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Proprioception is a crucial property for movement stability and balance, but its
current assessment, based on clinical testing, lacks precision and adequacy in real
contexts. This study proposes assessing proprioception and its sensitivity to training
effects through acceleration time series recorded during two slackline experiments.
In the first experiment, slackliners of different expertise (highly and poorly trained)
had to walk on a slackline for 30 s. In the second, twelve beginners had to balance up
on the slackline for at least 11 s before and after a training process. Acceleration time
series were recorded in body components (legs and centre of mass) and the
slackline. The acceleration fluctuations were analysed through Detrended
Fluctuation Analysis. The obtained Hurst (H)-exponents were compared between
both groups (first experiment) and before and after training (second experiment)
using Whitney and Wilcoxon tests, respectively. The values of H-exponents were
lower in the highly trained group (Z = −2.15, p = 0.03) (first experiment), and in the
post-training conditions (Z = −2.35, p = 0.02) (second experiment). These results
suggest better motor and proprioceptive control with training status. Hence, the
time-variability structure of acceleration in real contexts, like slackline tasks, is
proposed as an objective measure of proprioception and its training effects.
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1 Introduction

Proprioception, the sensation of body position and movement, often described as the “sixth
sense”, plays a crucial role in human motor control, performance, and injury prevention
(Tuthill and Azim, 2018). Together with ocular, vestibular, or haptic sensitivity, it is essential in
movement stability and balance tasks with dominant proprioceptive feedback (Ogard, 2011). Its
objective assessment is difficult because the available methods, protocols, and analysis
techniques, mainly applied to clinical contexts, lack precision and adequacy (Hillier et al., 2015).

Proprioception has been mostly assessed in the scope of a general clinical environment for
“screening” the influence of impaired proprioception and guiding rehabilitation interventions
(Hillier et al., 2015; Röijezon et al., 2015). Capturing the error or differences between the
targeted and the performed movements, force sense tests, or threshold detection of passive
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motion stand as widely accepted examples of proprioception
assessment (Lephart et al., 2002; Weerakkody et al., 2008; Han
et al., 2016).

The proprioceptive tests used in clinical practice, based on
conscious proprioception and decontextualized movements
requiring reproduction or even verbalization of simple motions, are
inappropriate to be applied in real settings (Ager et al., 2017; Muñoz-
Jiménez et al., 2021). Unlike in clinical contexts, in daily activities, the
sub-conscious proprioception is dominantly relevant (Hillier et al.,
2015). For instance, in sports and exercise, proprioception contributes
to the coordination and fine adjustments of body movements to
maintain dynamic stability in safe conditions (Balagué et al., 2014;
Vázquez et al., 2016; 2021). Such fine adjustments emerging from
perception-action cycles, acting at very short timescales (i.e., actions
instantaneously create new perceptions for future actions), cannot be
consciously captured (Shaw and Kinsella-Shaw, 2007; Montull et al.,
2020).

In addition, proprioceptive standard measurements, often
contrasted with theoretical group-pooled data to categorize a
prototypic “healthy” state, neglect the uniqueness and richness of
individual adaptive responses under changing real constraints (Hillier
et al., 2015). Then, the use of activities like slacklining, skiing, or
acrobatics, which require balance and stability, can be useful in
assessing individual proprioceptive properties in real settings. The
registration of time series of kinematic variables extracted from body
components and interacting instruments (e.g., slackline) during these
activities may be seen as promising measures to capture such
properties.

Time series analyses allow detecting the dynamics of variables
representing the coordinated behaviour of the system (Haken, 1987;
Balagué et al., 2014; Balagué et al., 2020; Fonseca et al., 2020). Different
kinematic or physiological variables have been studied with such
purpose. For instance, Vázquez et al. (2016, 2021) applied
Detrended Fluctuation Analysis (DFA) to the series of elbow joint
angle while performing a quasi-isometric exercise until exhaustion. In
this work, the elbow angle (a kinematic variable) integrated several
processes (e.g., metabolic, contractile, reflex and volitional, among
others). The authors evaluated the autocorrelation of the series
through the Hurst (H) exponents which informed about the
adaptive properties of the performer to effort accumulation.

Time series-based analyses, such as fractal or entropy analyses of
heart rate, have also been used to detect the adaptability to workloads
of the cardiovascular system (Gronwald et al., 2020) or pathological
states (Dutta et al., 2013; Kirchner et al., 2014). According to Kelso
(1997), it is challenging to adequately set the collective variables that
reduce the system dimensionality and represent the innumerable
physiological degrees of freedom that control every humanmovement.

Applying a DFA to acceleration time series of body components
during slackline tasks, Montull et al. (2020; 2021) extracted
information about the motor control of slackliners, notably
modulated by proprioceptive properties. Consequently, the time
series of acceleration, an increasingly common monitored variable
in sporting contexts (Scott et al., 2016; Simperingham et al., 2016), has
the potential of being an adequate kinematic variable to capture
proprioception in stability and balance tasks (Montull et al., 2021).

Slacklining is a challenging task that relies on a tight physical
coupling of the performer with the environment, represented by the
slackline (Montull et al., 2020). The slackline is an unstable and
narrow pendulum tensioned between two anchors that requires

continuous fast adjustments of body components to stand up in
balance (see Figure 1) (Paoletti and Mahadevan, 2012).

H-exponents have been used to evaluate the time-variability
structure of acceleration of body components of slackliners
Montull et al. (2020; 2021). Ranging from 0 < H < 0.5, the
fluctuations are featured by an anti-persistent character and reflect
a tight and fast control related to a more adaptive behaviour (Terrier
and Dériaz, 2012; Vázquez et al., 2016). In contrast, in the range of
0.5 < H < 1, the fluctuations are featured by a persistent temporal
structure and relate to a more rigid motor control that may lead to the
consequent impending instability (Scheffer et al., 2009; Delignières
et al., 2011). These acceleration fluctuations of body components
change synergistically (Haken, 1987) for stabilizing the slackline (the
performance variable) (Montull et al., 2021). Thus, the slackline
integrates and compresses the fluctuations of the whole performer-
environment system.

This exploratory study aimed to evaluate the potential of the time-
variability properties of acceleration during slackline tasks to assess
proprioception and its sensitivity to training effects. We hypothesized
that the H-exponent would be lower 1) in highly trained compared to
poorly trained slackliners, and 2) in beginners after a slackline training
process. Accordingly, we also hypothesized that slackline, the
performance variable, could be more sensitive to training process
than body components.

2 Methods

2.1 First experiment: Assessing
proprioception of slackliners with different
expertise

2.1.1 Participants
Nineteen slackliners (17 males, two females, 25.3 ± 4.9 years,

70.21 ± 8.79 kg, 1.79 ± 0.05 m) of different levels (training
frequency = 2.29 ± 2.98 h/week; training age = 3.05 ± 2.87 years),
from a faculty of Sport Sciences and a Slackline Club, were recruited.
Two training groups were formed: highly trained (n = 11, ≥ 2 h/week
and ≥1 year) and poorly trained (n = 8, < 2 h/week and <1 year). As
there are no specific categories to define the performance levels of
slackliners, the criterion for classifying them on highly and poorly
trained was based on the opinion of two expert slackliners.

To be included in the sample, the slackliners had to be able to
perform the proposed slackline walking task (see procedures). The
experiment was approved by the local Research Ethics Committee
(072015CEICEGC) and was performed according to the ethical
standards of the Helsinki Declaration. Participants were informed
about the experimental procedure and signed an informed consent
before the intervention.

2.1.2 Procedures
Slackliners were cited individually to the mobile lab, placed in a

quiet location to avoid disturbing stimuli. When arriving they were
first monitored and afterwards instructed about the task as follows:
“You have to walk without shoes along the slackline during 30 s at a
freely chosen velocity starting close to the anchor (see Figure 1). We
will notify you when the time is over. You have a maximum of
3 attempts, separated by a maximum of 5 min resting time, to
accomplish the task. Any question?” The number of attempts and
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the resting times were fixed according to the results of a pilot study
performed on a similar population.

The slackline (Gibbon Slackline TM, ID Sports, Stuttgart,
Germany) was 15 m long and 5 cm wide. The tension (T) of the
slackline’s anchors (5.28 ± 0.65 kN), placed at 0.85 m from the ground,
was calculated through the following formula:

T kN( ) � L m( ) × M kg( )[ ]/ S m( ) × 400[ ]
where M is the mass of the participants, L is the length of the slackline
(15 m), and S is the sag under load (ensuring at least 0.5 m in the
center) (Conley, 2006; Montull et al., 2020).

2.1.3 Data acquisition
Accelerometer devices WIMU PRO™ (Real Track Systems,

Almería, Spain) (Gómez-Carmona et al., 2019) were placed in the
legs and in the lumbar region close to the center of mass (CoM) of
slackliners (see Figure 1). Through a questionnaire, slackliners
reported their dominant (Dom) and subdominant (SubDom)
leg. For the legs, the accelerometers were fixed on the outside
part above the lateral malleolus (Mannini et al., 2013), while for
the CoM on the zone of L3 (Moe-Nilssen and Helbostad, 2004;
Schütte et al., 2016). The acceleration was recorded at a sampling
frequency of 100 Hz. Before the measurements, the calibration of
such IMUs was performed on a flat, even surface with the Z-axis
perpendicular to the surface, according to the manufacturer’s
specifications.

2.1.4 Data analysis: DFA
DFA was applied in all acceleration time series to analyze their

time-variability properties. This analysis was carried out as follows
(according to Ihlen, 2012; Peng et al., 1994; 1995): Firstly, the total
length of the acceleration time series (N = 3,072 data points) was
integrated with the following equation:

Y i( ) ≡ ∑i
k�1

xk − 〈x〉[ ]

xk: time series of acceleration
x: average acceleration of the N data points

Then, the local trend was calculated to fit the acceleration time
series using a quadratic polynomial function (Ihlen, 2012). The
resulting time series were divided into different window scales n of
equal length, subtracting the local trend in each window.

For all studies, root mean square (RMS) fluctuation was calculated
using the following equation:

RMS �

�����������������
1
N

∑N
k�1

y k( ) − yn k( )[ ]2
√√

y(k): integrated time series (i.e., velocity)
yn(k): local trend in each box

The H-exponent, obtained as the value of the linear regression
slope between the scale and the local fluctuations in a log-log diffusion
plot, was used to determine the character of fluctuations for each
component. Matlab© R2016b was used for this analysis.

2.1.5 Sensitivity of H-exponents to training expertise
The obtained H-exponents (HDom, HSubDom, HCoM) were compared

between highly and poorly trained groups. Mann-Whitney test and
Cohen’s d were computed for this purpose. According to Cohen (1988),
d < 0.2 means no effect, 0.2 ≤ d ≤ 0.5 means small effect, 0.5 ≤ d ≤
0.8means intermediate effect, and 0.8 < dmeans large effect. The level of
significance was set at p ≤ 0.05 throughout the study. Statistical analyses
were performed with SPSS v.15 (SPSS Inc., Chicago, United States).

2.2 Second experiment: Assessing
proprioception before and after a training
process

2.2.1 Participants
Twelve volunteer beginners (five males, seven females, 20.6 ±

2.27 years, 65.70 ± 8.89 kg, 1.71 ± 0.08 m) with no experience at all or
just introduced (less than 3 slacklining lessons or practices) were
recruited. They had to be committed to following the training process
from the beginning to the end (see procedures). Participants were

FIGURE 1
Representation of the task performed in each experiment: walking (left) and standing up balancing (right). Abbreviations of the monitored acceleration
points: Dom = dominant leg; SubDom = subdominant leg; CoM = centre of mass; Sup = support leg; Free = free leg; Slack = slackline.
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informed about the experimental procedure and signed informed
consent before the intervention.

2.2.2 Procedures
As in the first experiment, all slackliners were cited individually to

the mobile lab, placed in a quiet location to avoid disturbing stimuli.
When arriving they were first monitored and afterwards instructed
about the testing task as follows: “You have to stand up, without shoes,
balancing on a slackline for at least 11 s (Figure 1). You must choose
one leg as the supporting leg (Sup) and the other as the free leg (Free)
(no contact with the slackline). The tiptoe of the Sup must be in the
sign of 1 m from the anchor. We will notify you when the time is over.
You have a maximum of 5 attempts, separated by amaximum of 5 min
resting time, to accomplish the task. Any question?” The number of
attempts and the resting times were fixed according to the results of a
pilot study performed on a similar population. Slackline tension was
calculated in the same way as in the first experiment.

The testing task was repeated before and after an individualized
training process consisting of surpassing 50 challenging slackline tasks
of progressive difficulty (e.g., two steps forward and standing up
balancing at least 3 s, standing for 5 s together with a pair while
holding the hands, walking all the slackline without falling, etc.). The
testing task was not included as a challenging task. During the training
process participants were requested to keep their training habits and
avoid other type of proprioceptive training (stability or balance
exercises). Participants could practice every challenge on their own
and as many times they needed until succeeding. The success was
supervised once a week. The whole training process lasted from one to
3 months (depending on the individual learning abilities) with a median
(IQR) training time of 90 h (47.5 h). After surpassing the 50 challenges,
they performed the post-training testing within the next 7 days.

2.2.3 Data acquisition and analysis
Acceleration was captured in the same way as in the first

experiment for both legs (Sup and Free) and CoM (Figure 1). The
acceleration of the slackline (Slack), the performance variable
(Montull et al., 2021), fixed at 0.5 m from the toe of Sup, was also
registered and included in the analysis. The acceleration was recorded
at a sampling frequency of 100 Hz to ensure enough data points for the
DFA. The total length of the acceleration time series ranged from N =
1,024 to 2,048 data points. DFA was calculated as explained in the first
experiment, also obtaining H-exponents as an outcome.

2.2.4 Sensitivity of H-exponents to training process
The sensitivity of H-exponents to training was tested by

comparing the H values of each component pre- and post-training.

Wilcoxon test and Cohen’s d were used for this purpose. Previously,
Kolgomorov-Smirnov test was applied to demonstrate a non-normal
distribution of all variables.

3 Results

3.1 Time-variability of acceleration of body
components and slackline

As illustrated in Table 1, depending on body components, the
fluctuations profile changed. Differently than others, the HCoM

revealed, on average, a weakly anti-persistent structure of
fluctuations in both experiments (H close to 0.5). In contrast, both
legs and slackline had persistent structures: HDom, HSup and HSlack

with more moderate persistent dynamics, while HSubDom and HFree

legs tended to have higher persistent dynamics (H close to 1).

3.2 Effects of training on time-variability
properties of acceleration

In the first experiment, the highly trained group showed lower
persistent dynamics of acceleration in all body components compared
with the poorly trained group (see Table 1). In particular, displaying
considerably lower values of HDom (Z = −2.15; p = 0.03; d = −1.12), and
intermediately lower values of HSubDom (d = −.63) and HCoM (d = −.57).

In the second experiment, post-training values reduced the
persistency of fluctuations compared with pre-training (see Table 1).
HSlack was significantly lower (Z = −2.35, p = .02; d = −.81), tending
towards a moderate anti-persistent profile. Also, both legs tended
towards lower persistency: an intermediate reduction was found in
HFree (d = −.6) while small effect size was shown in HSup (d = −.43).

4 Discussion

This study found that H-exponents, evaluating the time variability
of acceleration during slackline tasks, captured body and slackline
fluctuations and were sensitive to training effects. The motor control
of the different body components, favored by proprioceptive
properties, showed that: CoM featured rapid and frequent
fluctuations (weakly anti-persistency) for maintaining the postural
control, Sup/Dom featured persistent moderate fluctuations for
rapidly adjusting to slackline fluctuations, and Free/SubDom
featured high persistent fluctuations for compensating through

TABLE 1 Mean ± SD of the Hurst exponents of body and slackline acceleration from the two experiments.

HDoM HSubDom HCoM

1st experiment Highly trained 0.63 ± 0.11 0.68 ± 0.11 0.47 ± 0.03

Poorly trained 0.74 ± 0.08 0.76 ± 0.11 0.50 ± 0.06

HSup HFree HCoM HSlack

2nd experiment Pre-training 0.67 ± 0.13 0.76 ± 0.14 0.46 ± 0.07 0.75 ± 0.15

Post-training 0.62 ± 0.10 0.68 ± 0.14 0.47 ± 0.10 0.62 ± 0.17

Notes: H = hurst exponent; Dom = dominant leg; SubDom = subdominant leg; CoM = centre of mass; Sup = support leg; Free = free leg; Slack = slackline.
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large and rigid movements the impending instability (Montull et al.,
2020; 2021). All components dynamically interacted and
spontaneously reorganized to accomplish the task goal
(i.e., stabilize the slackline).

The time-variability properties of acceleration showed sensitivity
to training effects. In the first experiment, the highly trained group
tended towards lower persistent profiles (H closer to 0.5) of all body
components and showed better control of both legs during slackline
walking. The dominant leg showed the highest differences, probably
due to its essential role in keeping the stability while walking. Such
improvement in the motor control has been related to longer stability
performance (Montull et al., 2021). These findings agree with previous
work studying other sports activities, such as running, in which trained
runners, compared to non-runners, showed lower persistency of gait
cycle fluctuations (Nakayama et al., 2010).

In the second experiment, legs and slackline tended towards lower
persistent dynamics after training. The slackline, representing the
performance variable and compressing the proprioception of the
whole performer-slackline system, reflected the largest
improvement. In contrast, the time-variability of CoM’s
acceleration did not show significant changes. Compared to legs,
this lower sensitivity to training of CoM is probably due to its
longer distance from the slackline (Singh et al., 2020).

Considering the stabilizing synergies between the body components,
training should probably induce improvements at different levels and
timescales, including microscopic (e.g., cell mechanics), mesoscopic (e.g.,
reflex processes) and macroscopic processes (e.g., attention,
concentration) in a correlated way. This enhancement of motor and
proprioceptive control is linked to the self-development of balance-
retention and fatigue-reduction (Gabel et al., 2016).

It is plausible to suggest how the multiple embedded physiological
components of slackliners interact to permit motor-proprioceptive
control (Singh et al., 2020; Gabel et al., 2021; Seidel-Marzi et al.,
2021). Accordingly, acceleration seems an adequate variable to
describe and compress performers’ behaviour in stability and balance
exercises. This type of kinematic variables, capturing the action level, is
promoted by the Network Physiology of Exercise because they provide
integrated information about the synchronization and coordination of
processes interacting horizontally (e.g., within the same level) and
vertically (among levels, e.g., cells, tissues, organs, etc.) in the organism
(Balagué et al., 2020; 2022). Therefore, the proposed proprioceptive
assessment might be particularly helpful to avoid fragmented,
oversimplified, passive and decontextualized proprioception measures
capturing this property in a reasonably integrative and applied manner
(Ager et al., 2017;Muñoz-Jiménez et al., 2021). In addition, it may provide
sensitive information about the rapid, sub-conscious, and often
imperceptible motor readjustments that, modulated by proprioception,
operate in real exercise contexts (Hillier et al., 2015).

Diverse balance and coordinative activities, dependent on
proprioceptive abilities, might also be assessed objectively by
analysing the variability properties of acceleration. This opens an
exciting research line to approach different phenomena related to
health and performance. For example, to assess the state of
neurodegenerative disorders (Lheureux et al., 2020), the acute
effects of fatigue (Montull et al., 2019), the risks of sports injuries
(Pol et al., 2019) or the rehabilitation progress (Lheureux et al., 2020).

This is an exploratory study and further research is needed to
robustly claim that proprioception can be assessed through time-
variability properties of acceleration. In particular, exploring the

validity and reliability of acceleration time series and DFA in other
types of exercise is warranted. Synergies analysis, such as Uncontrolled
Manifold, should also be considered as a complement to understand
better the proprioceptive communication between the studied
components in balance exercises (Montull et al., 2021).

5 Conclusion

This study suggests that the time-variability structure of
acceleration in real contexts, like slackline tasks, may objectively
measure proprioception and be sensitive to its training effects.
From a practical point of view, the monitorization of the slackline
itself, compressing the motor synergies in this type of task, seems to be
sufficient to inform about the proprioceptive control.
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