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Commercial laying hens can produce one egg approximately every 24 h. During this
process, regulatory systems that control vitamin D3 metabolism, calcium and
phosphorus homeostasis, and intestinal uptake of these minerals work in concert
to deliver components required for eggshell calcification and bone mineralization.
Commercial production cycles have been extended in recent years to last through
100 weeks of age, and older hens often exhibit an increased prevalence of skeletal
fractures and poor eggshell quality. Issues such as these arise, in part, through
imbalances that occur in calcium and phosphorus utilization as hens age. As a result,
an in-depth understanding of the mechanisms that drive calcium and phosphorus
uptake and utilization is required to develop solutions to these welfare and economic
challenges. This paper reviews factors that influence calcium and phosphorus
homeostasis in laying hens, including eggshell formation and development and
roles of cortical and medullary bone. Metabolism and actions of vitamin D3 and
physiological regulation of calcium and phosphorus homeostasis in key tissues are
also discussed. Areas that require further research in avian species, such as the role of
fibroblast growth factor 23 in these processes and the metabolism and action of
bioactive vitamin D3, are highlighted and the importance of using emerging
technologies and establishing in vitro systems to perform functional and
mechanistic studies is emphasized.
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1 Introduction

As the global population grows, there is increased demand for affordable, high-quality, and
sustainable protein sources like table eggs. Commercial laying hens have been selected to
increase eggs produced per hen lifetime, with production cycles now lasting past 100 weeks of
age. Economic and sustainability benefits of extended lay persistency include decreased cost and
environmental impact on a per-egg basis (Bain et al., 2016), but there are challenges associated
with egg quality and bird welfare as hens age.

Older hens often produce larger, weak-shelled eggs (Al-Batshan et al., 1994) and exhibit
compromised skeletal structure. Efficiency of intestinal calcium absorption decreases with age
(Diana et al., 2021), leading to increased reliance on bone-derived calcium contributing to
fractures (Gregory and Wilkins, 1989). Elucidating physiological mechanisms responsible for
the uptake and utilization of calcium and phosphorus throughout the hen’s productive lifecycle
will provide insights that can be used to develop strategies limiting economic losses to producers
and improving animal welfare.
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2 Egg formation

Commercial laying hens produce an egg approximately every 24 h
(Nys and Guyot, 2011) and must efficiently regulate calcium and
phosphorus utilization for eggshell calcification and cuticle formation,
respectively (Cusack et al., 2003). Ovulation occurs 15–75 min after
oviposition, or egg-laying (Sturkie and Mueller, 1976), and the follicle
resides in the infundibulum for under 30 min (Sah and Mishra, 2018).
It continues into the magnum where albumen is added over the next
3.25–3.5 h (Nys and Guyot, 2011) and enters the isthmus where inner
and outer shell membranes are deposited around the albumen
(Warren and Scott, 1935). Organic eggshell matrix proteins (e.g.
ovalbumins, osteopontins, ovocleidins, ovocalyxins) and calcium
carbonate are deposited onto the outer shell membrane (Hincke
et al., 2010) in the shell gland, and the eggshell forms over the
final 19–20 h (Nys and Guyot, 2011; Gautron et al., 2021).

As previously described (Nys and Guyot, 2011; Gautron et al.,
2021), the eggshell develops as distinct mamillary, palisade, and cuticle
layers deposited from interior to exterior. During mineralization of the
mammillary and palisade layers, deposition of amorphous calcium
carbonate is followed by its transformation into calcite crystals
(Rodriguez-Navarro et al., 2015). Initially, the mamillary layer
forms at nucleation sites laid on the outer shell membrane between
5–6 h post-oviposition (HPOP) and the mamillary core develops
between 7–10 HPOP. Large calcite crystal units form the columnar
palisade layer between 10–22 HPOP, and the cuticle forms an organic
film preventing bacterial penetration of the egg about 2 h before
oviposition. A calcium and phosphorus-rich hydroxyapatite
[Ca10(PO4)6(OH)2] crystal layer lies just internal to the cuticle
(Wedral et al., 1974; Cusack et al., 2003). Since phosphorus is a
potent inhibitor of calcite formation (Bachra et al., 1963; Simkiss,
1964), some authors speculate that these crystals (Dennis et al., 1996)
or the secretion of phosphate-containing organic eggshell constituents
towards the end of shell formation (Nys et al., 1991) may be involved
in terminating calcification.

3 Bone development and remodeling

Since most eggshell calcification takes place in the dark when
dietary calcium is largely unavailable, hens mobilize approximately
20%–40% of calcium required for eggshell formation from bone
(Comar and Driggers, 1949). Structural cortical and trabecular
bone with highly organized hydroxyapatite crystals is formed
during embryonic and juvenile development. After structural bone
deposition subsides (Hudson et al., 1993), increased circulating
estrogen at the onset of sexual maturity around 18 weeks of age
leads to development of medullary bone in pneumatic and long
bones (Whitehead, 2004). Medullary bone is highly vascularized
with randomly orientated hydroxyapatite crystals (Dacke et al.,
1993), allowing for rapid anabolism and catabolism of
hydroxyapatite during egg formation. Since hydroxyapatite is
composed of calcium and phosphorus, bone resorption releases
both minerals into circulation as ionized calcium (iCa2+) and
inorganic phosphate [PO4

3− (Pi)] that must be utilized for shell
formation or excreted.

Medullary bone undergoes remineralization when eggshell
calcification is not occurring (Wilson and Duff, 1990; Kerschnitzki
et al., 2014) and is resorbed during eggshell calcification (Van de Velde

et al., 1984b) through increased osteoclast activity driven by
parathyroid hormone (PTH) and the bioactive form of vitamin D3,
1,25-dihydroxycholecalciferol [1,25(OH)2D3] (Taylor and Belanger,
1969).When PTH binds PTH receptor 1 (PTH1R) on osteocytes (Silve
et al., 1982; Zhao et al., 2002), receptor activator of nuclear factor-
kappa B ligand (RANKL) is secreted and interacts with receptor
activator of nuclear factor-kappa B (RANK) on osteoclasts,
stimulating bone resorption. Additionally, PTH increases osteoclast
vacuolar-type adenosine triphosphatase (V-ATPase) activity, causing
intracellular acidification required for bone breakdown (Liu et al.,
2016). Osteoclast activity increases nine-fold during shell calcification
(Van de Velde et al., 1984b), and osteoporosis can develop when
osteoclasts resorb structural bone once medullary bone is depleted.
Dysregulation of medullary bone remodeling may contribute to
development of osteoporosis in aged hens, which exhibit increased
medullary bone expression of the resorption marker carbonic
anhydrase 2 (CA2) and vitamin D3 receptor (VDR), as well as
reduced expression of accretion proteins like collagen type 1 alpha
1 (COL1A1), relative to younger hens (Gloux et al., 2020b).

4 Vitamin D3 metabolism and
mechanism of action

Skeletal integrity and eggshell quality depend on 1,25(OH)2D3

because of its role in regulating calcium and phosphorus homeostasis.
Dietary vitamin D3 is constitutively hydroxylated in the liver by a 25-
hydroxylase enzyme encoded by the CYP2R1 gene (Watanabe et al.,
2013), with >90% converted into 25(OH)D3 (Heaney et al., 2008; San
Martin Diaz, 2018). A second, more tightly regulated hydroxylation
occurs in the kidney at the 1α-carbon to form 1,25(OH)2D3 (Jones
et al., 1998). In mammals and fish, this is carried out by an enzyme
encoded by CYP27B1 (Monkawa et al., 1997; Shinki et al., 1997; Chun
et al., 2014); however, this gene has not been identified in chickens and
the enzyme responsible is currently unknown despite recent
publications that have reported measuring expression of CYP27B1
mRNA or an equivalent (Shanmugasundaram and Selvaraj, 2012;
Gloux et al., 2020a; Gloux et al., 2020b; Yan et al., 2022). Investigation
into transcripts amplified reveals these are an enzyme involved in
retinoic acid metabolism (CYP27C1) or one identified as vitamin D3

hydroxylase-associated protein (Ettinger et al., 1994; Ettinger and
DeLuca, 1995), neither of which have demonstrable 1α-hydroxylase
activity. PTH stimulates 1α-hydroxylation of vitamin D3 when
circulating iCa2+ and 1,25(OH)2D3 are low; however, the efficiency
of this may decrease with age (Abe et al., 1982; Gloux et al., 2020b).
During periods of elevated circulating 1,25(OH)2D3, 1α-hydroxylase is
inhibited and 24-hydroxylase, encoded for by CYP24A1, is
upregulated. The 24-hydroxylase enzyme inactivates 25(OH)D3 by
producing biologically inert 24,25(OH)2D3 or 1,24,25(OH)3D3

(Holick et al., 1973; Omdahl et al., 2002), thereby preventing
excessive bone resorption and intestinal calcium absorption.
Hydroxylation of 25(OH)D3 into either active or inactive
metabolites provides an additional level of control by fine-tuning
the availability of this hormone.

Vitamin D3 affects calcium and phosphorus homeostasis through
its influence on expression and activity of transport and chaperone
molecules for these minerals. When bound by 1,25(OH)2D3, VDR acts
as a ligand-activated transcription factor that enters the nucleus to
form a heterodimeric complex with retinoid-X-receptor alpha
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(RXRA) or gamma (RXRG) and binds vitamin D3 response elements
(VDRE) in regulatory regions of vitamin D3-responsive genes (Bikle,
2014). Not all tissues respond to 1,25(OH)2D3 in the same way. For
example, shell gland calbindin D-28k (CALB1) expression does not
appear to be influenced by 1,25(OH)2D3 (Bar et al., 1977), unlike that
in the kidney and small intestine (Taylor and Wasserman, 1972). It
may be under the control of estrogen (Nys et al., 1992; Corradino et al.,
1993), driven by half-palindromic estrogen response elements in the
CALB1 promoter as has been shown in mice (Gill and Christakos,
1995), and intracellular calcium levels (Corradino, 1993). Since
CALB1 in shell gland, intestine, and kidney share the same
electrophoretic mobility, amino acid composition, and
immunoreactivity, it is likely the same protein (Fullmer et al.,
1976); however, estrogen receptor rather than VDR could be a key
regulatory protein driving its expression in the shell gland.

5 Calcium homeostasis and transport

Regulation of calcium homeostasis is required to maintain the
daily flux of this mineral in laying hens. The highest demand occurs
when the eggshell is actively calcifying during the nocturnal fast, and
hens must rely on reduced intestinal pH to solubilize coarse limestone
retained in the gizzard (Scanes et al., 1987). This occurs through
stimulation of H+/K+-ATPase activity in the proventriculus (Guinotte
et al., 1995) and subsequent secretion of hydrochloric acid (Guinotte
et al., 1993).

During eggshell calcification, decreased circulating iCa2+ due to
high demand by the shell gland (Parsons and Combs, 1980) is detected
by calcium-sensing receptor (CASR) (Hofer and Brown, 2003) and
leads to PTH secretion from the parathyroid gland (Van de Velde
et al., 1984a; Singh et al., 1986). PTH rectifies circulating iCa2+ back to
its homeostatic range by stimulating bone resorption (Taylor and
Belanger, 1969) and increasing 1,25(OH)D3 production in the kidney
(Brenza and DeLuca, 2000); 1,25(OH)D3 works to increase calcium
absorption from the small intestine (Spencer et al., 1978; Chandra
et al., 1990) and reabsorption in the kidney (Jande et al., 1981).

Calcitonin (CALC), produced within ultimobranchial bodies near
the thyroid gland (Copp et al., 1967; Kraintz and Intscher, 1969), may
reduce iCa2+ in chickens (Luck et al., 1979), and expression of CALC
receptor (CALCR) in shell gland, kidney, and bone of laying hens
(Yasuoka et al., 1998; Ieda et al., 2001) suggests it could play a role in
regulating calcium homeostasis. However, unlike in mammals, CALC
does not influence avian osteoclast activity under normal physiological
conditions (Nicholson et al., 1987; Eliam et al., 1988), nor does it
appear to affect renal cyclic adenosine monophosphate formation in
chickens or pigeons (Dousa, 1974). This implies that avian CALCR
could use alternative intracellular signaling pathways or that CALC
does not have the same effect on bone as it does in mammals. At
present, there is limited evidence that CALC strongly influences
calcium homeostasis in birds, suggesting it may not be an
important regulator of calcium availability for egg production.

Calcium absorption from the small intestine appears to fluctuate
throughout the daily egg formation cycle (Hurwitz and Bar, 1969;
Hurwitz et al., 1973) and is thought to occur primarily in the
duodenum and jejunum, with smaller amounts absorbed in the
ileum (Hurwitz and Bar, 1965; Hurwitz and Bar, 1968). Intestinal
calcium uptake occurs through active transcellular and passive
paracellular pathways. Active transcellular absorption accounts for

most calcium uptake and involves ATPase plasma membrane calcium
transporting 1 (ATP2B1), 2 (ATP2B2), and 4 (ATP2B4), sodium-
calcium exchanger 1 (NCX1), transient receptor potential cation
channel subfamilies C member 1 (TRPC1), M member 7 (TRPM7),
and Vmember 2 (TRPV2), and CALB1 (Bar, 2009; Gloux et al., 2019).
Passive paracellular calcium absorption likely takes place via tight
junction proteins 1 (TJP1), 2 (TJP2), and 3 (TJP3), claudin 2 (CLDN2)
and 12 (CLDN12), and occludin (OCLN) (Gloux et al., 2019; Gloux
et al., 2020b). Findings suggest that intestinal capacity for calcium
absorption could change with age, as expression of some transcellular
(ATP2B4, TRPV2) and paracellular (TJP3, CLDN2, OCLN)
transporters decreased in older hens (Gloux et al., 2020b). Calcium
transport in the shell gland (Brionne et al., 2014) and kidney occurs
through many of these same proteins, with the addition of transient
receptor potential cation channel subfamily V member 6 (TRPV6) in
the kidney (Proszkowiec-Weglarz and Angel, 2013; Gautron et al.,
2021; Wang et al., 2022). This has been shown to decrease with age in
hens (Gloux et al., 2020b), indicating that the calcium-handling
capacity of the kidney is perturbed in older layers. In addition to
the above-listed transporters, recent findings suggest vesicular
transport systems may export calcium into the shell gland lumen
(Stapane et al., 2020).

6 Phosphorus homeostasis and
transport

Approximately 80% of phosphorus is stored in the skeleton as
hydroxyapatite. It is released when bone is resorbed during eggshell
calcification, and this excess Pi (Nys et al., 1986; Frost and Roland,
1990) must be excreted to negate toxic effects. Maintenance of
circulating Pi occurs in the kidney, small intestine, and bone
(Michigami et al., 2018) and is primarily regulated by fibroblast
growth factor 23 (FGF23); however, PTH and 1,25(OH)2D3 also
influence it through their actions on calcium homeostasis (Ren
et al., 2020).

In mice (Perwad et al., 2005) and laying hens (Ren et al., 2017;
Wang et al., 2018; Gloux et al., 2020a; Ren et al., 2020),
hyperphosphatemia increases FGF23 production in bone. It has
been shown to bind to one of four FGF receptors (FGFR1-4) along
with the co-receptor klotho (KL) in mammals (Razzaque, 2009), and
this complex induces expression of Pi transport proteins that mediate
FGF23’s phosphaturic effects. Laying hens express FGF23 mRNA in
both medullary and structural bone (Hadley et al., 2016; Wang et al.,
2018), and increases in its expression occur as they age (Gloux et al.,
2020b). Furthermore, hens exhibit FGFR1-4 and KL mRNA
expression in the kidney, intestine, and bones (Ren et al., 2020).
Immunoneutralization of FGF23 in laying hens led to increased
plasma Pi and bone ash under phosphorus-deficient conditions
(Bobeck et al., 2012; Ren et al., 2017), and limiting dietary Pi in
laying hens reduced circulating Pi, suppressed bone FGF23 mRNA,
circulating FGF23, and renal sodium-dependent Pi transporter IIa
(NaPiIIa) expression, and induced duodenal sodium-dependent Pi
transporter IIb (NaPiIIb) expression (Ren et al., 2020). These changes
corresponded with reduced phosphorus excretion and increased
calcium excretion. Studies conducted in mammals have found that
FGF23 directly inhibited PTH secretion (Ben-Dov et al., 2007),
decreased renal Pi transporter 2 (PiT-2) expression (Tomoe et al.,
2009), and limited 1,25(OH)2D3 production in the kidney, in part
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FIGURE 1
Regulation of calcium and phosphorus homeostasis during eggshell mineralization in laying hens. During eggshell calcification, high demand for calcium
decreases circulating ionized calcium (iCa2+). Low iCa2+ is detected by calcium-sensing receptor (CASR), which stimulates parathyroid hormone (PTH)
secretion from the parathyroid gland. Secreted PTH binds to PTH receptor 1 (PTH1R) on osteocytes to promote interaction between receptor activator of
nuclear factor-kappa B (RANK) and RANK ligand (RANKL) on the osteoclast surface. This induces vacuolar-type adenosine triphosphatase (V-ATPase)
production to facilitate bone resorption alongside carbonic anhydrase 2 (CA2). In contrast, bone accretion is facilitated by deposition of matrix proteins such
as collagen type 1 alpha 1 (COL1A1). In the kidney, PTH stimulates inorganic phosphate (Pi) excretion and upregulates production of 1,25(OH)2D3. Bioactive
1,25(OH)2D3, which binds to vitamin D3 receptor (VDR), stimulates osteoclast activity, calcium transport in the kidney, and calcium and phosphorus uptake in
the intestine. Impacts of 1,25(OH)2D3 in the shell gland and on paracellular intestinal calcium uptake still need to be elucidated. Transcellular transport of
calcium in these tissues is thought to occur through ATPase plasma membrane calcium transporting 1, 2, and 4 (ATP2B1, ATB2B2, ATP2B4; intestine only),
sodium-calcium exchanger 1 (NCX1), calbindin-28K (CALB1), transient receptor potential cation channels subfamily C member 1 (TRPC1; intestine only),
transient receptor potential cation channels subfamily M member 7 (TRPM7; intestine only), and transient receptor potential cation channel subfamily V
member two and six (TRPV2, intestine only; TRPV6, kidney only). Paracellular transport in the intestine is achieved by tight junction proteins 1, 2, and 3 (TJP1,
TJP2, TJP3), claudin 2 and 12 (CLDN2, CLDN12) and occludin (OCLN). Transport of phosphorus in these tissues is thought to occur by sodium-dependent
phosphorus transporters IIa and IIb (NaPiIIa and NaPiIIb) and sodium-dependent inorganic phosphorus transporters 1 and 2 (Pit1 and Pit2). Shell gland calcium
transport by CALB1 may be under the control of estradiol (E2) through estrogen receptor (ER) interaction with estrogen-response elements (EREs) in its
promoter region. Bone breakdown releases Pi into circulation, which induces production of fibroblast growth factor 23 (FGF23). In chickens and mammals,

(Continued )
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through upregulation of 24-hydroxylase (Perwad et al., 2007). In hens,
similarities exist whereby elevated medullary FGF23 mRNA during
eggshell calcification was followed by increased renal mRNA for
CYP24A1 after oviposition, which may have led to observed
reductions in 1,25(OH)2D3 (Gloux et al., 2020a).

In birds, 1,25(OH)2D3 appears to directly stimulate renal Pi

reabsorption in the short-term and inhibit it in the long-term
(Liang et al., 1982; Liang et al., 1984). Renal Pi reabsorption was
decreased, and therefore Pi excretion increased, by PTH
(Wideman and Braun, 1981). The capacity of the kidney to
regulate Pi balance could change with age, as expression of
NaPiIIa and Pi transporter 1 (PiT-1) in kidney decreased in
older hens (Gloux et al., 2020b). Since PTH stimulates
production of 1,25(OH)2D3, it indirectly increases Pi
absorption from the intestine (Liao et al., 2017). Intestinal Pi

uptake in chickens is thought to be mediated by PiT-1, PiT-2,
NaPiIIa, and NaPiIIb (Yan et al., 2007; Huber et al., 2015; Li et al.,
2018), with NaPiIIb as the primary transporter in the duodenum
and jejunum and PiT-1 as the primary transporter in the ileum
(Gloux et al., 2019).

7 Discussion

This review investigates physiological mechanisms
influencing calcium and phosphorus utilization in laying hens
during egg production (Figure 1). Age-dependent changes in
levels of FGF23, 1,25(OH)2D3, and several calcium and
phosphorus transporters in the intestine and kidney suggest
that the ability of hens to maintain adequate mineral balance
for optimal shell strength and bone health is compromised during
extended lay. This leads to deterioration of structural bone when
the rate of medullary bone resorption required for eggshell
calcification exceeds that of remineralization during periods
outside eggshell development, predisposing hens to fractures
that negatively impact their welfare and reduce egg production
in an age-dependent fashion (Rufener et al., 2019). To maintain
healthy, high-producing hens throughout extended production,
skeletal development should be prioritized during rearing to
ensure adequate deposition of structural bone prior to
initiation of medullary bone accretion.

Improvements in laying hen skeletal health require an in-
depth understanding of regulatory systems driving calcium and
phosphorus utilization and how they change with age. Further
research on how FGF23 influences PTH secretion, vitamin D3

metabolism, and other aspects of calcium and phosphorus
homeostasis in birds is necessary. Though a role for FGF23 in
regulating Pi homeostasis in layers has been supported by the
findings described above, functional and mechanistic studies
demonstrating its direct involvement are limited. As there are

differences in medullary bone expression of FGF23 mRNA with
age (Gloux et al., 2020b), and FGF23 appears to influence
phosphorus and calcium balance (Bobeck et al., 2012; Ren
et al., 2017; Ren et al., 2020), understanding effects of
FGF23 on mineral homeostasis and how to manage changes
across the production cycle is crucial for maintaining skeletal
health and egg production throughout extended lay.

A second area needing further elucidation is the metabolism
and action of vitamin D3. The gene encoding 1-α hydroxylase has
not been identified in avian species, hindering mechanistic studies
of its activity. Characterization of CYP27B1 or a functional
equivalent would provide valuable insights into ways that
vitamin D3 metabolism could be harnessed to improve eggshell
integrity and skeletal welfare in layers, including using selection
strategies for hens that exhibit stronger bones and eggshells.
Furthermore, the influence of 1,25(OH)2D3 on shell gland
calcium transport has been questioned due to unresponsiveness
of typical 1,25(OH)2D3-dependent proteins (Bar et al., 1977; Bar,
2008); additional studies are needed to confirm if this applies to
other aspects of shell gland calcium transport. This is especially
important, as regulation of ionic calcium transfer into the shell
gland lumen is poorly understood (Nys et al., 2022) despite it being
a limiting factor in calcium supply to the eggshell (Cohen et al.,
1978), so alterations in this process with age likely contribute to
decreased shell quality in older hens.

Though a better picture of laying hen calcium, phosphorus,
and vitamin D3 metabolism has emerged in recent years, critical
knowledge gaps exist and much of our understanding of these
homeostatic mechanisms is derived from mammalian research.
However, hens undergo additional biological processes such as
development and maintenance of medullary bone and eggshell
calcification, so direct inferences from mammals to birds may be
flawed. Availability of the chicken genome in conjunction with
“omics” approaches should help identify relevant gene networks
across tissues that are involved in these processes, allowing
development of testable hypotheses that can be used to discern
functionality where it is lacking. Establishment of reliable in vitro
models for bone, kidney, and shell gland and validated assays for
functional proteins would greatly facilitate fundamental,
mechanistic studies on these systems. This is essential for
generating successful nutritional and genetic management
strategies that prioritize skeletal welfare throughout the
productive lifecycle of the hen.
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