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The hERG channel is one of the essential ion channels composing the cardiac action
potential and the toxicity assay for new drug. Recently, the comprehensive in vitro
proarrhythmia assay (CiPA) was adopted for cardiac toxicity evaluation. One of the
hurdles for this protocol is identifying the kinetic effect of the new drug on the hERG
channel. This procedure included the model-based parameter identification from
the experiments. There are many mathematical methods to infer the parameters;
however, there are two main difficulties in fitting parameters. The first is that,
depending on the data and model, parametric inference can be highly time-
consuming. The second is that the fitting can fail due to local minima problems.
The simplest andmost effective way to solve these issues is to provide an appropriate
initial value. In this study, we propose a deep learning-based method for improving
model fitting by providing appropriate initial values, even the right answer. We
generated the dataset by changing the model parameters and trained our deep
learning-based model. To improve the accuracy, we used the spectrogram with
time, frequency, and amplitude. We obtained the experimental dataset from https://
github.com/CardiacModelling/hERGRapidCharacterisation. Then, we trained the
deep-learning model using the data generated with the hERG model and tested
the validity of the deep-learning model with the experimental data. We successfully
identified the initial value, significantly improved the fitting speed, and avoided fitting
failure. This method is useful when themodel is fixed and reflects the real data, and it
can be applied to any in silico model for various purposes, such as new drug
development, toxicity identification, environmental effect, etc. This method will
significantly reduce the time and effort to analyze the data.
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1 Introduction

It is a well-known fact that it is crucial to evaluate the effects of pharmaceuticals on heart
rhythm because an unstable heart rhythm causes significant problems, including death.
Additionally, cardiotoxicity has resulted in the withdrawal of some previously marketed
drugs and restrictions on some clinically useful drugs (Lasser et al., 2002). Therefore, there
have beenmany discussions on the mechanisms, prevention methods, andmanagement of such
toxicity by drugs (Kelleni and Abdelbasset, 2018). In particular, screening for the human Ether-
a`-go-go-Related Gene (hERG) is critical. The hERG is a gene that forms part of the rapid
delayed rectifier potassium current of the heart, IKr, and plays an important role in causing
repolarization of the cardiac action potential. Many drugs that cause cardiotoxicity are known
to block the hERG channel. Blockade by drugs leads to a decrease in IKr, which can prolong
ventricular action potential (Jurkiewicz and Sanguinetti, 1993). This is also associated with an
increase in the QT interval (QT) in the electrocardiogram (ECG) (Sanguinetti and Tristani-
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Firouzi, 2006), which is likely related to Torsade de Pointes (Malik and
Camm, 2001). Therefore, in 2005, the International Council for
Harmonization included the following in its guidelines for non-
clinical evaluation: “Preclinical Evaluation of the Possibility of
Delayed Ventricular Repolarization (QT-Interval Prolongation) by
Human Medicines (S7B)” (Food and Drug Administration, 2005;
Friedrichs et al., 2005).

Advances in mathematical modeling and computational
simulations of ion channels have made cell reactions and
electrophysiological phenomena understandable and predictable,
meaning they can help predict drug-induced changes. The
mathematical modeling of hERG has also been continuously
developed by (Zeng et al., 1995), (Beattie et al., 2018), and (ten
Tusscher et al., 2004). These mathematical models are completed
by fitting them to experimental data and finding the parameters. The
parameters are important since they provide physiological and
biophysical significance (Pathmanathan et al., 2015). However, the
fitting process is by no means easy. To obtain more accurate model
parameters, many mathematical and statistical methods, such as the
least-squares optimization (Grisetti et al., 2020), the gradient descent
(Ruder, 2016), and the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) (Hansen, 2006; Khan, 2018) have been
proposed and studied. Furthermore, the development of parallel
computing technology and hardware has significantly aided in
problem-solving by further improving the performance of these
methods (Khan, 2018). However, neither method is easy to
completely avoid the local minima problem, and it is time-
consuming depending on the data and model. Mathematically, the
best way to solve these problems is to suggest initial values close to the
true values. Initial values are usually sampled from a particular
distribution associated with the characteristic of the problem or
given based on past experience, but none are perfect solutions.

Deep learning-based artificial intelligence (AI) has recently
made tremendous progress. Great achievements have been made
not only in regression and classification problems but also in the
creative field. For example, in the field of vision and image
processing, convolutional neural network (CNN)-based models
(O’Shea and Nash, 2015), such as ResNet (He et al., 2016),
EfficientNet (Tan and Le, 2019; 2021), and RegNet (Radosavovic
et al., 2020), have shown better performance than humans, and in
the field of time-series like natural language processing, recurrent
neural network (Sherstinsky, 2020), long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997; Sherstinsky, 2020),
and transformer-based models (Vaswani et al., 2017; Lin et al.,
2022) are showing remarkable results.

Medicine and biotechnology also have numerous images and
time-series data. Therefore, various problems can be solved
through deep learning-based AI, and several studies on deep
learning-based analysis are already being conducted. (Alhusseini
et al., 2020; Sevakula et al., 2020; Aghasafari et al., 2021; Jeong and
Lim, 2021; Rogers et al., 2021).

In this paper, we introduce a method to predict the
approximate value of the hERG ion channel model parameters
using a neural network and improve the fitting operation using the
predicted parameters. We confirmed the performance of improved
parameter fitting using the experimental data released by https://
github.com/CardiacModelling/hERGRapidCharacterisation in
(Lei et al., 2019).

2 Methods

Our method is as follows. First, the simulation generates IKr
current data. The generated current data was then converted

FIGURE 1
An overview of our method. A total of 500,000 were generated to train hERGNet, and each data consisted of (IsimKr , θ). The trained hERGNet predicts θ*
through IexpKr obtained by a patch-clamp experiment. Parameter inference is performed using θ* as the initial value.
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into a spectrogram. Next, our parametric prediction network was
trained from the generated simulation data. The experimental
data were used only for the validation and testing of the network.
Using the trained prediction network, nine parameters were
predicted based on the current generated by the patch-clamp
experiment. Figure 1 depicts the overall overview.

2.1 hERG model

In this study, we used the experimental data published in (Lei et al.,
2019, https://github.com/CardiacModelling/hERGRapidCharacterisation).
Therefore, the hERG model and basic settings we use are the
same as those of (Lei et al., 2019). For ease of training

FIGURE 2
The figure above shows the “staircase protocol” introduced in (Lei et al., 2019) and the IKr currents for cells “A01,” “A06,” “B10,” and “K14.”
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and evaluation of our deep learning model, we excluded 11 of the
211 cells, which seemed to have a large difference between
the experimental results and the results produced by the hERG
model. The currents were recorded for the “staircase protocol”
(Figure 2). As shown in the top image in Figure 2, each step is
500 ms, long enough to see the characteristics of IKr. Thus, it is
possible to observe the dynamics at different voltage values. Lei
et al. showed that their protocol provided enough information to
infer true parameters through a synthetic data study (Lei et al.,
2019).

This hERG model with Hodgkin and Huxley style structure used
in this experiment is Beattie’s model (Beattie et al., 2018) slightly
improved by ten Tusscher et al. (ten Tusscher et al., 2004), and IKr is
the same as Eq. (1).

IKr � gKrar V − EK( ) (1)

where gKr is the maximum conductance, and a and r denote
a Hodgkin and Huxley activation gate and an inactivation gate,
respectively. V is the transmembrane voltage. EK is called
Nernst potential or the reversal potential and obtained by Eq. (2).

EK � RT

zF
ln

K+[ ]o
K+[ ]i( ) (2)

where

R ideal gas constant( ): 8.314472 J
K ·mol
[ ]

T absolute temperature( ): 298.15 K[ ]
F Faraday′s constant( ): 96485.3415 C

mol
[ ]

z valency of the ions( ): + 1  for K+

K+[ ]o extracellular concentration( ): 4  mM[ ]
K+[ ]i intracellular concentration( ): 110 mM[ ]

The model has nine parameters θ � gKr, p1, p2, p3,{
p4, p5, p6, p7, p8}, and Figure 3 shows its structure, where

da

dt
� a∞ − a

τa
,
dr

dt
� r∞ − r

τr

a∞ � k1
k1 + k2

, r∞ � k4
k3 + k4

τa � 1
k1 + k2

, τr � 1
k3 + k4

k1 � p1 exp p2V( )
k2 � p3 exp −p4V( )
k3 � p5 exp p6V( )
k4 � p7 exp −p8V( )

where k1 is an activation rate, k2 is a deactivation rate, k3 is an
inactivation rate, and k4 is a recovery rate.

FIGURE 3
The Hodgkin–Huxley model structure. The probabilities for states
CI, I, O, and C are (1 − r)(1 − a), a(1 − r), ar and r(1 − a).

FIGURE 4
(A)Distribution of the nine parameters generated by the two conditions of Eqs 3, 4. The distributions of p1; p3; p5; p7 are very clustered in a specific range.
(B) Data distributions after applying log scale to p1, p3, p5 and p7.
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2.2 Dataset generation

A lot of data is required to train. The best condition for good
performance is the presence of a large amount of experimental
data. However, there are only 200, and it is very insufficient for
learning and testing with them. Even if a large amount of data
exists, fitting work for labeling requires a lot of time and resources,
which is contrary to the purpose of our study. So, we generated a
large amount of data using simulations of the hERG channel to
compensate for the lack of data. The dataset consists of IKr as input
data and nine parameters θ of the hERG model as the target data.
Five hundred thousand data generated by simulation were used for
training. For 200 experimental data, after sorting by name, odd-
numbered data were configured as validation dataset and even-
numbered data were configured as test dataset.

First, parameters for the hERG channel were generated under the
following two conditions. The first condition is that each parameter
follows a uniform distribution within a specific range, as in Eq. (3).

gKr ~ U gmin, g max( )
p1, p2, p3, p4 ~ U a, b( ) (3)
p5, p6, p7, p8 ~ U c, d( )

where U(·) represents a uniform distribution. In this study, for the
conductance gKr, gmin � 100 [pA/V] and gmin � 500000 [pA/V]. For
p1, p3, p5, and p7, a and b are 0.0001 [s−1] and 106 [s−1], respectively.
For p2, p4, p6, and p8, c and d are 0.0001 [V−1] and 400 [V−1],
respectively. The second condition is that each parameter must
satisfy the inequalities of Eq. (4):

0.0167<p1 exp p2*Vmax( )< 106

0.0167<p3 exp −p4*Vmin( )< 106 (4)
0.0167<p5 exp p6*Vmax( )< 106

0.0167<p7 exp −p8*Vmin( )< 106

whereVmin � −0.12 andVmax � 0.06. The lower and upper bounds of
the above conditions were determined by the constraints of physical
and physiological phenomena (Beattie et al., 2018). Figure 4A shows
the distribution of each parameter for 100,000 data generated by the
above conditions.

Second, we used simulations to generate the current IKr
corresponding to the parameters sampled above. Myokit (Clerx
et al., 2016) with CVODE solver (Hindmarsh et al., 2005) was used
for the simulation. The tolerance settings for CVODE were abs_tol =
10–8 and rel_tol = 10–10, as in the condition in (Lei et al., 2019). The
length of the experimental data was 15.4 s with a sampling rate of
5 kHz. In this study, we reduced the data number to 1/50 with
sampling one point every 100 because there seemed to be no
problem reflecting the trend. Because we only used the data
generated by simulations for training, the results of this study
depend on the similarity between the simulation data and
experimental data. Therefore, noises, α, were added to the
simulation data. The noises were extracted from a normal
distribution α ~ N(0, σ2). σ is 10.84, which was measured at the
steady-state current in the experimental data.

IKr
exp ≈ IsimKr + α (5)

where IexpKr and IsimKr represent the experimental and simulated current,
respectively.

2.3 Preprocessing and hERGNet

Our method involves several simple preprocessing processes on the
data for learning. In Figure 4A, The distributions of p1, p3, p5 and p7 are
very clustered in a specific range. To make them as uniform as possible,
the log scale was applied. The min–max normalization was then used to
transform all parameter ranges between 0 and 1, as shown in Figure 4B.

Recurrent neural network (Sherstinsky, 2020) and LSTM (Hochreiter
and Schmidhuber, 1997; Sherstinsky, 2020) series models have been
widely used to analyze time-series data, such as the current data that
we want to analyze, and recently, transformer-based models (Vaswani
et al., 2017; Lin et al., 2022) are leading this field. Since CNN is designed
for the purpose of extracting information between adjacent values of data,
it obtains spatial information well in the local domain (Krizhevsky et al.,
2017). Transformer calculates the relationship between all elements of
input data through attention, so it understands overall features better than
CNN, but is weaker than CNN in extracting local information, and
requires a very large size dataset for this purpose (Dosovitskiy et al., 2020).

FIGURE 5
The structure of hERGNet. The spectrogram of current is converted into 2D data with three channels like the image shape through the CNN encoder,
making it possible to utilize the pretrained EfficientNet.
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We thought our goal was closer to finding changes in the characteristics
and patterns at specific times than predicting the current change over
time. Therefore, we adopted a CNN-based model rather than a
transformer-based model, and among them, an EfficientNet (Tan and
Le, 2019) type model. We called our model hERGNet. Our hERGNet is
very simple, as shown in Figure 5. It consists of a CNN-encoder network
and a pretrained EfficientNetV2-M (Tan and Le, 2021). The CNN-
encoder network extracts the features of the spectrogram and increases
the number of channels to three to obtain an image-like shape, thereby
making it possible to use the pretrained EfficientNetV2-M.

EfficientNetV2-M is responsible for finding parameters by extracting
features from encoded data.

We converted the current into a spectrogram with a frequency
perspective, as shown in Figure 6, so that hERGNet can better learn the
characteristics of the current data. By adding frequency features to
current data consisting of only time and intensity, it has the advantage
of increasing information about data and transforming it into a two-
dimensional form like an image, making it easier for a 2D CNN-based
model to learn. In this study, the parameters “n_fft,” “hop_length,”
and “win_length” of Short-Time Fourier Transform (Owens and

FIGURE 6
Spectrograms transformed from current data for 4 cells.
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Murphy, 1988) for spectrogram transformation were set to 256, 12,
and 48, respectively.

2.4 Training

Mean Squared Error (MSE) was used as the loss function, so the
cost function J(θ) is the same as Eq. (6)

J θ( ) � 1
N

∑N

i�1 fθ xi( ) − yi( ) (6)

where xi is the spectrogram of the current IKr, fθ is the neural
network, and yi is the true parameters of the ion channel.

In general, it is known that the higher the resolution of the
input, the higher the performance. However, the higher the
resolution, the more memory is required, which is time-
consuming to train due to the small batch size. Also, if you
train all the generated 500,000 data from the beginning, the time
will increase even more. Therefore, we first trained the hERGNet
with a small resolution and a small number of data and then
proceeded with transfer learning by increasing the resolution
and the number of data. First, learning was performed on
300,000 spectrograms with a 97 × 97 resolution to
200 epochs. Then, we increased the resolution to 129 ×
129 and performed transfer learning to 140 epochs using all
500,000 data.

FIGURE 7
Prediction results for 100 cells. The parameters for most cells are clustered in a specific range. p6 had the best predictions, while p2 had the worst
predictions.
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2.5 Parameter inference

All fitting operations were the same as those in (Lei et al., 2019),
and their open-source library PINTS (Clerx et al., 2019) was used.
Furthermore, the CMA-ES algorithm (Hansen, 2006; Khan, 2018) was

used as a global optimization algorithm to fit the model to the
experimental data, and Markov Chain Monte Carlo (Jasra et al., 2007)
with adaptive Metropolis (Haario et al., 2001) was used to explore the
posterior probability distribution. Parameter inference was performed
three times based on the initial value for each cell. The first was when the

FIGURE 8
Black is experimental data, and red is simulated current data with parameters predicted by hERGNet. There are some very close predictions, such as
A16 and A22, and results showing differences, such as A19 and G13. However, the flow and shape of the current are somewhat predictable.
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initial value was given as a parameter predicted by our hERGNet, the
second was a prior value, and the last was given as a value randomly
extracted from the previously described parameter distribution.

3 Results

When hERGNet was trained on 300,000 data with a 97 ×
97 resolution until 200 epochs, the best MSE for 100 experimental
data (validation data) was 0.00781. After 140 additional learnings on
500,000 data with an increased resolution to 129 × 129, we identified
MSEs lowered to 0.003035. Then, we tested hERGNet on
100 experimental data not used for learning. The MSE was
recorded as 0.002688, which is better than the results for the
validation dataset. Figure 7 shows the prediction results for
100 experimental data. The fitting test was performed on
50 experimental data out of the 100 test data.

First, when we generated current data with the predicted
parameters, we compared how different it was from the
experimental data as shown in Figure 8. As shown in the two
figures above in Figure 8, the prediction was accurate enough that
no fitting work was required for a significant number of cells.
However, as shown in the two figures below in Figure 8, the
prediction was not perfect, necessitating a fitting operation.

Next, as shown in Table 1, we compared the results when the
initial values were given as parameters predicted by hERGNet, prior
parameters, and random parameters. The results confirmed that our
method significantly improved the fitting operation. The initial value
of hERGNet did not result in a single failure in the fitting operation for
50 cells. However, the prior parameter caused one local minima
problem, and in the random parameter, 16 failures occurred out of
50 fittings, and 11 local minima problems occurred. We compared the
fitting rates for cells that succeeded in parameter inference. As shown
in Table 1, the average iteration was 341.8 in the predicted parameter,
546.4 in the prior parameter, and 601.3 in the random parameter. The
average time was 396.3 s for the predicted parameters, 630.9 s for the
prior parameter, and 686.0 s for the random parameters. Of the
50 cells, all but two, D17 and G13, showed faster fitting rates when
using the predicted parameters.

4 Discussion and conclusion

Parameter inference is an important part of the toxicity evaluation of
drugs because it is possible to understand and predict physiological
changes in cells caused by drugs by predicting the parameters of ion
channels. However, the difficulty of the fitting and the time-consuming
problem make us hesitant to use in silico. In this study, we propose a
method for improving the fitting operation for the hERG channel model
by setting the parameters predicted by hERGNet as initial values. The test
results showed a clear improvement in the hERGmodel fitting. There was

no fitting failure, and the time-consuming problem was also improved.
Depending on the range of parameters, training the neural network
required a lot of data generation and was time-consuming. However, if
experiments are conducted with the same voltage protocol for other cells
in the future, ourmethod could be very useful for inferring the parameters
of ion channels.

Our method still has a lot to improve. The first is to improve the
fitting method rather than simply presenting initial values. This is
because stochastic methods, such as CMA-ES, may not immediately
find optimal parameters due to the characteristics of the method, even
if parameters close to the correct answer are presented. The second is
to increase the similarity between experimental and simulation data,
which is, after all, the most important factor for AI to predict
parameters. We trained our hERGNet only with simulation data. If
the similarity between experimental and simulation data can be
increased through noise removal, etc., the predicted parameters will
be closer to the correct answer.

In fact, our ultimate goal is to predict parameters that are very
close to the correct answer, eliminating the need for model fitting. If
this is possible, a new paradigm will be presented in drug development
or drug toxicity assessment. To this end, we will first conduct a study
on parameter prediction in multiple ion channels. Parametric
prediction for multiple ion channels may aid in greatly reducing
the amount and cost of experiments performed in the non-clinical
stage.
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TABLE 1 When the predicted value by hERGNet was used, there was a great
improvement in the fitting speed.

Predicted Prior Random

Average Iteration 341.8 546.4 601.3

Average Time (s) 396.3 630.9 686.0
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