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Asthma affects an estimated 262 million people worldwide and caused over
461,000 deaths in 2019. The disease is characterized by chronic airway
inflammation, reversible bronchoconstriction, and airway remodeling.
Longitudinal studies have shown that current treatments for asthma (inhaled
bronchodilators and corticosteroids) can reduce the frequency of exacerbations,
but do not modify disease outcomes over time. Further, longitudinal studies in
children to adulthood have shown that these treatments do not improve asthma
severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is
caused by remodeling of the airway wall, but such airway remodeling also
significantly contributes to airway closure during bronchoconstriction in acute
asthmatic episodes. The goal of the current review is to understand what is
known about the heterogeneity of airway remodeling in asthma and how this
contributes to the disease process. We provide an overview of the existing
knowledge on airway remodeling features observed in asthma, including loss of
epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both
the airways and vessels, angiogenesis, and increased smooth muscle mass. While
such studies have provided extensive knowledge on different aspects of airway
remodeling, they have relied on biopsy sampling or pathological assessment of lungs
from fatal asthma patients, which have limitations for understanding airway
heterogeneity and the entire asthma syndrome. To further understand the
heterogeneity of airway remodeling in asthma, we highlight the potential of in
vivo imaging tools such as computed tomography and magnetic resonance
imaging. Such volumetric imaging tools provide the opportunity to assess the
heterogeneity of airway remodeling within the whole lung and have led to the
novel identification of heterogenous gas trapping and mucus plugging as important
predictors of patient outcomes. Lastly, we summarize the current knowledge of
modification of airway remodeling with available asthma therapeutics to highlight
the need for future studies that use in vivo imaging tools to assess airway remodeling
outcomes.
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Introduction

Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths
in 2019 (Vos et al., 2020). The disease is characterized by chronic airway inflammation,
bronchial hyperresponsiveness (which form the targets of all pharmacological asthma
therapeutics), and airway remodeling which involves all tissues of the airway wall (Holgate,
2008). Longitudinal studies have shown that current treatments for asthma (inhaled

OPEN ACCESS

EDITED BY

Giuseppe Guida,
University of Turin, Italy

REVIEWED BY

Thomas Trian,
Université de Bordeaux, France
Christopher D. Pascoe,
University of Manitoba, Canada

*CORRESPONDENCE

Tillie-Louise Hackett,
tillie.hackett@hli.ubc.ca

SPECIALTY SECTION

This article was submitted to Respiratory
Physiology and Pathophysiology,
a section of the journal
Frontiers in Physiology

RECEIVED 01 December 2022
ACCEPTED 05 January 2023
PUBLISHED 19 January 2023

CITATION

Hsieh A, Assadinia N and Hackett T-L
(2023), Airway remodeling heterogeneity
in asthma and its relationship to
disease outcomes.
Front. Physiol. 14:1113100.
doi: 10.3389/fphys.2023.1113100

COPYRIGHT

© 2023 Hsieh, Assadinia and Hackett. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 19 January 2023
DOI 10.3389/fphys.2023.1113100

https://www.frontiersin.org/articles/10.3389/fphys.2023.1113100/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1113100/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1113100/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1113100&domain=pdf&date_stamp=2023-01-19
mailto:tillie.hackett@hli.ubc.ca
mailto:tillie.hackett@hli.ubc.ca
https://doi.org/10.3389/fphys.2023.1113100
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1113100


bronchodilators and corticosteroids) can reduce the frequency of
exacerbations, but do not modify disease outcomes over time
(Phelan et al., 2002; Sears et al., 2003). While patients can take
precautions to avoid asthma-trigger exposure, inevitably 75% of
patients report having asthma flare-ups and up to 45% regularly
have a hard time breathing with day-to-day activities (The Lung
Association, 2016). In this review, we emphasize the importance of
studying the structural changes that occur with airway remodeling in
asthma and how they relate to disease outcomes. We examine new
evidence that has been generated using current ex vivo and in vivo
imaging techniques to understand how heterogeneous airway
remodeling influences airway closure and patient outcomes. Lastly,
we review current therapeutics and their effect on features of airway
remodeling.

Asthma phenotypes

To further understand asthma pathology, the field has focused on
clinical asthma phenotypes which have been generated from
recognizable clusters of demographic, clinical, or pathophysiological
characteristics of patients with asthma. Some of the most common
asthma phenotypes are early-onset or late-onset allergic asthma, non-
allergic asthma, smoking-related, obesity-related, or aspirin-exacerbated
respiratory disease (AERD) (Kuruvilla et al., 2019). Most recently with
immune profiling, the following Th2-high and Th2-low asthma
endotypes have also been proposed. Within the Th2-high asthma
endotype, there is higher airway eosinophilia, which is a good
predictor of the patient’s responsiveness to inhaled corticosteroids
(ten Brinke et al., 2004). Although it is clear that there is a strong
relationship between Th2 cytokine levels, eosinophilic inflammation
and asthma, the inflammatory response of the asthmatic individual is
heterogeneous and not all individuals with asthma have eosinophilic
inflammation. More recently, a systematic review showed that
approximately 50% of asthma cases are Th2-low asthma, driven by
Th1 and Th17 cells and neutrophilic inflammation (Douwes et al., 2002;
Vock et al., 2010; Kuruvilla et al., 2019). Th2-low asthma is less sensitive
or resistant to corticosteroid treatment due to the dysregulation of
glucocorticoid receptors (Raundhal et al., 2015; Banuelos et al., 2017;
Ramakrishnan et al., 2019; Al Heialy et al., 2020; Hong et al., 2022).

To date, endotyping the inflammatory profile within a patient with
asthma has been important clinically to understand which patients will
be the most likely to respond to inhaled corticosteroids or who will
benefit from the treatment with biologics. However, independent of
the asthma phenotype or endotype, the underlying pathologies of
asthma are chronic inflammation, reversible bronchoconstriction, and
airway remodeling. In asthma, airway remodeling of the conducting
airway walls results in fixed airflow obstruction, but airway remodeling
also significantly contributes to airway closure during
bronchoconstriction during an acute asthmatic episode (Kuwano
et al., 1993). Several longitudinal studies that have followed
children to adulthood have shown that with increasing severity of
the disease, fixed airflow obstruction is a persistent feature of the
disease (Strachan et al., 1996; Phelan et al., 2002; Sears et al., 2003).
Further, despite the use of inhaled corticosteroids and
bronchodilators, it has been shown longitudinally that there is no
improvement in fixed airflow obstruction over time if present in
childhood (Strachan et al., 1996; Phelan et al., 2002; Sears et al.,
2003). Thus, the goal of the current review is to understand what is

known about the heterogeneity of airway remodeling in asthma and
how this contributes to the disease process.

Airway remodeling

Airway remodeling was first described in cases of fatal asthma by
Huber and Koessler (1922). Airway remodeling in asthma refers to the
structural changes that occur in both the large and small conducting
airways and include loss of epithelial integrity, goblet cell and
submucosal gland enlargement, basement membrane thickening,
subepithelial fibrosis, increased smooth muscle mass, angiogenesis,
and decreased cartilage integrity as highlighted in Figure 1 (Huber and
Koessler, 1922; Haraguchi et al., 1999; Noble et al., 2002). Since then,
features of airway remodeling have been documented for all stages of
asthma severity and have been linked to reduced lung function, airway
hyperresponsiveness, and the greater use of asthma medications
(Holgate, 2008; Mostaço-Guidolin et al., 2019; Osei et al., 2020).
The vast majority of what we understand about airway remodeling
in asthma is derived from cross-sectional biopsy studies of the large
conducting airways or post-mortem pathology on adult fatal
asthmatics (Laitinen et al., 1985; Li and Wilson, 1997; Wilson and
Li, 1997; Barbato et al., 2003; Payne et al., 2003; Tsartsali et al., 2011). It
was previously proposed that chronic Th2 inflammation leads to a
chronic cycle of injury resulting in airway remodeling over the lifetime
of an individual with asthma (Mosmann et al., 1986; Le Gros et al.,
1990; Metcalfe et al., 1997). However, recent studies have now shown
that airway remodeling is not present at birth (Tsartsali et al., 2011),
but features of remodeling are present by the age of 2–4 years of life,
often before atopic inflammation is observed or a clinical diagnosis of
asthma is made (Dunnill, 1960; Roche et al., 1989). Further, a
systematic review of 39 studies examining the relationship between
inflammation and airway remodeling concluded “Failure to
demonstrate eosinophilic inflammation in children in the absence
of airway remodeling is contrary to the hypothesis that inflammation
causes these changes” (Castro-Rodriguez et al., 2018). Lastly, assuming
airway remodeling is not reversible as is seen in rodent models, one
would assume that airway remodeling would increase over time with
persistent inflammation. However, Broekema et al. demonstrated in a
large cohort of adult asthmatics with active asthma or a history of
asthma, that independent of asthma status and medication use, the
extent of airway remodeling and fixed airflow obstruction did not
change over a 3-year time period (Broekema et al., 2011). Thus, the
hypothesis that airway remodeling occurs over the lifetime of an
asthmatic individual into adulthood in response to inflammation does
not appear to be true. With that in mind, below we review the current
knowledge of each airway remodeling feature associated with asthma.

Extracellular matrix remodeling
Abnormal thickening of the reticular basement membrane with

increased deposition of extracellular matrix (ECM) proteins,
fibronectin, collagen types I, III, and V, hyaluronan, laminin α2/
β2, tenascin, and versican within the lamina reticularis is one of the
hallmarks of airway remodeling in asthma and has been observed
in both children and adults with mild to severe and fatal asthma in
several histological studies (Roberts, 1995; Laitinen et al., 1997;
Elias et al., 1999; Zeiger et al., 1999; Boulet et al., 2000; James et al.,
2012a; Burgess et al., 2016). Several clinical studies have
demonstrated that structural changes associated with reticular
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basement membrane thickening, correlate with airway
hyperresponsiveness, suggesting abnormal ECM deposition is a
fundamental abnormality involved in the pathogenesis of asthma
(Ward et al., 2002; Tsurikisawa et al., 2010). More recently,
Mostaço-Guidolin et al., using an automated unbiased approach
involving the combination of colour segmentation to isolate airway
wall features and then uniformly measuring the thickness
distribution of each structure using Euclidean Distance
Mapping, highlighted that not only is the reticular basement
membrane thickened but, that there is greater variance or
heterogeneity in the thickening of the reticular basement
membrane (Mostaco-Guidolin et al., 2017). Specifically, the
study highlighted the heterogeneity of reticular basement
membrane remodeling both within a single airway wall and
between patients, demonstrating airway remodeling is a
dynamic process occurring at different levels or rates with any
given airway within the lung (Mostaco-Guidolin et al., 2017). The
study further showed that the basement membrane thickening and
its heterogeneity in variance were not different between fatal and
non-fatal asthmatics, irrespective of age and biological sex.

Increased deposition of collagen I, collagen III, and fibronectin
have also been demonstrated in the lamina propria of patients with
asthma (Roberts, 1995). Fibroblasts are the primary producer of ECM
within the lung, and an increase in myofibroblast number within the
lamina propria of conducting airways has been reported in asthmatic
patients (Carroll et al., 2000; Boser et al., 2017). Myofibroblasts are
ECM synthetic cells and have been suggested to be the cause of
increased collagen I, collagen III, and fibronectin within the
conducting airways of patients with asthma (James, 2005; Michalik
et al., 2018). More recently, using second harmonic imaging, Mostaço-
Guidolin et al. showed that the fibrillar collagen deposited within the
lamina propria is not only overproduced but is highly disorganized
and fragmented in both the large and small conducting airways in
children and adults with asthma (Mostaço-Guidolin et al., 2019). The
same study also showed that airway fibroblasts from asthmatic
patients are defective at producing decorin, an important
proteoglycan involved in collagen formation (Mostaço-Guidolin
et al., 2019). As fragmented defective collagen can induce
myofibroblast formation and stimulate increased ECM synthesis, it
has been proposed that the lack of decorin production and
disorganized fibrillar collagen formation may induce a feedback
loop where fibroblasts are continually stimulated to produce more
collagen resulting in a higher level of disorganized collagen and airway
remodeling (Mostaço-Guidolin et al., 2019; Snelgrove and Patel,
2019).

Lastly, respiratory viruses may also play a role in increased ECM
remodeling in asthma. Rhinovirus (RV) infection of airway smooth
muscle cells increases the deposition of ECM proteins fibronectin,
perlecan, and collagen IV (Kuo et al., 2011). Further, RV-induced
ECM production also induced greater migration rates of airway
smooth muscle on the ECM, suggesting that respiratory viruses can
induce increased ECM deposition and increased airway smooth
muscle mass from increased cell migration.

In summary, basement membrane thickening is an early and
universal feature of airway wall remodeling in asthma. It has been
proposed that basement membrane thickening may lead to loss of
epithelial-fibroblast cross-talk leading to subepithelial fibrosis. Indeed
Osei et al. have shown that epithelial-derived interleukin (IL)-1α is an
important mediator in epithelial-fibroblast cross-talk and reduces

inflammatory cytokine release and ECM production in healthy
lung-derived fibroblasts (Osei et al., 2020). Whether the diffusion
and activation of epithelial-derived factors such as IL-1α are altered
due to ECM accumulation within the basement membrane in the
asthmatic lung is still to be determined.

Airway epithelial remodeling
There is now strong evidence within the literature that impairment

of epithelial barrier function in asthma is a key player in the disease
pathogenesis through the initiation of airway inflammation and
remodeling via the release of alarmins (e.g., TSLP, IL-25 and IL-33
expression) (Borish and Steinke, 2011; West et al., 2012; Paplińska-
Goryca et al., 2018; Chan et al., 2019). Indeed gene variants in TSLP
and IL33 are associated with increased expression of these epithelial
alarmins (Gudbjartsson et al., 2009; He et al., 2009; Ferreira et al., 2011;
Harada et al., 2011; Li et al., 2015; Shrine et al., 2019), and ex vivo
studies have demonstrated higher expression levels of TSLP and IL-33
in airway epithelial cells derived from asthma patients cultured at air-
liquid-interface (ALI) compared to healthy controls (Hackett et al.,
2013). In response to environmental insults such as respiratory
syncytial virus (RSV), particulate matter (PM) 10, or mechanical
wounding, the airway epithelium of asthmatic patients has also
been shown to be more sensitive compared to healthy controls,
releasing greater levels of inflammatory cytokines including IL-6,
IL-8 and granulocyte-macrophage colony-stimulating factor (GM-
CSF), which are also known to be airway smooth muscle mitogens
(Johnson et al., 2004; Hackett et al., 2011). Whereas, in response to
rhinovirus infection, the bronchial epithelium of asthmatic patients
has been shown to have a deficient innate immune response including
decreased interferon-β expression, impaired apoptosis, and increased
virus replication (Wark et al., 2005).

In situ studies have also revealed many structural changes within
the airway epithelium of asthmatic patients, including disruption of
tight junctions and adherens junctions, detachment of ciliated cells,
increased numbers of goblet cells, basal cells (CK5+/p63+), and side
population progenitor cells (Hackett and Knight, 2007; de Boer et al.,
2008; Hackett et al., 2008; Knight et al., 2011; Xiao et al., 2011). In line
with these findings, functional studies of airway epithelial cells derived
from children and adults with asthma cultured at ALI have also
demonstrated decreased expression of tight junction (increased
permeability) and adherens junction molecules (e.g., E-cadherin,
caveolin-1), and increased numbers of basal cells (Hackett et al.,
2009; Hackett et al., 2011; Xiao et al., 2011). It has been shown
that infections with respiratory viruses, such as RSV, disrupt
epithelial tight junctions by activation of protein kinase D (Rezaee
et al., 2013). Studies focused on RV infection have shown infection
causes loss of tight junctions (ZO-1) in ALI-cultured airway epithelial
cells from asthmatic children, which is more pronounced and
sustained compared to airway epithelial cells from children with no
asthma (Looi et al., 2016; Looi et al., 2018). A reduction in occludin
expression in an NADPH-oxidase-dependent manner has also been
implicated in RV infection, inducing barrier dysfunction (Comstock
et al., 2011). In addition, RV infection in asthmatic subjects leads to
less mitochondrial respiration compared to healthy control subjects,
indicating that patients with asthma may have a less efficient immune
response to virus infection (Huang et al., 2022). Disruption of airway
epithelial barrier function in asthma is further supported by several
genome-wide association studies (GWAS) that have found asthma risk
genes and genetic loci associated with asthma (Cookson, 2004;
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Moheimani et al., 2016) that are involved in cell adhesion and airway
epithelial barrier function such as PCDH1 (protocadherin-1)
(Koppelman et al., 2009), ORMDL3 (orosomucoid-like 3) (Moffatt
et al., 2007; Moffatt, 2008; Moffatt et al., 2010), DPP10 (dipeptidyl
peptidase 10) (Allen et al., 2003), GPRA (G protein-coupled receptor
for asthma susceptibility) (Laitinen et al., 2004) and CDHR3
(cadherin-related family member 3) (Bønnelykke et al., 2014;
Basnet et al., 2019). CDHR3, which has been shown to be involved
in cell adhesion and polarity, is the receptor for rhinovirus C, thus
variants of this gene can modulate the susceptibility to infection
(Bønnelykke et al., 2014; Li et al., 2015; Basnet et al., 2019).
Although the mechanisms contributing to the loss of airway
epithelial barrier function in asthma have not been fully elucidated,
the thickening of the epithelium with increased numbers of basal cells
may be a remodeling mechanism to support the attachment of the
airway epithelium. This is supported by the early work of Evans and
Plopper, who demonstrated that the reticular basement membrane is
essential for anchoring the basal epithelial cells via hemidesmosomes
and that within the conducting airways the height of the reticular
basement membrane directly correlates with the height of the airway
epithelium and number of basal cells (Evans and Plopper, 1988;
Tsartsali et al., 2011). It is therefore not surprising that when
measuring the thickness of the reticular basement membrane in
asthma, Mostaço-Guidolin et al. showed that airway epithelial
thickness directly correlates with reticular basement membrane
thickness and that the two show great intra- and inter-subject
heterogeneity (Mostaco-Guidolin et al., 2017).

Goblet cell hyperplasia (increased number of cells), metaplasia
(change in cell phenotype) and mucus accumulation have been
consistently reported in the conducting airways of patients with
mild, moderate, severe, and fatal asthma (Kuyper et al., 2003;
Wenzel et al., 2012; Malmström et al., 2017; Trejo Bittar et al.,
2017; Elliot et al., 2018). In the epithelium of asthmatic patients,
goblet cell metaplasia is the main contributor to increased numbers of
goblet cells in the small airways rather than goblet cell hyperplasia
(Curran and Cohn, 2010). Though there are many proposed
mechanisms of goblet cell metaplasia, the main suggested
mechanism is through trans-differentiation of club and ciliated
cells into goblet cells, rather than the proliferation of pre-existing
goblet cells (Lambrecht and Hammad, 2012). The second mechanism
is through increased expression of inflammatory mediators which
initiate goblet cell metaplasia (Curran and Cohn, 2010). Specifically,
epidermal growth factor receptor (EGFR) and IL-13 induce both club
and ciliated cells to transition into goblet cells through the
transcription factors FoxA2, TTF-1, SPDEF, and GABAAR
(deFelice et al., 2003; Whiting, 2003; Wan et al., 2004; Park et al.,
2007; Xiang et al., 2007). It has also been proposed that goblet cell
hyperplasia, metaplasia, and subsequent mucus over-production may
result through epithelial compression during bronchoconstriction and
airway hyperresponsiveness (Grainge et al., 2011).

Mucins secreted by goblet cells in the airway epithelium and
submucosal glands are important for maintaining lung homeostasis by
trapping particulate matter and pathogens, which are then removed
from the lung via mucociliary clearance (Symmes et al., 2018). The
primary mucins in the human airways are MUC5B and MUC5AC
which are secreted throughout the small and large conducting airways,
with MUC5B being the dominant secretory mucin in the healthy lung
(Okuda et al., 2019). Increased MUC5AC expression has been
observed by a number of asthma studies and mucus plugs have

been shown to contribute to airflow obstruction in the conducting
airways (Bonser and Erle, 2017).MUC5AC andMUC5B gene variants
are also predicted to cause increased mucin production in asthma
(Rousseau et al., 2007; Shrine et al., 2019). It has been hypothesized
that the alterations in mucus composition and organization through
changes in mucin gene expression as well as an increase in the number
of goblet cells, can result in impaired mucus expectoration due to
MUC5AC tethering and increased gel viscoelasticity (Bonser and Erle,
2017).

In summary, these studies have demonstrated that genetic defects
or variations within the airway epithelium can cause, drive, or worsen
asthma, leading to a defective epithelial barrier that can drive the
disease process in response to interactions with the inhaled
environment.

Angiogenesis
In 1960, Dunnill et al. first reported on bronchial artery dilation in

lung tissue from 20 fatal asthmatic patients (Dunnill, 1960). Since
then, it has been documented that an increased density of the
bronchial vasculature (Vrugt et al., 2000; Wilson and Robertson,
2002; Tanaka et al., 2003; Barbato et al., 2006) leads to increased
blood flow in both patients with asthma and animal models of the
disease (Wanner et al., 1990; Csete et al., 1991; Kumar et al., 1998;
Mendes et al., 2004), which further correlates with airflow limitation
(Li and Wilson, 1997; Orsida et al., 1999; Vrugt et al., 2000), bronchial
hyperresponsiveness (Orsida et al., 1999; Kanazawa et al., 2002a;
Kanazawa et al., 2002b), and asthma severity (Hoshino et al.,
2001a; Hashimoto et al., 2005; Chetta et al., 2007; Grigoraş et al.,
2012). It has been proposed that the increased bronchial arterial
angiogenesis in the airways of patients with asthma may promote
the extravasation of inflammatory cells, the release of inflammatory
mediators, and abnormal cell growth and proliferation leading to
asthma pathology. More recently, the distal pulmonary arteries and
veins of pediatric and adult asthma patients have also been shown to
be remodeled with thickened walls resulting from increased deposition
of disorganized, fragmented, and thicker collagen fibers, in
comparison with control lungs (Mostaço-Guidolin et al., 2021).
These data highlight that remodeling of the pulmonary vasculature
occurs throughout the lung in asthma and is not restricted to the
conducting airways which are the primary site of airway
hyperresponsiveness and bronchoconstriction. Further, the
deposition of disorganized and fragmented collagen fibers is a key
feature of lung remodeling that occurs early in life, regardless of sex or
disease severity to both the wall of conducting airways and the
pulmonary vasculature.

In summary, future work is needed to understand the role of
pulmonary vasculature remodeling in asthma and if it is a driver of the
disease process or consequence.

Airway smooth muscle mass
Airway smooth muscle (ASM) hyperresponsiveness is a key

feature of acute airflow limitation in asthma and its mechanisms of
contraction and relaxation have been a subject of great investigation
(Doeing and Solway, 2013; Wang et al., 2020). Increased ASM mass is
a hallmark feature of airway wall remodeling in asthma which
contributes to the narrowing of the airways and amplifies the effect
of smoothmuscle shortening (James et al., 1989). In 1993, Carroll et al.
showed that the thickness of the ASM layer is increased in both large
and small airways in patients with asthma, and there is more ASM
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mass with increasing disease severity (Carroll et al., 1993). In asthma,
expansion of the ASM layer occurs through ASM cell hypertrophy
(increased cell size), and hyperplasia (increased cell number) (Ebina
et al., 1993; Araujo et al., 2008; James et al., 2012b). It has been
proposed that hypertrophy and hyperplasia may be induced by the
activation of elevated cytokines in the asthmatic lung, including TGF-
β1, EGF, platelet-derived growth factor (PDGF) (Hirst et al., 1996;
Panettieri et al., 1996; Cohen et al., 2000; Chen and Khalil, 2006).
Additionally, ASM cells derived from asthmatic patients in vitro have
been shown to have a significantly higher rate of proliferation
compared to ASM cells derived from healthy individuals, which
was shown to occur due to the dysregulation of C/EBPα, a
transcription factor responsible for inhibition of proliferation
through the glucocorticoid receptor (Johnson et al., 2001; Roth
et al., 2004). Further, ASM cells from asthmatic patients have
increased mitochondrial biogenesis and increased fatty acid
consumption, which is thought to drive increased ASM cell
proliferation in asthma (Esteves et al., 2021). These changes in
ASM mass lead to mechanical changes in the cells ability to relax,
contract, and lengthen, which play important roles in luminal
narrowing and airflow restriction (Seow et al., 1998; Doeing and
Solway, 2013). Lambert and Wiggs established that ASM
contraction and consequently, airway narrowing can result in
airway mucosal folding (Lambert, 1991; Lambert et al., 1994;
Wiggs et al., 1997). This not only provides significant airway
stiffness but also significant load against the ASM contraction,
particularly in conjunction with the thickening of the airway wall
and alterations in ECM deposition (Lambert, 1991; Lambert et al.,
1994; Wiggs et al., 1997). During inspiration, radial tethering of the
alveolar walls stretches the conducting airways and vessels open.
However, in asthma, increased ASM mass causes the ASM to
shorten excessively against the elastic loads provided by the lung
parenchyma, parallel airways and vessels, and thus results in mucosal
folding (Seow et al., 1998). Johnson et al. showed that when human
airway epithelial cells are mechanically compressed, mimicking
bronchoconstriction, this results in the secretion of ASM cell
mitogens which include IL-6, IL-8, monocyte chemoattractant
protein-1, and matrix metalloproteinase (MMP)-9 (Johnson et al.,
2004). The deformed epithelium also released endothelin-1, which can
augment both the basal tone and histamine-induced contraction of
ASM cells. Moreover, it has been shown that repeated airway
bronchoconstriction leads to higher expression of epithelium-
generated TGF-β, which may lead to thickening of the
sub-epithelial collagen layer (Grainge et al., 2011). This suggests
that bronchoconstriction due to ASM contraction plays a role in
inducing basement membrane thickening (Noble et al., 2014).
Together, these studies suggest that independent of allergic
inflammation, ASM bronchoconstriction and deformation of the
airway epithelium may be sufficient for inducing features of airway
wall remodeling and asthma progression (Camoretti-Mercado and
Lockey, 2021).

It has been previously shown that placing a load on healthy
airways stretches the ASM more than the optimal length, causing
them to produce less contractile force (Seow et al., 1998). However, as
we now know that airways from asthmatic subjects produce
significantly greater force, solely an increased amount in ASM
mass cannot be responsible for the amount of force produced,
which suggests there may be alterations in either the contractile
ability of myocytes or myocyte interactions (Brusasco et al., 1998;

Seow et al., 1998). Chin et al. demonstrated that the mechanical
properties of human tracheal ASM from asthmatic and non-asthmatic
subjects were comparable except for increased passive stiffness and
attenuated decline in force generation after an oscillatory perturbation
(Chin et al., 2012). The authors concluded that these findings may
explain the reduced bronchoconstriction induced after a deep
inspiration in asthmatic subjects. More recently Ijpma et al. have
shown that human ASM from asthma subjects is hyperreactive only in
intrapulmonary airways and not in the trachea, suggesting ASM
hypersensitivity is dependent on the airway generation within the
lung (Ijpma et al., 2020).

More recently the role of ASM in asthma pathology has been
shown to extend beyond bronchoconstriction. There is now
compelling evidence that ASM is involved in airway inflammation
through the release of inflammatory chemokines IL-1β, TNFα or
immunomodulators including IL-5, IL-13, TGF-β (Hakonarson et al.,
1999; Coutts et al., 2001; Moynihan et al., 2008). ASM additionally
releases eotaxin, increasing recruitment of eosinophils, and immune
cells such as T-lymphocytes and mass cells have been shown to
infiltrate and accumulate within the ASM layer (Ammit et al.,
1997; Ghaffar et al., 1999; Moore et al., 2002; Berger et al., 2005;
Ramos-Barbón et al., 2010). ASM can also regulate ECM composition
through the secretion of matrix metalloproteinase (MMP)-9 and
MMP-12 (Araujo et al., 2008). Further, ASM cells have been
shown to secrete more collagen I and perlecan, and have decreased
laminin α1 and collagen IV expression (Johnson et al., 2004).
Additionally, Esteves et al. have recently shown that ASM from
asthmatic patients increases RV replication in the epithelium after
infection by secreting CCL20, inhibiting the epithelial protein kinase
RNA-activated antiviral pathway (Esteves et al., 2022).

In summary, the contribution of ASM in asthma is multifactorial
and beyond the effects of bronchoconstriction alone. ASM contraction
not only alters the mechanical properties of the airway wall but also
contributes to airway remodeling which influences other structural
cells of the airway (epithelial, fibroblasts and vasculature) and immune
modulation (inflammatory cells).

Heterogeneity of lung ventilation and airway
remodeling

While the histological studies described above have provided
extensive knowledge on different aspects of airway remodeling in
asthma, they have relied on biopsy sampling or autopsy lungs which
have several limitations to note. Biopsy samples are limited in the
airway wall structures that can be sampled which are primarily the
epithelium, basement membrane and laminar reticularis, and the
tissue artefacts that can be induced when crunched by the biopsy
forceps. Additionally, lung biopsies primarily allow for the larger
airways to be sampled and it is the branch point of two daughter
airway generations that is sampled which can make sampling of the
airway wall very difficult. Lastly, it is very difficult to sample multiple
airway generations to assess the heterogeneity of airway remodeling
within the lung of asthmatic patients. Autopsy studies on lungs from
fatal asthmatics offer a unique opportunity to assess the heterogeneity
of airway remodeling within multiple airway generations and across
lung height, however, it does not provide the opportunity to assess the
spectrum of the asthma syndrome specifically mild and moderate
asthma. Below we describe the various approaches that have been used
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to assess the heterogeneity of airway remodeling and its effects on lung
function. The inherent heterogeneity of lung ventilation has long been
of great interest, dating back to 1956 when the uneven distribution of
ventilation was hypothesized to influence the mechanical properties of
the dynamic lung (Otis et al., 1956). This hypothesis was first explored
using rat and canine models, which revealed that exposure to
methacholine or histamine resulted in bronchial responsiveness
that was heterogeneous in individual airways (Ludwig et al., 1987;
Saldiva et al., 1992). This finding of heterogenous airway
responsiveness was confirmed in human lung explants in 1997 by
Minshall et al. who used agarose-filled lungs that were cross-sectioned
and stimulated with methacholine (Minshall et al., 1997). To
understand ventilation heterogeneity, many computational models
have since been developed but many have assumed a simplified airway
tree structure that did not provide an accurate model of the human
lung (Neelakantan et al., 2022). In 1997, Bates and Thorpe developed a
computational model which accounted for asymmetric branching
patterns based on Horsfield and Cummings’s data (Horsfield and
Cumming, 1968) on the branching of the human lung and stochastic
heterogeneity (Thorpe and Bates, 1997). This model demonstrated
that random heterogeneous airway narrowing in a human lung can
lead to increased lung impedance (Kuwano et al., 1993). Though
heterogeneous bronchoconstriction throughout the airway tree was
well-established, the question remained if this occurs to the same or
greater magnitude in diseased lungs. To answer this question, in
1999 Gillis and Lutchen used a computational lung model to show
that when the same heterogeneous airway smooth muscle shortening
is applied to a healthy lung and asthmatic lung, the healthy lung
experiences mild changes but in the asthmatic lung, this would lead to
greater changes in lung resistance (Gillis and Lutchen, 1999). This
work demonstrated that airways within the lung of a patient with
asthma are predisposed to heterogeneous bronchoconstriction. These
data highlight that in asthma, the disease process is not occurring
uniformly across the lung and may have spatial and temporal
differences. Importantly, it has also been shown that in asthma,
baseline ventilation heterogeneity of the conducting airways can
predict airway hyperresponsiveness, independent of airway
inflammation (Downie et al., 2007). More recently, Pascoe et al.
demonstrated heterogeneous remodeling of randomly selected
small airways within the lungs patients with fatal and non-fatal
asthma compared to donor control lungs (Pascoe et al., 2017).
Using their histological measurements of airway remodeling in a
computational model of airway narrowing, they showed that
heterogeneous airway remodeling can lead to increased airway
closure (Pascoe et al., 2017). Direct comparisons have also been
made between daughter airways bifurcating from a common parent
airway and shown great heterogeneity in parallel daughter airways in
response to inhaled methacholine (Carroll et al., 2015). These findings
have led to the hypothesis that an individual airway’s remodeling
phenotype is determined by its own mechanical and biological
properties and is less influenced by its surrounding environment
(Carroll et al., 2015). However more recently, Pascoe et al. have
developed a mathematical model to demonstrate that remodeled
airways are spatially correlated, which may be caused by cycles of
bronchoconstriction and mechanotransduction (Pascoe et al., 2020).
The study further confirmed this finding in human subjects with and
without asthma (Pascoe et al., 2020). These results demonstrate the
importance of understanding heterogeneous airway remodeling and

its spatial distribution which may be responsible for ventilation
heterogeneities in asthma.

In Vivo imaging

The use of computed tomography (CT) scanning and magnetic
resonance imaging (MRI) has enabled the 3-dimensional (3D)
assessment of the lung structure in vivo in patients with asthma.
This has overcome many limitations of histological studies which
could only be conducted on lungs from fatal asthma patients, and the
lack of airway wall structures sampled in an airway wall biopsy
sample. Over the past three decades, numerous studies have
measured airway remodeling and air trapping in patients with
asthma using both qualitative, semi-quantitative, and quantitative
CT/MRI techniques. Gupta and colleagues were the first to describe
increased bronchial wall thickening in patients with severe asthma
(n = 185) using CT (Gupta et al., 2009). Later, their group and other
research groups, showed using quantitative measures including
luminal volume and airway wall volume, that the large airways
(measurements able to be obtained up to 5–6th generation of
airways) (Brillet et al., 2007; Gupta et al., 2014; Grenier et al.,
2016) are not only remodeled in patients with severe disease but
are also remodeled in patients with mild/moderate asthma (Niimi
et al., 2000; Brillet et al., 2013). Prior research has also demonstrated
using CT that following methacholine-induced bronchoconstriction,
the large conducting airways (>2 mm diameter) narrow more
heterogeneously and have a larger decrease in airway lumen area
in asthmatic patients compared to control patients (King et al., 2004).
CT imaging has also enabled the assessment of disease progression
over time within patients. In a longitudinal study, Witt et al. showed
that severe asthma subjects have a greater decline in
postbronchodilator FEV1% over time compared to those with
mild-to-moderate asthma, which inversely correlated with
significantly increased wall area percent and wall thickness
percent in multiple airway generations, demonstrating the
association between lung function loss and airway remodeling
over time (Witt et al., 2014). This finding was also confirmed by
Awadh et al. who showed that the wall thickness of large conducting
airways is associated with lung function loss and disease severity
(Awadh et al., 1998).

Several studies have also tried to correlate measures of large
airway wall remodeling on CT with histopathological changes
within the airway wall. Aysola et al. demonstrated that airway
wall thickness at the third generation, correlated with increased
epithelial and reticular basement membrane thickness on histology
(Aysola et al., 2008). However, Kaminska et al. showed that airway
wall thickness did not significantly correlate with the
histopathological features of remodeling, including epithelial
detachment, airway smooth muscle area, basement membrane
thickness, and submucosal fibrosis, observed on biopsy
(Kaminska et al., 2009). These findings indicate that there may
be large variability in the degree of airway remodeling amongst
patients with asthma that is detectable by CT imaging. Indeed, both
studies showed variability in airway morphology between airways
in the same patients and within-subject groups, which further
highlights the need for assessment of the heterogeneity of
airway wall remodeling in asthma.
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In Vivo imaging of ventilation defects in
asthma

Several studies have used expiratory CT scans to analyze areas of
low attenuation to identify areas of air trapping in asthmatic subjects
(Newman et al., 1994; Stern and Frank, 1994). Air trapping is the
retention of excess air within the lung after expiration, usually in distal
parts of the lung, which often correlates with airflow limitation
(Arakawa et al., 1998). Several methods have been used to quantify
gas trapping including the ratio between mean inspiratory and
expiratory lung attenuation (E/I) (Gono et al., 2003), lung
density < 900 Houndsfield units (HU) at full expiration (Newman
et al., 1994), lung density < −900 HU at full expiration (Busacker et al.,
2009), and the difference between inspiratory and expiratory
attenuation (Tunon-de-Lara et al., 2007). Using image registration,
on lung CT scans at multiple volumes, Choi et al. have shown that
severe asthmatic subjects not only have reduced air volume, but that
air trapping occurs in the lower lobes more compared to the upper
lobes (Choi et al., 2013). Using expiratory CT lung scans from the
Severe Asthma Research Program (SARP) cohort, Busacker et al.
performed a multivariate analysis demonstrating that subjects with air
trapping were more likely to have a history of asthma-induced
hospitalizations, and longer disease duration, suggesting that air
trapping can identify individuals with high risk for a severe disease
phenotype (Busacker et al., 2009). Further, Gono et al. have
demonstrated that asthmatic subjects with persistent lung function
loss, have greater ratios of airway wall thickness to total diameter and
percentage wall area of the right bronchus, which correlated with more
air-trapping compared to the asthmatic subjects with normal
spirometry after bronchodilator inhalation (Gono et al., 2003).
Together these studies suggest that increased airway remodeling
contributes to air trapping.

MRI with hyperpolarized gas such as Helium or Xenon has been
used as a non-invasive technology to provide regional information
on ventilation distribution within the human lung (Albert et al.,
1994; Bachert et al., 1996; Kern and Vogel-Claussen, 2018). In
asthma, MRI has shown that ventilation defects persist in the
same location of the lung with repeated bronchoconstriction,
demonstrating that areas of airflow obstruction tend to re-occur
in the same airways (de Lange et al., 2007). De Lange et al. have also
shown that patients with severe asthma have greater ventilation
defects detected on MRI compared to those with mild to moderate
asthma (de Lange et al., 2007). Interestingly, MRI has revealed
ventilation defects exist even in subjects who have asymptomatic
asthma with normal spirometry (Altes et al., 2001). This suggests that
airflow obstruction and air trapping are occurring at a level that
cannot yet be detected by spirometry. Altes et al. have shown that
lung ventilation defects observed using MRI correlated with several
clinical features of asthma including severity, medication use,
decreased lung function (FEV1/FVC), and blood eosinophils
(Altes et al., 2016). CT imaging is often used in conjunction with
MRI to assess the lung structure in relation to the functionality of the
lung. More recently Eddy et al. have combined MRI and CT imaging
to identify phenotypic clusters which may have different clinical
outcomes as demonstrated in Figure 2A (Eddy et al., 2022). These
studies have important implications for how in vivo imaging can be
used to support treatment decisions. Importantly, the same
ventilation defects that have been observed on hyperpolarized gas
MRI images in asthma, correspond to the same regions of air

trapping that can be identified on expiratory CT scans (Fain
et al., 2008).

Mucus plugging

More recently CT has been used to visualize and quantify the
presence of mucus plugs in asthmatic patients. In 2018, Dunican
et al. analyzed CT scans of 146 adults with asthma and 22 healthy
controls in the SARP cohort and established a method of scoring
mucus plugging on CT scans based on a bronchopulmonary
segment-based scoring system to quantify mucus plugging
(Dunican et al., 2018). They showed that 67% of asthmatic
subjects with FEV1 less than 60%, had a high mucus score
(defined as mucus plugs present in more than four segments)
which was also associated with increased sputum eosinophils
and eosinophil peroxidase (EPO) levels (Dunican et al., 2018).
Subsequently, a longitudinal study by Tang et al. assessed mucus
plugs longitudinally using CT scans from the SARP cohort and
found that 82% of subjects with mucus plugs at baseline still had
mucus plugs at the third-year follow-up scan. Moreover, 65% of
visible mucus plugs remained in the same airway segment as
demonstrated in Figure 2B (Tang et al., 2022). These data
demonstrate that chronic mucus plugs persist over time which
emphasizes the need to clear mucus plugs to improve lung function
in severe asthma patients (Tang et al., 2022). To evaluate the
localization of mucus plugs, Yoshida et al. used a curved,
multiplanar reconstruction (MPR) technique, a newly developed
technique which provides greater accuracy and visualization than
standard CT images (Yoshida et al., 2020). This study showed that
when subjects were in the stable phase of asthma, the fourth and
fifth-generation bronchi in the lower lobes had a greater frequency
of mucus plugs. However, when subjects with asthma were
undergoing an exacerbation, the upper lobes had a higher
frequency of mucus plus in the fifth and sixth generation
bronchi. In addition, Yoshida et al. showed that over 40% of
conducting airways of the lower lobes were obstructed by mucus
plugs (Yoshida et al., 2020). Lastly, a study involving 44 patients
with severe asthma from the SARP cohort, assessed mucus
plugging on CT scans, and showed that in the same
bronchopulmonary segment where there was a mucus plug
present, there were greater ventilation defects (Mummy et al.,
2022). Together, these studies suggest that airway remodeling
and mucus plugging are important causes of the heterogenous
ventilation defects in asthma. It will be important to determine if
remodeled airways are associated with mucus plugs and the key
cells and mediators driving this process.

In summary, CT andMRI imaging are providing great insight into
the heterogeneity of airway remodeling within the asthmatic lung and
mucus plugs are chronic, persistent, and prevalent thus there is an
urgent need to target mucus plugs to improve air trapping in asthma.
Unfortunately, one remaining limitation of CT imaging apart from
radiation exposure is the resolution to assess the airway tree at the
cellular level to understand the disease pathology. The current
resolution of CT (.85–1 mm in diameter) (Hasegawa et al., 2006;
Kurashima et al., 2013; Kirby et al., 2018), depending on the radiation
dose used does not enable the visualization of the smallest conducting
airways (<2 mm in diameter) (McDonough et al., 2011), which are
thought to contribute to the greatest impact to airway closure during
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bronchoconstriction and fixed airflow obstruction (airway
remodeling) (Kurashima et al., 2013). More recently, microCT with
a spatial resolution of up to 1 μm has enabled volumetric imaging and
quantitative assessment of the small conducting airways, respiratory
airways, and alveoli (Haefeli-Bleuer and Weibel, 1988; McDonough
et al., 2011). To date, microCT has been applied to assess the
morphometry of the normal human lung and how it is modified in
the pathology of chronic obstructive pulmonary disease (COPD)
(McDonough, 2012; Koo et al., 2018), lung cancer (Holbrook et al.,
2021), Idiopathic Pulmonary Fibrosis (IPF) (Khalajzeyqami et al.,
2022), cystic fibrosis (CF) (Wielpütz et al., 2011), and bronchiectasis
(Wurnig et al., 2014). However one limitation of microCT is that it
cannot be used in vivo in humans due to the small field of view and
higher radiation dose. To date, research on asthma using microCT has
been limited to murine models of asthma (Shofer et al., 2007; Lederlin
et al., 2012; Paik et al., 2014). These studies have shown that it is
possible to monitor airway remodeling (wall thickness, epithelial
hyperplasia and smooth muscle hypertrophy) non-invasively in
asthmatic mice which may be important for future drug testing.
Future work using microCT to assess human samples will be
important to bridge the resolution gap to understand the
heterogeneity in airway remodeling in both the large and small
airways and vessels within the asthmatic lung.

Treatment of airway remodeling

The current 2021 guidelines from the Global Initiative for
Asthma (GINA) aim to control symptoms and minimize the risk
of exacerbations and persistent airflow limitation (GINA Asthma,
2012). As per the 2021 GINA guidelines, the first line of
recommended pharmacological treatments are inhaled low-dose
corticosteroids (ICS) to suppress the inflammatory response within
the airways, and bronchodilators to relax the smooth muscles
during bronchoconstriction (Barnes, 2010). However, there are
no current asthma pharmacological treatments that are used
primarily to target airway remodeling (Berair and Brightling,
2014). Bronchial thermoplasty is a non-pharmacological
approach that uses controlled thermal energy to reduce smooth
muscle mass in severe uncontrolled asthma (Dombret et al., 2014),
and thus is the only asthma therapy that directly targets airway
remodeling. Recent follow-up studies have shown that ACQ scores
and airway resistance can be sustained up to 10 years after
treatment with bronchial thermoplasty, however, there were no
significant changes in FEV1 and patients that undergo this
procedure have an increased risk for bronchiectasis (Langton
et al., 2018; Langton et al., 2020; Chaudhuri et al., 2021). This
could be in part due to the treatment only targeting the large central
airways, and not the small conducting airways which are the site of
airway narrowing and closure in asthma (Donovan et al., 2018).
Langton et al. also demonstrated that following bronchial
thermoplasty treatment, not all airways were dilated uniformly
(Langton et al., 2021). Thus, while bronchial thermoplasty
treatment can be a useful approach for some patients with
severe uncontrolled asthma, it has limitations to modify airway
remodeling across the entire lung structure and the spectrum of
disease severity and endotypes. Below we outline the clinical studies
to date, which have investigated the effect of pharmacological
treatment on features of airway remodeling.

Inhaled corticosteroids (ICS)
It was first shown in a double-blind randomized controlled trial,

that 12 months of fluticasone propionate treatment decreases
reticular basement membrane thickness, though there were no
effects on collagen I and III deposition (Ward et al., 2002). ICS
treatment has also been shown to decrease collagen type III
subepithelial deposition in bronchial biopsies (Mattos et al.,
2002). However, given that multiple other longitudinal studies
show ICS treatment does not affect reticular basement
membrane thickness, more research is needed to determine why
there is heterogeneity in ECM remodeling to ICS treatment (Jeffery
et al., 1992; Boulet et al., 2000; Bergeron et al., 2005). This will be
particularly important as the new 2021 GINA guidelines for asthma
recommend low-dose ICS along with the use of long-acting
bronchodilators.

With regards to airway epithelial damage, Dorsheid et al.
showed that treatment with dexamethasone, beclomethasone,
budesonide, and triamcinolone on primary airway epithelial
cells induced apoptosis (Dorscheid et al., 2001). Several studies
have also demonstrated that when ciliated cells are exposed to ICS,
their adhesion to the basal lamina is weakened, leading to epithelial
shedding (Shebani et al., 2005; Trautmann et al., 2005; Uhlík et al.,
2007). In a study investigating the effects of inhalation from a single
dose of beclomethasone in a rabbit model, Uhlík et al. showed that
the mucus release was accelerated from goblet cells and due to
overstimulation they became degenerated and were eventually shed
(Uhlík et al., 2007). However, there is some conflicting evidence of
how epithelial shedding occurs or loss of barrier function may be
induced by ICS use. Carayol et al. demonstrated that
dexamethasone treatment was able to recover TNF-α induced
reduction of adherens proteins E-cadherin, β and γ-catenin
expression (Carayol et al., 2002). Further, Laitinen et al. showed
that following 3 months of use of ICS, there was an increased
number of ciliated cells and a reduction of goblet cells in biopsies
from asthmatic patients (Laitinen et al., 1985). This indicates that
the effect of ICS treatment on epithelial damage is time dependent.
Indeed, in a longitudinal study looking at bronchial mucosal
biopsies from before and after 10 years of ICS treatment,
Lundgren et al. showed that though the number of
inflammatory cells was reduced post-treatment, only partial
recovery of epithelial damage was observed (Lundgren et al., 1988).

There are limited studies on how ICS use affects the pulmonary
vasculature in asthma. Notably, Hoshino et al. showed that 6 months
of treatment with inhaled beclomethasone dipropionate lead to a
significant reduction in vessel number and vascularity within the
lamina propria (Hoshino et al., 2001b). However, in a shorter
study that lasted 6 weeks of both low-dose and high-dose inhaled
fluticasone propionate, only patients administered a high dose of ICS
had a decreased number of vessels and an overall vascular area within
the airway wall (Chetta et al., 2003).

When assessing the effects of long-term use of ICS at high doses on
airway remodeling, it is important to note the side effects of ICS which
include impaired growth in children, decreased bone mineral density,
and cataracts (Dahl, 2006). As well, longitudinal studies have
demonstrated that patients with asthma who are taking ICS and/or
bronchodilators continue to have fixed airflow obstruction (Phelan
et al., 2002; Sears et al., 2003). Thus, while the use of ICS to manage
airway inflammation will be important for sustained long-acting
bronchodilator use ICS treatment of airway remodeling may not be
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feasible, and targeted therapeutics to modulate airway remodeling will
be important to improve lung function.

Leukotriene modifiers
In asthma, leukotriene receptor antagonists including

zafirlukast and montelukast have been shown to decrease
inflammation, improve airway hyperresponsiveness and reduce
exacerbations (Horwitz et al., 1998; Montuschi, 2010). Most of the
research investigating how leukotriene modifiers modulate airway
remodeling has been performed in animal models. In 1993, Wang
et al. demonstrated, in ovalbumin (OVA)-sensitized rats, that
leukotriene D4 decreased smooth muscle mass in the large
airways, as well as airway hypersensitivity. In 2005, Henderson
et al. showed that zileuton, a leukotriene synthesis inhibitor, was
able to reduce smooth muscle mass, as well as decrease the
thickness of the basement membrane and the number of blood
vessels in OVA-sensitive mice (Chen et al., 2013). More recently,
in OVA-sensitive mice, pranlukast, a leukotriene receptor
antagonist, has been shown to decrease several features of
airway remodeling, including goblet cell hyperplasia, and
collagen deposition by inhibiting TGF-β signaling (Hur et al.,
2018). However, the challenge is converting these observations in
preclinical models to humans as many induced airway remodeling
features are spontaneously reversible in murine models. Future
work is required in preclinical human cell models or clinical trials
to determine if leukotriene modifiers can be used to modify airway
remodeling in asthmatic patients.

Biologics
Humanized antibodies, are immune-modulating drugs, also

known as biologics, which are used to target Th2-high
inflammation in severe asthma. Omalizumab, the first available
humanized antibody for severe asthma inhibits IgE binding to the
FcεR receptor present on eosinophils, mast cells, basophils, and
dendritic cells (Kumar and Zito, 2022). In clinical trials, it has
been shown that omalizumab can reduce total airway wall
thickness, the thickness of the reticular basement membrane,
and in particular, fibronectin deposition in severe asthmatic
airways (Hoshino and Ohtawa, 2012; Riccio et al., 2012;
Zastrzeżyńska et al., 2020). However, these reductions were
modest with only a 5% decrease in the percent wall area.
Mepolizumab is a humanized antibody that selectively binds to
IL-5, the primary pro-inflammatory mediator responsible for
eosinophilic formation and maturation, elevated in Th2-high
asthma endotypes (Cada et al., 2016). Flood-Page et al. have
shown that mepolizumab treatment in mild atopic asthmatics
(n = 24) results in a reduction of tenascin and lumican, two
reticular basement membrane proteins that are upregulated in
asthma. The mechanism in which mepolizumab may be
modulating the ECM is not clear, though it has been proposed
to be due to the reduction of eosinophils producing TGF-β1,
reducing myofibroblasts and ECM protein expression (Flood-
Page et al., 2003). Benralizumab is another humanized
antibody that also targets IL-5 activation (Pelaia et al., 2018).
Chachi et al. used a novel computational modelling approach to
predict the impact of benralizumab based on eosinophilic count
from bronchial biopsies, and predicted using their virtual patient
model that benralizumab may reduce ASM however no in vivo
data exist (Chachi et al., 2019).

Macrolides
Macrolides are a class of antibiotics that have anti-bacterial, anti-

viral, and anti-inflammatory properties which can reduce
exacerbations in severe asthma, typically in oral formulation
(Brusselle et al., 2013; Wang et al., 2020). Azithromycin is a
macrolide that has been shown to reduce ASM cell viability,
leading to apoptotic cell death and reduced proliferation
(Stamatiou et al., 2009; Stamatiou et al., 2010). In the past few
years, it has been shown in both naïve and allergic mice models,
azithromycin not only decreases airway remodeling but also ASM
thickness in both proximal and distal airways (Kang et al., 2016;
Donovan et al., 2020). Another macrolide that has been explored is
roxithromycin, which has an autophagic effect on neutrophils and
suppresses the production of IL-8, IL-6, and GM-CSF in airway
epithelial cells (Kawasaki et al., 1998). Additionally, roxithromycin
has been shown to inhibit ASM cell proliferation by suppressing
vascular endothelial growth factor (VEGF), and extracellular signal-
regulated kinase (ERK) (Pei et al., 2016). In 1994, Shimizu et al.
assessed the effectiveness of roxithromycin for improving asthma
symptoms and showed that it reduces bronchial
hyperresponsiveness in children with asthma (Shimizu et al., 1994).
Macrolides provide promising immunomodulatory effects however,
their beneficial effects on airway remodeling in vivo have yet to be
confirmed.

Mucolytics
Dating back to the 1960s, mucolytics were originally pursued for

their ability to clear mucus plugs in muco-obstructive diseases such
cystic fibrosis (CF) and chronic obstructive pulmonary disease
(COPD) (Ehre et al., 2019). Mucolytics decrease mucus viscosity,
enabling greater clearance, whereas expectorants are used to induce
the expulsion of mucus from the respiratory tract. Small studies have
shown the potential for use of inhaled N-acetylcysteine (NAC), a
mucolytic and antioxidant agent (Millman et al., 1985). However, a
randomized clinical trial demonstrated that NAC did not have a
significant effect on improving asthma exacerbations (Aliyali et al.,
2010). Yet, NAC has been shown to improve airway inflammation by
modulating claudin 18 (tight junctional protein) expression (Lee et al.,
2020). Further studies are needed to determine if NAC is effective for
the treatment of asthma mucus plugging. Additionally, existing
mucolytics including nacystelyn and methylcysteine hydrochloride,
have been administered to CF patients however no studies, to our
knowledge, exist for its use in asthma (Rogers, 2002). More recently,
other novel mucolytics have been explored for the treatment of mucus
plugging in asthma. Tris (2-carboxyethyl) phosphine (TCEP) can
rapidly disrupt mucin disulfide bonds, and Morgan et al., have
demonstrated its ability to reverse mucus plugging in an allergic
mouse model (Morgan et al., 2021). Much more work is needed to
provide effective mucolytic therapeutics to improve mucus plug
clearance in asthma.

Other therapeutics
More recently, pharmacological targeting of the ASM has been of

particular interest. In 2015, Girodet et al. showed in a large double-
blinded, randomised study that after 12 months of treatment with
gallopamil (an L-type calcium channel blocker normally used to treat
coronary heart disease), there was an 18% reduction of ASM thickness
in severe asthma at the fourth generation, measured by CT, and
additionally, that there was a significant decrease in ASM cell
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FIGURE 1
Features of airway remodeling in asthma. Lung tissue was formalin-fixed paraffin-embedded (FFPE) and stained with Hematoxylin and Eosin stains. The
left image in the panel demonstrates a conducting airway from a non-asthmatic individual (11 years) with no history of respiratory disease. The right image
demonstrates a conducting airway of a fatal asthmatic individual (15 years) showing features of airway remodeling including: an altered epithelial barrier with
goblet cell hyperplasia, angiogenesis, increased smooth muscle mass, thickened reticular basement membrane, sub-epithelial fibrosis, and mucus
plugging of the airway lumen.

FIGURE 2
In vivo imaging ofmucus plugging and ventilation defects in CT andMRI. (A) Lung computed tomography (CT) scans from three different asthma patients
(A1, A2, and A3), which demonstrate the persistence ofmucus plugs (Yellow arrowheads) in the same airway at baseline (2013) and 3 years later (2016). Orange
arrowheads indicate blood vessels. This figure was adapted with permission from Figure 1 by Tang M et al. published in the American Journal of Respiratory
and Critical Care Medicine 2022. (B) 129Xe magnetic resonance imaging (MRI) ventilation (teal) and computed tomography (CT) airway tree (yellow) for
representative participants from four different asthma clusters. Cluster 1 has moderate heterogeneity as seen on MRI, moderate wall thickening and minimal
luminal narrowing on CT. Clinically, cluster 1 has normal obstruction and no gas trapping. Cluster 2 has moderate MRI heterogeneity, significant wall
thickening and minimal luminal narrowing. Clinically, this cluster pattern appears in females only, with moderate obstruction and gas trapping. Cluster 3 has
moderate MRI heterogeneity withmoderate wall thickening and significant luminal narrowing. Clinically, they tend to havemore severe asthma andmoderate
obstruction with minimal gas trapping. Cluster 4 has significant MRI heterogeneity andmoderate wall thickening with significant luminal narrowing. Clinically,
cluster 4 patterning is male dominant with severe gas trapping and obstruction. Cluster analysis of asthma using MRI in combination with CT imaging may
provide useful insight for asthma phenotyping and treatment decisions. This figure is adapted with permission from Figure 3B by Eddy R et al. published in
Journal of Magnetic Resonance Imaging 2022. Copyright from RightsLink/John Wiley and Sons.
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proliferation (Girodet et al., 2015). The following year, Gonem et al.
began investigating the effects of fevipiprant, a prostaglandin D2

antagonist in a phase 2 randomized, placebo-controlled trial, which
reduced eosinophilic inflammation in the airways by blocking PGD2-
driven release of Th2 cytokines and improved lung function (Gonem
et al., 2016). Then, analysis of bronchial biopsies from the same
patients with asthma in the previous study revealed that fevipiprant
reduced airway smooth muscle mass in patients with asthma, likely by
decreasing airway eosinophilia and decreasing recruitment of
myofibroblasts and fibrocytes (Saunders et al., 2019). Though this
drug initially seemed promising for the treatment of persistent severe
asthma, in a phase 3 randomised, double-blind, placebo-controlled
trial, there was found no significant improvement in lung function
(Castro et al., 2021). Finally, the use of thiazolidinediones, oral insulin-
sensitizing medications typically used to treat hyperglycemia and type
2 diabetes mellitus, has been examined for asthma treatment. A study
by Ward et al. has shown that rosiglitazone has anti-proliferative
effects on ASM cells in culture (Ward et al., 2004). Though there are
some modest beneficial effects on allergen response, based on the
results from initial clinical trials, thiazolidinediones are unlikely to
have therapeutic benefit for airway remodeling (Richards et al., 2010;
Sandhu et al., 2012).

Thus,much further work is required to assess the responses of current
pharmacological agents for asthma on airway remodeling. However, as it
has been highlighted by earlier studies, the concept that inflammation and
airway remodeling are tied may not be correct and targeted therapies
focused on airway remodeling features may be required.

Summary

This review article provides an overview of the existing knowledge on
airway remodeling features observed in asthma, including epithelial
damage, mucus cell metaplasia, ECM remodeling in both the airways
and vessels, angiogenesis, and increased smooth muscle mass. While such
studies have provided extensive knowledge on different aspects of airway
remodeling, they have relied on biopsy sampling or autopsy lungs which
have limitations. Biopsy samples are limited in the airway wall structures
that can be sampled and the tissue artefacts that can be induced when
crunched by the biopsy forceps. Autopsy studies on lungs from fatal
asthmatics offer a unique opportunity to assess the heterogeneity of
airway remodeling within a lung, but it does not provide the opportunity
to assess the spectrum of the asthma syndrome. In this review, we
highlight the potential of in vivo imaging tools such as CT and MRI

that are enabling measures of the airway wall in vivo and longitudinally in
research studies. Importantly, such volumetric imaging tools provide the
opportunity to assess the heterogeneity of airway remodeling within the
whole lung and has led to the novel identification of heterogenous gas
trapping and mucus plugging as important predictors of patient
outcomes. However, still more work needs to be done to now assess
how these radiological features can be understood pathologically and then
translated to therapeutic targets. Lastly, we summarize the current
knowledge of modification of airway remodeling with available asthma
therapeutics to highlight the need for future studies that could now use in
vivo imaging tools to assess airway remodeling outcomes with
therapeutics.
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