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Introduction: Amplitude spectrum area (AMSA) is a well-establishedmeasure than
can predict defibrillation outcome and guiding individualized resuscitation of
ventricular fibrillation (VF) patients. However, accurate AMSA can only be
calculated during cardiopulmonary resuscitation (CPR) pause due to artifacts
produced by chest compression (CC). In this study, we developed a real-time
AMSA estimation algorithm using a convolutional neural network (CNN).

Methods: Data were collected from 698 patients, and the AMSA calculated from
the uncorrupted signals served as the true value for both uncorrupted and the
adjacent corrupted signals. An architecture consisting of a 6-layer 1D CNN and 3
fully connected layers was developed for AMSA estimation. A 5-fold cross-
validation procedure was used to train, validate and optimize the algorithm. An
independent testing set comprised of simulated data, real-life CC corrupted data,
and preshock data was used to evaluate the performance.

Results: The mean absolute error, root mean square error, percentage root mean
square difference and correlation coefficient were 2.182/1.951 mVHz, 2.957/
2.574 mVHz, 22.887/28.649% and 0.804/0.888 for simulated and real-life
testing data, respectively. The area under the receiver operating characteristic
curve regarding predicting defibrillation success was 0.835, which was
comparable to that of 0.849 using the true value of the AMSA.

Conclusions: AMSA can be accurately estimated during uninterrupted CPR using
the proposed method.
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1 Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health
issue and the most common cause of death worldwide (Kiguchi et al.,
2020). Defined as a disorganized electrical activity without the presence
of distinguishable QRS complexes, ventricular fibrillation (VF) is the
most common etiology in patients suffering from OHCA. Although
patients with VF as an initial rhythmweremore likely to be successfully
resuscitated than with other rhythms, the less than 30% survival rate
remains unsatisfactory (Rajan et al., 2017). Survival from OHCA
depends on a complex system working together to secure the best
outcome, and early defibrillation with concurrent high-quality
cardiopulmonary resuscitation (CPR) is the most important life-
saving intervention for VF (Koike et al., 2011). To provide a general
treatment strategy, the latest guidelines for CPR and emergency
cardiovascular care recommend the initiation of high-quality CPR,
delivery of an electrical shock as soon as a defibrillator is available and
every 2 min thereafter if VF persists (Panchal et al., 2020).

With the deepening understanding of the physiology of cardiac
arrest and resuscitation, it is increasingly clear that not all patients in
VF benefit from being treated with the same intervention. The
development of new technologies also enables unprecedented ability
to personalize resuscitation according to the interval after onset of
the VF, the effectiveness of CPR and the consequent myocardial
metabolic state (Chalkias et al., 2019). Electrocardiogram (ECG)
waveforms, which are routinely collected by the automated external
defibrillators (AEDs), have been extensively investigated to
identifying VFs and predicting defibrillation outcomes (Bessen
et al., 2021). Based on the observation that the characteristics of
VF signals reflect the pathophysiological and metabolic status of the
fibrillating heart, a variety of measures have been developed to
characterize the underlying organization of the myocardial electrical
activity and with the ultimate goal of guiding CPR (Coult et al.,
2019). Amplitude spectrum area (AMSA), as a well-established
measure to predict defibrillation outcome, has been shown to be
correlated with coronary perfusion pressure, reflect the energy state
of the myocardium, and reveal whether myocardial perfusion is
improved (Reynolds et al., 2012). Clinical studies have confirmed
that both preshock AMSA and relative changes in the AMSA during
CPR are associated with shock success (Indik et al., 2014; Schoene
et al., 2014; Ristagno et al., 2015). Therefore, real-time monitoring of
AMSA may serve as a strategy for quality control of CPR and for
individualization of resuscitation (Babini et al., 2021).

Unfortunately, real-timemonitoring of AMSA remains unachievable
with present algorithms. Because the mechanical activity of chest
compression (CC) induces artifacts in the ECG, reliable AMSA
calculation can only be achieved during CC pauses. The life-saving
benefit of CPR will be markedly compromised if CC is repetitively
interrupted to calculateAMSAduring resuscitation efforts (Shimizu et al.,
2021). Therefore, it is a major challenge for accurate AMSA assessment
during uninterrupted CPR to complete the goal of patient specific, time-
sensitive and physiology-directed strategy of personalized resuscitation.

To perform reliable and accurate ECG waveform analysis
without interrupting CPR, a number of signal processing
solutions have been proposed to remove CC artifacts in the past
two decades (Gong et al., 2013). One solution is to suppress artifacts
using only the ECG waveform, such as the Kalman filter (Ruiz de
Gauna et al., 2008), independent component analysis (Granegger

et al., 2011), coherent line removal algorithm (Amann et al., 2010),
empirical mode decomposition (Lo et al., 2013) and condition-based
filtering algorithm (Hajeb-Mohammadalipour et al., 2021).
Although artifacts can be strongly suppressed, and the signal-to-
noise ratio (SNR) is markedly improved, the specificity for VF
detection is insignificantly improved using these methods. The
other solution is to remove the artifacts using additional CPR-
related reference waveforms, including Gabor multiplier (Werther
et al., 2009), Wiener filter (Aase et al., 2000), recursive adaptive
matching pursuit algorithm (Husøy et al., 2002), adaptive filtering
based on the least mean square (LMS) algorithm (Irusta et al., 2009;
Gong et al., 2017) and variable-frequency notch filter (Coult et al.,
2021). CPR artifacts are first modeled by a reference waveform, such
as compression depth, transthoracic impedance, and compression
force, and are subsequently subtracted from the corrupt waveform
(Ruiz de Gauna et al., 2014). Although the time-frequency variability
of the artifacts can be reconstructed to a certain extent, additional
equipment is required to obtain these references, and they are not
available in all existing AEDs.

Recently, powerful tools developed for machine learning have
been successfully applied in the field of biomedical signal processing
by end-to-end architectures of deep neural networks (Li et al., 2021).
A currently popular tool is the convolutional neural network (CNN),
which is a hierarchical neural network model with alternating
convolutional and subsampling layers, followed by a fully
connected layer that is identical to a multilayer perceptron. The
biggest advantage of CNN is that it convolves the learned features
with the input data without manually extracting features. Inspired by
the feature learning capacity of CNN for image classification, CNNs
have also been shown to be able to classify non-image time series and
waveform data. Specifically, several attempts have been made in ECG
waveform analysis, such as signal denoising (Fotiadou et al., 2020),
QRS detection (Zahid et al., 2022), heartbeat classification (Kiranyaz
et al., 2016), arrhythmia detection (Hannun et al., 2019) and
defibrillation success prediction (Ivanović et al., 2020). Although
these studies demonstrated that CNNs have a wide application
prospect in ECG waveform analysis, they focused mainly on the
problem of signal classification and/or tested on clinical ECG records
with low-level motion artifacts. Therefore, whether CNN can be used
for reliable VF signal analysis during CPR when the ECG waveform is
severely corrupted with a high level of artifacts remains unsolved.

In this paper, we propose a novel AMSA estimation algorithm
that can provide continuous guidance for personalizing CPR in
realtime during resuscitation efforts using a 1D CNN. To
accomplish this, an architecture consisting of 1D CNN blocks
and fully connected layers is used for feature extraction and
AMSA estimation. The proposed approach can estimate AMSA
from CC-corrupted VF signals without reference, thus, eliminating
the need for artifact filtering, feature extraction and postprocessing.

2 Materials

2.1 Data collection and extraction

This study was approved by the Medical Ethics Committee of
the Army Medical University (2020-002-02). Written informed
consent was waived due to the study’s retrospective nature. The
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data used in this study were recorded by defibrillators/AEDs from
728 adult patients who experienced non-traumatic OHCA and CPR
between February 2010 and December 2020. The presenting cardiac
rhythm was VF in 698 cases and asystole in 30 cases. In addition to
the ECG waveform acquired from defibrillation pads, an additional
CPR-related reference waveform was also simultaneously recorded
in this dataset. In 474 cases, ECG and compression depth waveforms
were recorded through two standard adhesive adult defibrillation/
pacing pads that integrated an accelerometer-based CPR feedback at
a sample rate of 250 Hz using ZOLL defibrillators/AEDs (E/R series
and AED pro, ZOLL Medical Corporation, Chelmsford, MA,
United States). In the other 254 cases, the ECG waveform was
recorded at a sample rate of 125 Hz and the transthoracic impedance
waveform was recorded from the same defibrillation pads at a
sample rate of 60 Hz using Physio-Control defibrillators/AEDs
(LIFEPAK series, Physio-Control, Redmond, WA, United States).
The waveforms were resampled to 250 Hz for compatibility and
analyzed using MATLAB (version R2020a, The MathWorks, Inc.,
Natick, MA, United States) software.

For each case, the cardiac rhythm and presence/absence of CCs
were annotated by two experienced medical doctors. The symbols
and acronyms used in the current study are listed in Table 1. As
shown in Figures 1, 4 types of ECG segments were extracted from
the recordings.

(1) SUVF/SCVF segment pairs: A 4-s uncorrupted VF signal without
CC followed by an adjacent 4-s corrupted VF signal with CC, or
vice versa (SCVF/SUVF pairs) (Figure 1A).

(2) SUVF/SUVF segment pairs: 2 consecutive 4-s uncorrupted VF
signals without CC (Figure 1B).

(3) Pure artifact segment SCC: a 4-s ECG signal during CC when the
underlying rhythm was asystole and without cardiac electrical
activity in 30 cases (Figure 1C).

(4) Preshock segment SPVF: a 4-s uncorrupted VF signal prior to a
defibrillation shock without CC with a presenting cardiac
rhythm of VF in the 138 cases from testing set (Figure 1D).

2.2 Dataset construction and data labeling

Two datasets (i.e., the derivation set and the testing set) were
constructed using the extracted ECG segments. The derivation set used
to develop the algorithm consisted of the SUVF/SCVF and SCVF/SUVF
pairs from 560 cases. For each segment pair, the AMSA calculated from
the uncorrupted VF signal SUVF based on fast Fourier transformation
(FFT) was labeled as the true value of both segments. The derivation set
was then used to create to a training set (448 cases) and a validation set
(112 cases) to validate and optimize the model. The testing set
(138 cases) used to evaluate the algorithm comprised 3 parts.

(1) Simulated data. The uncorrupted VF signals originated from
patients in the testing set but were extracted from different time
periods. The simulated corrupted VF signal SSVF was constructed
by randomly adding a scaled pure artifact signal SCC to one of the
uncorrupted VF signal SUVF/SUVF pairs at 4 SNR levels (3 dB,
0 dB, −3 dB and −6 dB) (Aramendi et al., 2007).

TABLE 1 symbols and acronyms used in the current study.

Symbol Acronym

SUVF 4-s uncorrupted VF signal without CC

SAVF adjacent 4-s uncorrupted VF signal of a SUVF without CC

SCVF 4-s corrupted VF signal with CC

SCC 4-s ECG signal during CC when the underlying rhythm is asystole

SSVF 4-s simulated corrupted VF signal with known AMSA and SNR

SPVF 4-s uncorrupted VF signal prior to a defibrillation shock

PUVF power of a SUVF

PCC power of a SCC

AMSA_FFT_AVF AMSA value of a SAVF calculated using FFT method

AMSA_FFT_UVF AMSA value of a SUVF calculated using FFT method

AMSA_FFT_SVF AMSA value of a SSVF calculated using FFT method

AMSA_ADF_SVF AMSA value of a SSVF calculated using ADF method

AMSA_FFT_CVF AMSA value of a SCVF calculated using FFT method

AMSA_ADF_CVF AMSA value of a SCVF calculated using ADF method

AMSA_CNN_CVF AMSA value of a SCVF calculated using CNN method

AMSA_FFT_PVF AMSA value of a SPVF calculated using FFT method

AMSA_CNN_PVF AMSA value of a SPVF calculated using CNN method

VF, ventricular fibrillation; CC, chest compression; AMSA, amplitude spectrum area; SNR, signal-to-noise ratio, FFT, fast Fourier transformation; ADF, adaptive filtering with the least mean

square algorithm; CNN, convolutional neural network.
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SSVF i( ) � SUVF i( ) +
�����������������
PUVF/PCC10 SNR/10( )

√
·SCC i( ) (1)

where PUVF is the power of SUVF and PCC is the power of SCC. For
each SSVF, the AMSA calculated from the original SUVF based on FFT
was labeled as the true value.

(2) Real-life data. Similar to the derivation set, the SUVF/SCVF and
SCVF/SUVF pairs from an additional 138 cases served as testing
data, while AMSA calculated from the adjacent SUVF based on
FFT was labeled as true value.

(3) Preshock data. The preshock VF signal SPVF with annotated
cardiac rhythm after each defibrillation shock constituted the
testing set, and the AMSA calculated by the FFT method was
labeled its true value. The FFT-based AMSA is calculated as the
sum of the products of individual frequencies and their
amplitudes converted from the time to the frequency domain
by FFT using a Tukey window (Li et al., 2013):

AMSA FFT � ∑48

2
S f( )fdf (2)

where S(f) and f are the spectrum and frequency of a signal s(n). The
lower and upper limits of f for integral summation are 2 Hz and
48 Hz, respectively.

FIGURE 1
Process and different types of ECG segment extraction. (A) 8-s VF signals including 4s with CC and adjacent 4s without CC. (B) 8-s VF signals without
CC. (C) 4-s ECG segment during CC when the underlying rhythm was asystole. (D) 4-s VF signals without CC prior to defibrillation shock.

FIGURE 2
Flowchart of this study.
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2.3 Rhythm annotation

VF was defined as a disorganized, chaotic rhythm with a median
peak-to-peak amplitude >0.1 mV, while asystole was defined as an
isoelectric ECG with a peak-to-peak amplitude <0.1 mV. A
defibrillation shock was regarded as successful when VF was
converted to an organized rhythm with a heart rate greater than
40 beats/min and sustained for a period greater than 30 s (Jin et al.,
2017).

3 Methods

The flowchart of this study is shown in Figure 2. First, the VF
signals were preprocessed, labeled and distributed to different
datasets. Second, the model was trained by the augmented
training data and optimized by the validation data. Finally, the
performance of the developed algorithm was evaluated using the
testing data and compared with traditional adaptive filtering and
FFT-based techniques. There was no crossover between subjects in
the training, validation and testing sets.

3.1 Data preprocessing

The 4-s VF signals were filtered using a second-order high-pass
filter with a cut off frequency at 0.5 Hz to remove baseline drift.
Two-channel signals were then transformed by downsampling and
differential operation to enhance the frequency change of VF and to
improve the accuracy of estimation:

Sd1 i( ) � S 2i + 1( ) − S 2i − 1( ) (3)
Sd2 i( ) � S 2i + 2( ) − S 2i( ) (4)

where S is the filtered VF signal; [Sd1; Sd2] is the reconstructed signal;
i = 1, 2, . . . , L-1; and L is the length of S.

3.2 CNN architecture

The architecture of the proposed model was adapted from the
typical 1D CNNs that have been successfully applied for ECG time
series (Hannun et al., 2019; Ivanović et al., 2020; Li et al., 2021). As
shown in Figure 3, the preprocessed signals were fed into the
N+1 blocks of the CNN feature extractor first. Each feature
extraction block was composed of 4 stages: convolution, batch
normalization (BN), leaky rectified linear unit (ReLU) activation and
pooling. The size of the convolution kernel was 1 ×W × C with a stride
of 1 and “same” padding to ensure that the output size was the same as
the input size. BN layers were added after each convolution layer to
stabilize training and fast convergence. ReLU activation was introduced
because it could speed up learning and mitigate the vanishing gradient
problem. Max-pooling was used for the first N blocks to subsample the
feature maps with a pool kernel of 1 × 2 and a stride of 2. Additionally,
global max-pooling and dropout techniques were used in the last
convolutional block to improve the generalization capability. Then,
the output of the feature extractor was flattened and fed into three fully
connected layers. Finally, an AMSA value was output using a general
regression function.

The hyperparameters including the number of channels (C,
ranging from 22 to 26 with a scale factor of 2), the size of the
convolution kernel (W, ranging from 3 to 11 with a step of 2) and the
number of layers (N, ranging from 1 to 7 with a step of 1), were
optimized by the grid search method using the training set.

3.3 Data augmentation

Considering the relatively limited sample size of the training
set, a data augmentation technique was applied to avoid
overfitting and improve the robustness and generalization
ability in training the model. Combinations of three types of
operations, including taking opposite numbers, flipping

FIGURE 3
Architecture of the proposed algorithm.
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horizontally and flipping vertically, were applied to the
reconstructed signals as follows:

Sd1; Sd2[ ]1 � −Sd1 1( ),/,−Sd1 L/2( );−Sd2 1( ),/,−Sd2 L/2( )[ ] (5)
Sd1; Sd2[ ]2 � Sd1 L/2( ),/, Sd1 1( ); Sd2 L/2( ),/, Sd2 1( )[ ] (6)
Sd1; Sd2[ ]3 � Sd2 1( ),/, Sd2 L/2( ); Sd1 1( ),/, Sd1 L/2( )[ ] (7)

Sd1; Sd2[ ]4 � −Sd1 L/2( ),/,−Sd1 1( );−Sd2 L/2( ),/,−Sd2 1( )[ ] (8)
Sd1; Sd2[ ]5 � −Sd2 1( ),/,−Sd2 L/2( );−Sd1 1( ),/,−Sd1 L/2( )[ ] (9)
Sd1; Sd2[ ]6 � Sd2 L/2( ),/, Sd2 1( ); Sd1 L/2( ),/, Sd1 1( )[ ] (10)

Sd1; Sd2[ ]7 � −Sd2 L/2( ),/,−Sd2 1( );−Sd1 L/2( ),/,−Sd1 1( )[ ] (11)

3.4 Model training

The model was developed using the derivation set with a fivefold
cross-validation method because a decreased validation sample size
may decrease the resolution of validation. In each iteration, 448 cases
(80%) were randomized to the training set, and the additional
112 cases (20%) were randomized to the validation set. The model
was trained by optimizing the mean squared error objective function
using the Adam optimizer with the default parameters and a learning
rate of 10−3. The parameters of the model were initialized randomly in
the range of [−0.1, 0.1]. Data in the training set were randomly
shuffled and divided intomini-batches with a size of 1,024 to speed up
the convergence speed. Training was performed out from scratch in
50 epochs by initializing the weights of the convolutional layers using
the Xavier normal initializer. After training the network, the entire
validation set was propagated through the network to evaluate the
performance. Overall performances were obtained by averaging the
performancemetrics recorded in each fold of the cross-validation. The

parameters of the model were finally trained using the entire
derivation set after the hyperparameters were determined.

3.5 Comparison methods

The AMSA values calculated directly from the corrupted VF
signals using the FFT-based method (AMSA_FFT) and calculated
after adaptive filtering with the LMS algorithm (AMSA_ADF) were
used to compare with the performance of the proposed method.

The cycle length of each CC was identified from the reference
waveform. The instantaneous rate of each compression was then
determined by the inverse of the compression cycle length. The
estimation of SCC is adaptively computed and subtracted from the
input signal SCVF to produce an estimated VF signal SEVF. Themodel
of CPR artifacts was:

ŜCC i( ) � ∑L
k�1

ak i( ) cos 2πkf0 n( )i/fs( )+( bk i( ) sin 2πkf0 n( )i/fs( ))
(12)

where f0 (n) is the time-varying frequency of the nth compression
calculated by the inverse of the cycle length; ak(i) and bk (i) are the
magnitudes of the sinusoidal harmonics of the filter; fs is the
sampling rate; and k is the order of harmonics. The LMS method
was applied for estimating and updating ak (i) and bk (i) using
increments proportional to the squared error and the step-size with
the criteria to minimize the error between SCVF and ŜCC (Lo et al.,
2013). The estimated VF signal was then described by follows:

SEVF i( ) � SCVF i( ) − ŜCC i( ) (13)

FIGURE 4
Performance results on simulated data. (A) Relationship and (B) difference between AMSA_FFT of adjacent VF and true value. (C) Relationship and (D)
difference between the AMSA_FFT of the corrupted VF and true value. (E) Relationship and (F) difference between AMSA_ADF of corrupted VF and true
value. (G) Relationship and (H) difference between the AMSA_CNN of the corrupted VF and true value.
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AMSA_FFT and AMSA_ADF were calculated using Equation
2 to SCVF and SEVF individually.

3.6 Performance evaluation and statistical
analysis

AMSA values estimated with the proposed method (AMSA_
CNN) were evaluated and compared with AMSA_FFT and AMSA_
ADF using the testing set. The measures used to quantify the
performance were correlation coefficient (r), mean absolute error
(MAE), root mean square error (RMSE), percentage root mean
square difference (PRD) and area under the receiver operating
characteristic curve (AUC). MAE, RMSE and PRD were
calculated using the following equations:

MAE � 1
N

∑N
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (14)

RMSE �

������������
1
N

∑N
i�1

yi − ŷi( )2√√
(15)

PRD �

����������������∑N
i�1

yi − ŷi( )2/∑N
i�1
y2
i

√√
× 100% (16)

where N is the total number of segments, and yi and ŷi are the
estimated and true values of the AMSA of segment i, respectively.

Data are reported as medians [interquartile ranges] and were
compared with the Mann-Whitney U test because they were not
normally distributed. r was investigated by Spearman correlation
analysis. The agreement of AMSA between estimated and true values
was examined by a Bland-Altman mean-difference plot. The area under
the receiver operating characteristic curve (AUC) was compared using
the Hanley and McNeil method. Two-sided p values of 0.05 were
considered statistically significant, and all analyses were conducted
with SPSS (version 22, IBM Corp, Armonk, NY, United States).

4 Results

A total of 6642 SUVF/SCVF and SCVF/SUVF segment pairs were
extracted in the derivation set. The segment pairs randomized to
training and validation sets in the five-fold validation iteration are
5,372/1,270, 5,435/1,207, 5,175/1,467, 5,260/1,382 and 5,318/
1,324, respectively. Additionally, 1,108 SSVF/SUVF segment pairs,
2,423 SUVF/SCVF or SCVF/SUVF segment pairs and 284 SPVF

segments (98 successful and 186 unsuccessful shocks) were
extracted in the testing set. The optimal hyperparameters of the
model were W = 11, N = 5, and C = 32.

4.1 Results on simulated data

The AMSA values were 11.573 [5.752] mVHz and
11.460 [5.459] mVHz (p = 0.415) for the SUVF/SUVF segment
pairs, and the MAE was 1.324 [1.292] mVHz when the AMSA
was estimated from the adjacent 4-s segment SAVF. For the simulated
segment SSVF, AMSA_FFT was significantly higher [17.337 (11.003)
mVHz, p < 0.001], AMSA_CNNwas relatively lower [10.624 (4.308)
mVHz, p < 0.001], and AMSA_ADF had no significant difference
[11.131 (6.746) mVHz, p = 0.052] compared to its true value [11.460
(5.459) mVHz].

Results base on simulated data are shown in Figure 4 and
Table 2. Compared with the true value, the AMSA calculated
from SAVF had the highest r and lowest MAE, RMSE and PRD
values. In contrast, AMSA_FFT was markedly biased in the
corrupted signals with the lowest r and highest MAE, RMSE and
PRD values due to the additive artifacts. Although both AMSA_ADF
and AMSA_CNN could efficiently mitigate the bias, AMSA_CNN
achieved better performance with higher r and lower MAE, RMSE
and PRD compared with those of AMSA_ADF.

4.2 Results on real-life data

Results based on real-life data SCVF, whose true value was
determined by the adjacent segment without CC SUVF, are listed
in Figure 5 and Table 3. Both AMSA_FFT [13.253 (10.571) mVHz,
p < 0.001] and AMSA_ADF [8.517 (7.485) mVHz, p < 0.001] were
significantly higher, while AMSA_CNN [7.013 (4.323) mVHz, p =
0.405] was comparable to the estimated AMSA true value of 7.303
(7.350) mVHz.

Consistent with the results on simulated data, AMSA_FFT was
markedly biased in corrupted signals, and the bias could not be
efficiently mitigated by AMSA_ADF, as shown by its lower r and
higher RMSE and PRD. AMSA_CNN, however, achieved better
performance than AMSA_ADF, with relatively higher r and lower
MAE, RMSE and PRD values.

The Bland-Altman plots showed a bias between the estimated
AMSA and its real values. All methods overestimated the AMSA
value during CC and the absolute error increases as the true AMSA
value increases.

TABLE 2 Performance of different AMSA estimation method using simulation data.

Method MAE (mVHz) RMSE (mVHz) PRD (%)

AMSA_FFT_SVF 7.604 [9.440] 12.119 93.797

AMSA_FFT_UVF 1.319 [1.293] * 1.839 14.288

AMSA_ADF_SVF 3.116 [3.297] * † 4.535 35.100

AMSA_CNN_SVF 2.182 [1.997] *††‡ 2.957 22.887

MAE, mean absolute error; RMSE, the root mean square error; PRD, the percentage root mean square difference. **, † and ‡: p < 0.05 compared with AMSA_FFT_SVF, AMSA_FFT_UVF, and

AMSA_ADF_SVF.
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FIGURE 5
Performance results on real-life data. (A) Relationship and (B) difference between AMSA_FFT of corrupted and adjacent uncorrupted VFs. (C)
Relationship and (D) difference between AMSA_ADF of the corrupted VF and AMSA_FFT of the adjacent uncorrupted VF. (E) Relationship and (F)
difference between the AMSA_CNN of the corrupted VF and AMSA_FFT of the adjacent uncorrupted VF.

TABLE 3 Performance of different AMSA estimation method using test data.

Method MAE (mVHz) RMSE (mVHz) PRD (%)

AMSA_FFT_CVF 9.016 [11.059] 14.267 158.778

AMSA_ADF_CVF 5.002 [8.226] * 9.626 107.123

AMSA_CNN_CVF 1.951 [1.680] * ‡ 2.574 28.649

MAE, mean absolute error; RMSE, the root mean square error; PRD, the percentage root mean square difference. * and ‡: p < 0.05 compared with AMSA_FFT_CVF, and AMSA_ADF_CVF.

FIGURE 6
Performance results of the proposed method on preshock data. (A) Relationship, (B) difference and (C) receiver operating characteristic curve
between AMSA_CNN and AMSA_FFT.
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4.3 Results on preshock data

Results based on the uncorrupted preshock data SPVF are shown
in Figure 6. The r, MAE, RMSE and PRD values between AMSA_
CCN and AMSA_FFT were 0.943, 2.047 mV Hz, 2.738 mV Hz and
25.557%, respectively. AMSA was 7.701 (6.700) mVHz for AMSA_
CCN and 6.168 (4.840) mVHz for AMSA_FFT (p < 0.001).
Although the difference between AMSA_CCN and AMSA_FFT
was relatively higher than that of the real-life data (−1.984 ±
1.882 vs. −0.181 ± 2.568, p < 0.001), the AUC for the prediction
of defibrillation success was comparable between AMSA_CCN and
AMSA_FFT (0.835 vs. 0.849, p = 0.120).

4.4 Example of AMSAmonitoring during CPR

Figure 7 shows an example of continuous AMSAmonitoring with
a time interval of 0.5 s during CPR using the proposedmethod. In this
case, CCwas initiated at 12-s and 120-s in the recording and lasted for
66 s and 20 s, respectively. An interruption of 42 s was observed
between two rounds of CC. AMSA_FFTwas overestimated during CC
and returned to normal when CC was interrupted. However, AMSA_
CNN was sustained in a relatively stable state during both interrupted
and uninterrupted CCs. Therefore, the effectiveness of CC therefore
can be monitored by the absolute AMSA value and its relative change
during CPR. In this example, AMSAwas increased from 4.861 mVHz

FIGURE 7
Example of continuous AMSA monitoring during CPR. (A) ECG waveform. (B) CPR reference signal. (C) AMSA_FFT and AMSA_CNN values.

TABLE 4 Reported performance for assessment of Ventricular fibrillation prognosis in literatures.

Study Method Dataset Achieved performance

Coult et al.
(2019)

VF waveform was filtered using a bandpass filter
of 1–30 Hz

Real-life data from 1,151 cardiac arrest patients AUCwas 0.75 without chest compression, and was
0.72 with chest compression

Lo et al. (2013) CPR artifacts were removed using empirical mode
decomposition and least square mean based

adaptive filter

Simulated data from 150 VF and asystole patients
with SNR of −9, −6, −3 and 0 dB

The limits of agreements were −1.11 to
1.49, −1.62 to 2.74, −1.64 to 4.36 and −3.11 to
9.77 for different levels of SNR. The AUC was

0.642 for original VF.

Coult et al.
(2021)

CPR artifacts were filtered with variable-
frequency notch filter. Ten ECG features and
three dichotomous patient characteristics were
combined usingsupport vector machines and

logistic regression to predict outcome

Pre-shock data from 1,151 cardiac arrest patients AUC for predicting defibrillation success was
0.74 during CPR and 0.77 without CPR. AUC for
predicting functional survival was 0.75 during

CPR and 0.76 without CPR.

Zuo et al.
(2021)

CPR artifacts were filtered with a signal quality
index and least mean square filter based adaptive

filter

Pre-shock data from 512 cardiac arrest patients AUC was 0.734 without chest compression, and
was 0.713 with chest compression

Coult et al.
(2022)

CPR artifacts were filtered with variable-
frequency notch filter. Ten ECG features and
three dichotomous patient characteristics were
combined usingsupport vector machines and

logistic regression to predict outcome

Real-life data from 434 cardiac arrest patients AUC between 0.73–0.75 during resuscitation
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to 11.983 mVHz during the first round CC but decreased to
5.109 mVHz after the interruption and improved to
10.312 mVHz after the second round of CC.

5 Discussion

Given the importance of continuous AMSA evaluation during
uninterrupted CPR for quality control and personalized
defibrillation, this study introduces a solution for reliable AMSA
estimation from VF signals using the 1D CNN model. Compared
with the traditional AMSA calculation method combining adaptive
filtering and FFT techniques, the proposed algorithm can reliably
estimate AMSA from VF signals. Also, the proposed method is
validated to preserve the predictive performance of defibrillation
success.

Analyzing ECGwaveforms during uninterrupted CPR remains a
major challenge because signals are always contain artifacts. An
earlier study indicated that CC-produced artifacts are an additive
noise predominantly generated from electrode motion and thoracic
muscle contraction (Fitzgibbon et al., 2002). When the underlying
cardiac rhythm of a patient is asystole, the ECG waveform recorded
during CPR can be regarded as pure artifacts produced by CC (Gong
et al., 2013). In the time domain, the artifact features a relatively high
amplitude and an nearly periodic waveform. In the frequency
domain, the energy content is concentrated around the
harmonics of the fundamental frequency being that of the CC
with a bandwidth of approximately 0-20 Hz. Because the energy
of VF signals lies in the frequency band of 0-18 Hz and completely
overlaps with the artifacts, calculating AMSA directly from the
corrupted VF signal will lead to an overestimation of its value
(Coult et al., 2019). Using the reference waveform recorded from
an additional channel independent of the ECG waveform but related
to CPR artifacts, the artifacts can be modeled and suppressed by
adaptive filters (Irusta et al., 2009; Ruiz de Gauna et al., 2014; Gong
et al., 2017). However, the accuracy of shockable rhythm
classification is still lower than that used for uncorrupted ECG
waveforms. The primary reason for this result is that the artifacts are
variable, and their characteristics depend on how the CC is
administered and on the characteristics of the patient and the
recording system (Ruiz de Gauna et al., 2014).

Recently, strategies have shifted from suppressing artifacts to
mining hidden features with existing deep neural networks.
Research was first performed in the ECG waveform without
CPR. Picon et al. (2019) introduced an approach that combines a
2-layer CNN and a long short-term memory (LSTM) network for
the detection of VF. Krasteva et al. (2020) demonstrated that the
optimal hyperparameters of CNN with five convolutional blocks, a
filter number between 5 and 20, and a kernel size of 10 resulted in
maximum validation performance for the detection of shockable
rhythm. Panda et al. (2020) used the first five decomposed subband
signals, while Sabut et al. (2021) used a feature set of 24 time-
frequency-based parameters of ECG waveforms as the input of CNN
for shockable rhythm detection. Additionally, Ivanović et al. (2020)
proposed a 3-stage CNN feature extractor model to predict
defibrillation success. Using the raw 4 s VF signals immediately
prior to the first shock in 260 adult patients, the strategy was
demonstrated to be capable of learning useful representations for

defibrillation outcome. These studies revealed that CNN approaches
have equivalent or superior performance to classical feature
extraction based machine learning algorithms and have the
potential to be used in AEDs. Then, studies focused on rhythm
analysis for the CC-corrupted ECG waveforms. Isasi et al. (2020)
designed an algorithm to classify shockable rhythms using filtered
ECG as the input of a CNN that contained 3 convolution blocks and
2 fully connected layers. Hajeb-M et al. (2021) designed a CNN
model comprised of convolutional layers, residual networks, and
bidirectional LSTM using 2-dimensional images that combined the
ECG waveform with the amplitude and phase information derived
from the short-time Fourier transform as input. Jekova and Krasteva
(2021) showed that the optimal architecture of a deep CNN with the
best performance for shockable rhythm analysis during CPR was
with three convolutional layers when the raw ECG waveform was
used. Although the datasets and validation methods of these studies
were considerably different, their results unanimously confirmed
that CNN can be used for reliable rhythm analysis during CPR.

In this study, we proposed an algorithm to estimate AMSA and
guide CPR continuously during resuscitation effort using a 1DCNN.
Instead of suppressing the CC-related artifacts and computing
AMSA from the frequency domain, we implemented an end-to-
end architecture of CNN, applying differentiated VF at the input and
obtaining a continuous variable AMSA at the output, without
determining the presence of CC with additional sensors. The
architecture design and a high-quality database are the two
primary determinants of the performance of CNN based
methods. In this study, an architecture consisting of a 6-layer 1D
CNN and three fully connected layers was developed based on
previous studies concerning ECG waveform denoising, VF detection
and defibrillation success prediction using CNN. Each block was
composed of convolution, ReLU activation, dropout and max-
pooling. Considering that the output result is a continuous
variable rather than a classified variable, the classifier was
composed of three fully connected perceptrons. The optimized
hyperparameters of the model were similar to the results
reported in previous studies, which further confirmed the
robustness of the CNN network for VF signal feature extraction
(Picon et al., 2019; Isasi et al., 2020; Krasteva et al., 2020; Panda et al.,
2020; Hajeb-M et al., 2021; Jekova and Krasteva, 2021; Sabut et al.,
2021). Conversely, the model must be trained by a representative
and accurately labeled database with a sufficient sample size. Because
it is impossible to have the underlying clean VF signals during CPR,
prior efforts used simulated data that were constructed by randomly
adding different scaled pure CC artifacts to the uncorrupted VF
signals (Lo et al., 2013). Considering that VF is a quasi stationary
signal, we used the adjacent uncorrupted signals as surrogate data of
the corrupted VF to calculate AMSA. The simulated data indicated
that the AMSA values between the uncorrupted segment pairs were
highly correlated and that the AMSA value calculated from the
uncorrupted VF could be used as the true value of the adjacent
corrupted VF. The real-life dataset of corrupted/uncorrupted
segment pairs was used to train the model due to the
heterogeneity of CPR artifacts in real-life data and homogeneity
of CPR artifacts in simulated data. As shown in Table 4, the
performance of the proposed method is demonstrated to be
superior to that of the traditional AMSA calculation method
using simulated data and independent real-life CPR data (Zuo
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et al., 2021; Coult et al., 2022). Experimental results demonstrated
the excellent feature extraction capability to exploit all information
reflecting the energy state of the myocardium hidden in the VF
signal. To our knowledge, this is the first study that uses a deep
neural network model to calculate AMSA during uninterrupted
CPR. This study indicated that the paradigm shift represented by
end-to-end deep learningmay enable a new approach tomonitor the
effectiveness of CC and predict defibrillation success during CPR
using VF signals alone.

There are several limitations/drawbacks that must be addressed
regarding the current study. First, the dataset used to train the model
was not uniformly distributed. As the samples with low AMSA values
were much more abundant than those with high AMSA values of the
real-life patient data, it is still unknown whether the overall
performance of the proposed method will be improved and bias in
the Bland-Altman plots will be decreased if a sufficiently large
uniformly distributed dataset is available. Second, although the
proposed method can provide continuous information about the
dynamic changes in the AMSA during CPR, the VF features in
their hidden layers were extracted blindly without a comprehensive
explanation of the mechanism for future clinical application. Third,
the model was established based on CC-corrupted VF signals using
the least mean square method, so for the uncorrupted VF signals, such
as segments during CC pauses and prior to shock delivery, the AMSA
values would be underestimated. Four, the algorithm is designed toVF
waveform analysis; thus, it cannot be used without the help of a
reliable shockable rhythm detection algorithm. Although several
algorithms have been demonstrated to correctly classify shockable
rhythms during CPR using CNN, the performance of combining the
current algorithm with those shockable rhythm detection algorithms
also must be validated in future studies.

6 Conclusion

This study introduces a 1D CNN based continuous AMSA
estimation approach, which is promising for reliable AMSA
estimation during uninterrupted CPR using solely the ECG
waveform. Experimental results indicate that this method performs
better than traditional adaptive filtering and FFT-based techniques.
Combined with the shockable rhythm detection algorithms during
CC, the algorithm has the potential to be incorporated into current
versions of AEDs, and personalized CPR can be implemented by real-
time monitoring of the effectiveness of CC and predicting the
probability of defibrillation success.
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