2018). Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile)
is one of the most popular broad-spectrum protective fungicide
in the world (Wang et al., 2021). Chlorothalonil is commonly
applied to flowering crops, thus providing a possible route of
exposure for bees. Mullin et al. (2010) have reported a maximum
residue value of 99 mg a.i./kg for chlorothalonil detected in pollen
(Mullin et al., 2010). Although not acutely toxic to bees, several
studies have identified potential sublethal effects, especially on larvae
(Zhu et al., 2014; Dai et al., 2018; O’neal et al., 2019). As a fungicide,
chlorothalonil may affect the fungal community in the honey bee
gut. Our previous work showed that chlorothalonil significantly
decreased the survival rate of immature bees and altered the gut
microbiota of newly emerged honeybees when exposure
concentrations were higher than 2 μg/mL (Wu et al., 2022).
Acetamiprid is a representative of the first generation of
neonicotinoids with broad-spectrum characteristic, widely used to
control destructive agricultural pests (Shi et al., 2019). Given their
low toxicity to mammalian and non-target pollinators, acetamiprid
has become the key available neonicotinoid pesticides throughout
the world (Wang et al., 2017; Grassl et al., 2018). It has been shown
that sublethal acetamiprid doses had a negative effect on the learning
and memory ability of adult bees (Wen et al., 2017; Chen et al.,
2020). Chronic exposure to acetamiprid was found to have an effect
on the expression of genes related to immune, detoxification, and
memory in larvae and adults (Shi et al., 2020).

The goal of this study was to investigate the effects of chronic
exposure to the chlorothalonil and acetamiprid on A. mellifera
larvae. Through the in vitro larval rearing method, we measure
the no observed adverse effect concentration (NOAEC) of larval
bees. Furthermore, we evaluate the sublethal effects of chlorothalonil
and acetamiprid on humoral immunity and biochemical markers of
exogenous substance, as well as gene expression involved in honey
bee caste development. This work will provide additional
information on the risks of chlorothalonil and acetamiprid
exposure to honey bee larvae, and ultimately help to determine
the integrated pest management strategies that minimize the harm
of pesticides to honey bees.

Materials and methods

Honey bees

Larvae source colonies were kept in the Institute of Apicultural
Research, Chinese Academy of Agricultural Sciences (40°01′23′′N,
116°21′24′′E). The honey bee larvae were transferred to the
laboratory and reared in incubator (Ningbo Haishu Saifu
Experimental Instrument Factory) (rearing temperature 35°C ±
0.5°C, relative humidity 95% ± 5%).

Chronic toxicity

The experiment consisted of 13 treatments, including
chlorothalonil (purity 99.7% purchased from Sigma-Aldrich,
Shanghai, China) at concentrations of 1, 2, 4, 8 and 16 μg/mL;
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acetamiprid (purity 99.9% purchased from BePure, Shanghai,
China) at concentrations of 0.5, 1, 2, 4 and 8 μg/mL; a negative
control; a solvent control (0.1% acetone) and a positive control
(dimethoate purity (99.3% purchased from Sigma-Aldrich,
Shanghai, China) 45 μg/mL). Each treatment was repeated three
times. Larvae were taken from three different colonies, a single
colony per replicate. A. mellifera larvae were reared in vitro as
described by Yang et al. (2020). We obtained excessive 1-day-old
larvae and fed 20 μL normal diet on D1. On the third day, 12 healthy
larvae were selected from each replicate and fed with a 20 μL diet
that contained different dilutions of chlorothalonil and acetamiprid.
Each larva was respectively fed with 30, 40, 50 μL treated diet on D4,
D5 and D6.

Preparation of cDNA and qRT-PCR

On day 7, the A. mellifera larvae were collected and frozen in
liquid nitrogen, then stored at −8 °C. RNA was extracted from larvae
using TRIzol reagent. RNA quality was checked using the
BioSpectrometer® kinetic (Eppendorf, America). An OD260/280
ratio of RNA between 1.8 and 2.0 is required to meet the criteria.
Then, using PrimeScript™ RT reagent Kit with gDNA Eraser
(Takara, Japan), cDNA was obtained from 1.0 μg RNA. The RT-
qPCR was performed as follows: 30 s at 95°C, followed by 40 cycles
of 5 s at 95°C, then 30 s at 60°C. RT-qPCR was carried in triplicate.
Table 1 summarizes the primers information and uses the house
keeping gene β-actin as the control. The relative expression of the
test gene was calculated using the method reported by Qi et al.
(2020).

Activity of detoxification enzymes

All of honey bee larvae were collected and quickly placed in
liquid nitrogen and stored at −80°C on D7. Homogenize each
larval sample independently on ice in pre-chilled pH 7.4 PBS,
then Centrifuge at 3,500 rpm for 20 min at 4°C. The protein
concentration in the supernatant was determined by using the
BCA Protein Assay Kit (Thermo Fisher Scientific, America). The
P450, GST and CarE enzyme activities of the supernatant were
determined using the ELISA assay kit from Shanghai Mlbio,
China.

Statistics

All data are expressed as the mean ± SE. The JMP 13 software
produced the Kaplan-Meier curve. GraphPad Prism 9.0 were
performed for One-way ANOVA on enzyme activity and gene
expression levels. Tukey’s test (p = 0.05) was performed to
determine the difference between every treatment and solvent control.

Results

Chronic toxicity of acetamiprid and
chlorothalonil to honey bee larvae

The survival of larvae fed with 8 and 16 μg/mL chlorothalonil
was significantly lower than that of larvae fed the negative and
solvent control diets (Figure 1A). However, the survival of larvae fed
with 1, 2 and 4 μg/mL chlorothalonil was not significantly different
from that of larvae fed with the solvent control and the negative
control diets. The NOAEC of chlorothalonil to honey bee larvae was
4 μg/mL. The survival of larvae fed with 4 and 8 μg/mL acetamiprid
was significantly lower than that of larvae fed the negative and
solvent control diets (Figure 1B). However, the survival of larvae fed
with 0.5, 1 and 2 μg/mL acetamiprid was not significantly different
from that of larvae fed with the solvent control and the negative
control diets. The NOAEC of acetamiprid to honey bee larvae was
2 μg/mL.

TABLE 1 The primers used in qRT-PCR.

Primer Direction Sequence 5’-3’ Gene
bank

CYP9Q2 Forward GATTATCGCCTATTATTACTG GB17793

Reverse GTTCTCCTTCCCTCTGAT

CYP9Q3 Forward GTTCCGGGAAAATGACTAC GB19967

Reverse GGTCAAAATGGTGGTGAC

Gtpx1 Forward CGACAACTATAAGGAAGC
GAAA

GB47478

Reverse AGATAGAAAAACGTCTTC
GCCT

GSH Forward CACCATATGCATGGCAAGT GB41663

Reverse TTGTTGTAGGCATCGCG

abaecin Forward AGATCTGCACACTCGAGG
TCTG

GB18323

Reverse TCGGATTGAATGGTCCCTGA

Toll-X4 Forward TAGAGTGGCGCATTGTCAAG GB50418

Reverse ATCGCAATTTGTCCCAAAAC

defensin-1 Forward TGCGCTGCTAACTGTCTCAG GB19392

Reverse AATGGCACTTAACCGAAACG

Ac3 Forward GCAGAGGCTGAGGAAGGA GB11637

Reverse AATGGCACTTAACCGAAACG

ILP-2 Forward TGCCAGTAGCAGAAGTAG GB10174

Reverse TGACAAAGTTCGACCACA

Tor Forward ACGGGACGTGATTTCTCTCA GB44905

Reverse ACCAAAAGGGACACCATCCA

Hr4 Forward ACACGGTAAGCAGTTCGAGG GB47037

Reverse CAGCTCGTCCAAGTTCCTCA

InR-2 Forward GGGAAGAACATCGTGAAGGA GB55425

Reverse CATCACGAGCAGCGTGTACT

β-actin Forward CACTATACGCTTCTGGAC GB17681

Reverse CTTTCTGTAAGGATCTTCATG
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Influence of acetamiprid and chlorothalonil
on the expression of division related genes

Through statistical analysis, we found that survival rate had no
significant difference between negative controls and solvent controls
in our research. Thus, only solvent control was used for the
following analysis.

The relative expression of division related genes in honey bee
larvae were quantified. As shown in Figure 2, the Tor and
AmInR-2 transcripts were upregulated upon exposure to 1,
2 and 4 μg/mL chlorothalonil. The expression of Hr4 was
upregulated at 4.1 folds and 3.5 folds at 1 μg/mL
chlorothalonil and 2 μg/mL acetamiprid, but this change did
not occur after treatment with 2 and 4 μg/mL chlorothalonil
(Figure 2C). The transcript of Ac3 was strong upregulated at
2 and 4 μg/mL chlorothalonil (Figure 2D). Acetamiprid induced
the expression of ILP-2 at 2 μg/mL, but did not alter the
abundance of the other transcripts. And the ILP-2 transcript
was upregulated after expose to 1, 2, 4 μg/mL chlorothalonil
(Figure 2E). When the concentration of acetamiprid was less
than 2 μg/mL, the expression of all division related genes we
tested was not significantly affected.

Influence of acetamiprid and chlorothalonil
on the expression of immune related genes

The transcript of abaecin was significantly upregulated at 2 μg/
mL acetamiprid but did not remarkably affected by chlorothalonil
(Figure 3A). In comparison to the solvent control, the expression of
defensin was facilitated by 2 μg/mL acetamiprid or 4 μg/mL
chlorothalonil (Figure 3B). Exposure to chlorothalonil resulted in
upregulation of the toll-X4 transcript at 1 and 2 μg/mL
chlorothalonil, while acetamiprid had no effects on the
expression of these transcripts (Figure 3C). But when the
concentration of chlorothalonil reached 4 μg/mL, the expression
of toll-X4 was downregulated to the control value (Figure 3C).

Influence of acetamiprid and chlorothalonil
on the expression of detoxification related
genes

In comparison to the solvent control, the expression of CYP9Q2
was upregulated after expose to 2 μg/mL acetamiprid (Figure 4A).
No significant changes of the CYP9Q3 transcript occurred in the
treatment of chlorothalonil and acetamiprid (Figure 4B). Exposure
to both acetamiprid and chlorothalonil also had no significant effects
on the expression ofGtpX1 (Figure 4C). In addition, the transcript of
GSH was significantly upregulated at 2 μg/mL chlorothalonil, but
had no significant difference compared to the control at 4 μg/mL
chlorothalonil (Figure 4D).

The effect of chlorothalonil and acetamiprid
on detoxification enzymes in larvae

After continuous intake of the diet contained chlorothalonil or
acetamiprid, significant variation detoxification enzyme activity was
identified in honey bee larvae. As seen in Figure 5A, the activity of
P450 was significantly increased in the treatment of 2 μg/mL
acetamiprid and 4 μg/mL chlorothalonil. The P450 activity of
solvent control was 8.25 ± 0.67 nmol/min/mg pro and increased
to 9.50 ± 0.94 nmol/min/mg pro, after exposed to 4 μg/mL
chlorothalonil. But the difference of GSTs activity between
solvent control and all treatments were not significant
(Figure 5B). In addition, acetamiprid and chlorothalonil also had
no significant effects on the activity of CarE in honey bee larvae
(Figure 5C).

Discussion

Previous research shows that exposure of honey bees to
pesticides during larval stages can cause significant hidden harm
to colonies (Davis et al., 1988; Davis, 1989). Broad spectrum

FIGURE 1
Overall survival of Apis mellifera larvae exposed to sublethal concentrations of chlorothalonil (A), acetamiprid (B), during larval development on
D3 through D6 after grafting (n = 3 replicates of 12 larvae/replicate, or 36 larvae, per test substance). Larvae were fed a dimethoate-contaminated diet
(45 mg/L) as a positive control, an acetone-contaminated diet as a solvent control. Significant differences were set at * for p < 0.05.
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fungicides and neonicotinoids are commonly used in agriculture
and have been found in bee bread, beeswax and foraged
environment (McAfee et al., 2021). Although not acutely toxic to
bees, several studies have reported potential sublethal effects of
chlorothalonil and acetamiprid, particularly in larvae (Wagner et al.,
2021; Wu et al., 2022). In this study, we investigated the chronic
toxicity of chlorothalonil and acetamiprid on developing larvae.
Further, we tested the gene expression and enzyme activity to further
demonstrate whether honey bee larvae were adversely affected in
terms of immune and detoxification responses when exposed to the
two pesticides at the level where no adverse effects were observed.

The chronic toxicity results indicated that the NOAEC of
chlorothalonil and acetamiprid were 4 μg/mL and 2 μg/mL
(Figure 1), respectively, which were lower than those reported in
previous studies (Dai et al., 2018; Yang et al., 2020). This is not
surprising since colonies of the same bee species with different
genetic resources may have different tolerances to chemical
xenobiotics (Johnson, 2015). In addition, the NOAEC of
chlorothalonil and acetamiprid were much lower than the
median residual level in pollen and nectar, suggesting that
developing bee larvae are posing high risks of exposure to these
insecticides (Mullin et al., 2010).

Numerous studies have been suggested that exposure to
agricultural products have negative effects on growth,
development and worker division of labor in honey bee colonies
in honey bee (Ma et al., 2016; Tesovnik et al., 2020; Li et al., 2022). In
the present study, we determined the transcriptional levels of Tor
(GB44905), AmInR-2 (GB55425), Hr4 (GB17681), Ac3 (GB11637)
and ILP-2 (GB10174), which are parts of the Insulin/insulin-like
(ILP) and target of rapamycin (TOR) nutrient signaling pathway
involved in the regulation of queen/worker caste development in
honeybees (Wheeler et al., 2006; de Azevedo and Hartfelder, 2008).
We observed that the expressions of the test genes were all
upregulated in larvae exposed to chlorothalonil, although the
exposure dose was lower than NOAEC. However, these changes
were not shown in the acetamiprid-exposed groups treated at
concentrations lower than NOAEC in this study (Figure 2). The
overexpression of insulin-like growth factor signaling pathway
related genes implies the increased nutrient storage. As one of
the key regulators in energy metabolism, the insulin/TOR
pathway also related to xenobiotics metabolism and stress
resistance (Siede et al., 2012; du Rand et al., 2017; Gao et al.,
2022). Continuously exposure to organic insecticide could
contribute to insulin resistance and metabolic disorders in
mammal and insects (de Azevedo and Hartfelder, 2008; Zhang
et al., 2021). It has been reported that dietary nicotine stimulated
an increase in the synthesis of energy by upregulated two proteins
involved in the Insulin/Insulin-like growth factor signaling pathway
(IIS) in honey bee larvae (du Rand et al., 2017). The upregulation of
genes in this pathway implies that honeybee larvae cope with long-
term insecticide exposure by energetically compensating for the
adaptive cost of maintaining a highly resistant phenotype. Whether
the low doses of chlorothalonil could promote the growth of honey
bee larvae need further evidence for validation.

Sublethal concentration of insecticides are known to induce
transcriptional changes associated with honeybee immune (Evans
et al., 2006; Randolt et al., 2008; Shi et al., 2020). Antimicrobial
peptides and protein toll are essential components of the Toll-like

FIGURE 2
Effect of chlorothalonil and acetamiprid on the relative
expression levels on Tor (A), AmInR-2 (B),Hr4 (C), Ac3 (D) and ILP-2 (E)
genes in A. mellifera larvae. After exposed to 1, 2 and 4 μg/mL
chlorothalonil or 0.5, 1 and 2 μg/mL acetamiprid for 4 days,
larvae were collected and total RNA was extracted. Each sample was
assayed 4 times. Expression levels were normalized to actin and then
to the gene expression level of the solvent control (SC). Significant
differences were set at * for p < 0.05.
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FIGURE 3
Effect of chlorothalonil and acetamiprid on the relative expression levels on abaecin (A), defensin (B) and toll-X4 (C) genes in A. mellifera larvae. After
exposed to 1, 2 and 4 μg/mL chlorothalonil or 0.5, 1 and 2 μg/mL acetamiprid for 4 days, larvae were collected and total RNA was extracted. Each sample
was assayed 4 times. Expression levels were normalized to actin and then to the gene expression level of the solvent control (SC). Significant differences
were set at * for p < 0.05.
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receptor pathway, which have been identified in the researches for
innate immunity in honey bee (Chan et al., 2009; Danihlík et al.,
2015; Horak et al., 2020; Bartling et al., 2021). According to our data,
antimicrobial peptides including abaecin (GB18323) and defensin-1

(GB19392) were significantly upregulated in larvae exposed to
acetamiprid at NOAEC. Exposure of larvae to NOAEC of
chlorothalonil increased the expression of defensin-1 (GB19392)
and toll-X4 (GB50418), but not abaecin (GB18323) (Figure 3).
Exposure to concentrations below the NOAED did not cause
transcriptional changes, reflecting a dose-effect relationship
(Figure 3). The antimicrobial peptides (AMPs) response to
xenobiotic toxicity or pathogens disease via the rapid expression
(Bulet et al., 1999).Defensin-1 (GB19392) is expressed in the salivary
glands and is effective against both G+ and G-bacteria, whereas
abaecin is less active against most G-bacteria (Klaudiny et al., 2005).
The protein toll was originally shown to be a type 1 transmembrane
receptor that controls dorsal-ventral patterning and later was
identified to be involved in host resistance against pathogens
(Jang et al., 2006). The upregulation of these genes can lead to
immunity activation for improving the resistance to toxin.

We also assayed the mRNA expression levels and activities of
enzymic biomarkers in larvae exposed to different concentrations of
chlorothalonil and acetamiprid, respectively. As shown in Figure 4,
the expression of three detoxification-related genes (CYP9Q3,
GtpX1, GSH) had no significant difference between the
acetamiprid-exposed and control groups. In addition, the
enzymic activities of P450, GST and CarE was also not
influenced by acetamiprid (Figure 5). Our findings were
consistent with previous studies where exposure to low doses of
acetamiprid had very limited effects on molecular disturbances in
worker larvae (Wright et al., 2015; Gao et al., 2020). The most
probable explanation is that low dose of acetamiprid can be quickly
distributed and detoxified in larval, resulting in relatively low
toxicity (Iwasa et al., 2004; Brunet et al., 2005; Yang et al., 2020).
Cytochrome P450s is a major detoxification enzyme superfamily
involved in metabolic detoxification and resistance of many
insecticides (Johnson et al., 2012; Katsavou et al., 2022). CYP9Q2
(GB17793) and CYP9Q3 (GB19967), members in clade CYP9, were
most frequently involved in xenobiotic metabolism and evolution of
the hormonal and chemosensory processes in A. mellifera and
Bombus terrestris (Claudianos et al., 2006; Manjon et al., 2018).
In the present study, we found that only CYP9Q2 (GB17793) was
upregulated in larvae after exposed to acetamiprid for 4 days,
suggesting that honey bees activate the expression of specific
isoforms to response to chemical toxicity. When pesticides
induced oxidative stress in honey bee, reactive oxygen species
(ROS) are generated with P450-mediated detoxification processes.
Glutaredoxins act as immediate electron donor and its contribution
to providing resistance to oxidative stress during honeybee
detoxification processes has been well described (Xu et al., 2013;
Yao et al., 2014; Orčić et al., 2022).

The relative expression of glutaredoxin-C4 (GSH) was
significantly increased in bees exposed to 2 μg/mL chlorothalonil
(Figure 4D). Moreover, the P450 activity was slightly induced by
4 μg/mL chlorothalonil (Figure 5A). Our findings are in line with
previous statement that these antioxidant proteins can be
temporarily overproduced under low-dose pesticide stress (du
Rand et al., 2017; Pal et al., 2022). However, at 4 μg/mL
chlorothalonil, the transcript of GSH was not significantly
upregulated (Figure 4D). The result implied that the transcript
levels of GSH are not different from control, but the GSH cycle
has been broken by 4 μg/mL chlorothalonil (Qi et al., 2020).

FIGURE 4
Effect of chlorothalonil and acetamiprid on the relative expression
levels on CYP9Q2 (A), CYP9Q3 (B), GtpX1 (C) and GSH (D) genes in A.
mellifera larvae. After exposed to 1, 2 and 4 μg/mL chlorothalonil or 0.5,
1 and2 μg/mLacetamiprid for 4 days, larvaewerecollected and total
RNA was extracted. Each sample was assayed 4 times. Expression levels
were normalized to actin and then to the gene expression level of the
Solvent Control (SC). Significant differences were set at * for p < 0.05.
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Conclusion

With the wide use of synthetic organic pesticides, the fungicides and
neonicotinoids are posing potential risks to honey bees larvae. By testing

the transcriptional levels and activities of major enzymic biomarkers, the
risk of chronic exposure of acetamiprid at NOAEC to bee larvae were
acceptable. However, the exposure to chlorothalonil, even at
concentrations below the NOAEC, had potential effects on honey bee

FIGURE 5
Response of honey bee larval P450 (A), GST (B) and CarE (C) activity to chlorothalonil and acetamiprid. After exposed to 1, 2 and 4 μg/mL
chlorothalonil or 0.5, 1 and 2 μg/mL acetamiprid for 4 days, larvae were collected. Each sample was assayed 3 times. Significant differences were set at *
for p < 0.05.
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larvae. Thus, the effects of chlorothalonil at no observed adverse effect
concentration on colony fitness should be explored in the future, and
should be given due consideration for its application in crops pollinated
and visited by honey bees.
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