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Current pest management techniques would benefit from understanding the
behavioural rhythms of the target pest and its body temperature, a critical aspect
not well studied and potentially limiting the effectiveness of biopesticides under
natural conditions. This study aims 1) to understand under natural conditions the
behavioural patterns of different stages of hoppers and adults of Locusta migratoria
manilensis and 2) to identify the environmental factors modulating their body
temperature through field observation. We carried out an intensive field sampling
in two of themain locust breeding regions in China, recording the body temperature
(day and night), morphological traits (stage, sex and size) and microhabitat of
953 individuals. The results revealed that locusts preferred the ground as their
main activity subhabitat, particularly for hoppers. Adults tended to move upper in
the reed canopy at two peaks (10-11 h and 14-15 h). Locusts body temperature
during daytime increased with development stage and size, while the opposite
pattern occurred during night time. Entompathogenic fungi are more effective if
the body temperature of the target pest is in a proper range without too high or too
low. Application of biopesticides should focus on younger locusts spraying in the
morning or at dusk as the locusts have lower body temperatures.
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1 Introduction

Locust plagues cause problems globally in almost all ecosystems except the forest and
tundra belts in the north and the equatorial forests. Heavy locust infestations have been often
reported in various parts of the world causing enormous damage to agriculture and the
environment but without a constant pattern. For instance, locust swarms were reported causing
damage to agriculture in New South Wales, Australia in 2015 (Jurd, 2015). Due to the high
potential hazard, all countries inWest Africa continue maintaining a high standard of reporting
that is the basis for the global Desert Locust early warning system. Desert locust, Schistocerca
gregaria (Forskål), has been causing serious problems in areas about 29 million km2 from the
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Atlantic Ocean in the west to India and Pakistan in the east, and
comprising the entire area or parts of 64 countries (Harb, 2009). In
China, locust’ populations have been stable and no major outbreaks
have occurred in recent years. Nevertheless, there are still localised
spots of high locust density in marshlands of Jilin, Shanxi and
Shandong Provinces (Yang et al., 2018). Specifically, Oriental
migratory locust, Locusta migratoria manilensis, is one of the key
locust species in China occasionally causing destructive outbreaks
both in frequency and scale (Xia and Huang, 2002).

Chemical pesticides are the main intervention used against locusts
and grasshoppers. Extensive applications of insecticides, particularly
organophosphates, have inevitably resulted in the development of
resistance in natural populations of the locusts and damage to
biodiversity (Zhang, 2011). Preventive management and usage of
biopesticides are garnering increasing attention from the
government as partial alternatives for chemical pesticides (Ndolo
et al., 2019). Many studies of locust biocontrol made great
progress, and alternative microbial biopesticides such as those
based on entomopathogenic fungus (EPF) greatly reduce the risk of
resistance and pollution. Metarhizium acridum is an EPF with a
narrow host range comprising locusts and grasshoppers, and
proofed that M. acridum strains had a strong virulence to L. m.
manilensis (Cao et al., 2016). Strains of M. acridum have been
developed as biopesticide against locust and grasshoppers
worldwide in Africa, Australia, China, Brazil and Mexico
(Bateman, 1997; Driver et al., 2000; Peng and Xia, 2011; Maute
et al., 2015), including Isolate IMI 330189 marketed as Green
Muscle®, IMI189.

Conidia ofM. acridum require suitable environmental conditions in
terms of humidity and temperature to survive and germinate to infect the
insect host. The internal temperature of the locust strongly influences the
rate of fungal development and the ultimate time to death of the insect
(Klass et al., 2007). Studies investigating the relationship between
temperature and rate of growth of fungal pathogens have shown that
there is a non-linear relation between EPF development and temperature
with the lower development threshold for M. acridum reported around
10–12°C and the upper around 35–37°C (Smits et al., 2003; Klass et al.,
2007; Yao et al., 2007). Above the upper development threshold, growth
of the fungus is halted until temperatures fall below the threshold. The
optimal growth rate has been shown to be around 28°C. There are many
examples of temperature-dependent mortality rates for EPFs used in the
biocontrol of insect pests (Doberski, 1981; Carruthers et al., 1985). These
findings suggest that environmental conditions are an important factor to
the success of microbial control and brings into question the assumption
of constant time to death irrespectively of the context. Furthermore,
many grasshoppers and locusts can behaviourally regulate their body
temperature well above ambient over large parts of the day during sunny
conditions (Chappell and Whitam, 1990). This behaviour has been
shown to slow disease incubation and confer significant survival
advantage (Carruthers et al., 1992; Inglis et al., 1996; Blanford et al.,
1998; Blanford and Thomas, 1999a; b). In field trials, mortality does not
usually occur earlier than 6 days after spraying and may take longer
(Bateman, 1997). Speed of kill is influenced strongly by dose and
environmental conditions and their insect hosts, e.g., internal body
temperatures of the host insect. Therefore, to encourage the wider use
of biopesticides, it is vital to understand how the locust body temperature
fluctuates under different habitats and locust characteristics, so that
biopesticide spraying can take place when conditions are most favourable
to the pathogen.

The body temperature of locusts and grasshoppers is influenced by
microclimate, adjacent vegetation, terrain and weather including solar
radiation, wind and clouds (Willmer, 1982; Coxwell and Bock, 1995).
Moreover, their posture, body colour can also lead to different body
temperatures under the same environmental conditions (Stevenson,
1985; Jong et al., 1996; Miller and Denny, 2011). Most insects, such as
locusts and grasshoppers, have limited capacity to internally regulate their
body temperature and mainly rely on the surrounding environment
(Angilletta, 2009). Microhabitat selection is predicted to have the greatest
effect on an ectotherm’s temperature (Stevenson, 1985). Temperatures of
plant canopy exert the principal effect on body temperature of L. m.
manilensis, especially the ground temperature (Liu et al., 2018).

Although previous laboratory work (Blandford and Thomas, 1999a;
Arthurs and Thomas 2000; Yao et al., 2007; Yue et al., 2010; Liu et al.,
2019) has expanded our knowledge and provided an invaluable
information about the relation between temperature and the
effectiveness of EPFs on insect control, there is a need for
complementary studies involving more realistic environmental
conditions. Behavioural and physiological rhythms in a natural
setting remain relatively unexplored for many species, which will
provide valuable insights into the precise pest control including time
and target location of field treatments (Miyata, 2011). Here, we use L. m.
manilensis in the main breeding regions of China as a case study to
understand daily activity rhythms and behaviour of L. m. manilensis
under real field conditions via the detection of body temperature and
locust traits.We conducted extensive field surveys recording locust body
characteristics and habitat in two key locust breeding zones, which were
lake-reservoir type/wetland and coastal type of locusts breeding habitats
on the east coast of China. Specifically, we aimed to answer the following
questions: 1) do locust prefer different reed habitat across development
stage and location? 2) how body and ambient temperature fluctuates
during the day across locations? 3) does body temperature differ across
study area, development stage, reed habitat, sex, and body length? Upon
the strength of these relations, we could generalize body temperature
patterns of locusts across different locations under similar habitat
condition. We further discuss how these results may help to tailor
the biopesticide product treatment based on environment
characteristics, in order to improve the efficacy of the control measures.

2 Materials and methods

2.1 Study zones

Two experimental zones were selected, which represent lake-
reservoir type/wetland and coastal type of locusts breeding habitats
on the east coast of China (Figure 1): Dagang (DAG) and Dongying
(DON). Dagang study area was located in the North Dagang Reservoir
area at the southeast of Tianjin City. There is an area of approximately
45,000 ha suitable for locusts (Fan et al., 2010). Dongying study area
corresponds to the Yellow River Delta area (Kenli district, Shandong
Province, China). This area is a long-known breeding area for locusts
in China, and the Kenli district is one of the key locust regions, where
there are approximately 148,000 ha suitable for locust occurrence (Hu,
2018). The main soil types in both regions are tidal soil, saline soil and
coastal saline. Local farmers will choose slight alkaline land to plant
agricultural crops, such as maize, rice, peanut, or establish ponds to
culture lotus and feed fish and shrimps in the wetland. These two
zones belong to non-agricultural land, and are full of bulrush and
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gramineous vegetations, and the dominant plants in the experimental
areas are Phragmites australis, mainly associated with Suaeda glauca,
Alternanthera sessilis, Cynodon dactylon and Aster subulatus. L. m.
manilensis is the main locust species in both zones producing up to
two generations a year. We selected similar sites in terms of vegetation
for both zones: four in Dagang and two in Dongying (Figure 1).

2.2 Body temperature and insect traits
sampling

Data were collected in Dagang during summer 2016 and in
Dongying in summer 2017 (i.e., June, July and August). We
conducted two different survey methods, during the day (6:00–18:59)
and night time (19:00–5:59). During day time we collected the insects in
open field conditions either hand caught or trapped in a small sweep net.
Each site was visited weekly until at least five insects were recorded per
hour. During the night, due to safety reasons, we were not able to sample
in open field conditions. Thus, about 100 locust nymphs were collected
in advance during the day and placed in a cage (2 m× 2 m× 2 m) with
natural reedbed vegetation at a field station (Figure 1). For practical

reasons, we could only carry out this night experiment in Dongying
area. A minimum of 10 insects per hour were hand caught randomly
chosen from the cage. A total of 645 and 308 locusts were collected
during day and night sampling respectively.

In both day and night surveys, internal body temperatures were
recorded using a 0.125 mm diameter copper thermocouple connected
to a hand-held, fast response, digital thermometer (type 0.1°C
resolution, 5 s response time, −0.1 mm diameter; Eutech
Instruments). For each insect caught, we made a small hole in its
thorax with the tip of a 0.22-mm diameter hypodermic needle
(Blandford et al., 1998). A thermocouple was then inserted to a
depth of 2 mm and a reading taken at the point the temperature
stabilized. Insects were discarded and recordings were not taken when
capture and/or length of time for the recording to be taken was felt to
have affected the real body temperature (10–12 s after capture).
Generally, insects were processed within 5–7 s of capture. Besides
internal body temperature, we also recorded the time (H:M) of each
record, the ground temperature and position in the vegetation where
the insect was collected (Day: ground, canopy, top and flying; Night:
ground, canopy, net). Finally, for each insect we recorded the body
length, stage (instar three to five and adult), and sex (female, male).

FIGURE 1
Map of study areas (Dagang and Dongying) on the East coast of China.
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2.3 Data analyses

We studied the subhabitat preference of locust in the reed habitat
(e.g., ground, canopy, top and flying) in relation to locust traits
(development and sex) and time using contingency tables and
conditional extended mosaic plots (Zeileis et al., 2007) using the
package vcd in R (Meyer et al., 2006). This type of plot shows an
area proportional visualization of a table of expected frequencies. It is
composed of boxes, with size proportional to the corresponding
frequency entry, given the dimensions of previous splits. The
shading in the plots visualizes the Pearson residuals representing
the standardized deviations of the observed frequencies from
expectations. The blue and red colour show respectively significant
deviations (p < 0.05) above and below the expected frequencies.
Finally, we also computed the sum-of-squares test of independence,
based on the permutation distribution of 1000 iterations. Significant
test (p < 0.05) rejects the null hypothesis of independence (Zeileis et al.,
2007).

The linear mixed models were used to understand the relation
between body temperature and the factors of interest: study area
(only day data), development stage (instar-adult), position in
vegetation, sex and body length. Prior to the models, we analysed
the correlation between the factors to avoid collinearity. Body length
was highly correlated with development stages and sex: higher size
for females and older stages (see Appendix). Thus, we performed
two sets of models, first with sex and stages and second with body
length. For the first set of models, differences of internal body
temperature during the day across study area (provinces),
position, development stage (instar-adult) and sex was compared

in a linear mixed model including as random effects site. We also
included ground temperature as fixed effect to control for ambient
temperature experiencing each individual locust. The distribution of
errors was modelled as a Gaussian function with identity link. A
similar linear model was implemented for the night survey but only
for the study site available, thus without random effect for site.
Significant differences among levels of each factor were tested using
a post-hoc normal host z test (asymptotic t test) using Tukey
procedure. We repeated the same procedure using a similar
structure of linear mixed models for day and night datasets but
only including body length instead of sex and development stage. All
analyses were performed in R 4.2.1 using packages multcomp,
lme4 and lmerTest.

3 Results

3.1 Subhabitat preference of L. m. manilensis
in natural ecosystem

L. m. manilensis significantly preferred the ground as their major
activity subhabitat in both locust breeding regions (Figure 2). Adults
showed higher variable preference on their subhabitat significantly
preferring higher positions in the vegetation (Figure 2). This pattern
was particularly relevant in Dagang while in Dongying most insects
preferred the ground irrespectively of their developmental stage
(Supplementary Figure S1).

The insect behavior was variable during daytime, although
there is a significant trend to prefer ground subhabitat

FIGURE 2
Conditional mosaic plot based on the contingency table with the number of locust records in Dagang (top) and Dongying provinces (bottom) per vegetation
position (y-axis) and development stage (x-axis) in daytime. The color gradient indicates the Pearson residuals representing the standardized deviations of the observed
frequencies from expectations. The blue and red colors indicate the combination of categories statistically significant at 95% confidence level (α = 0.05) respectively
above and below their expected frequencies. Boxes for the vegetation variable are ordered from ground to flying position (G - ground, C- canopy, T-top and
F-flying). The p-value at the right bottom corner indicates the χ2 test of independence, based on the permutation distribution.
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particularly for instars (Figure 3; Supplementary Figure S2).
Adults showed one clear peak of activity at 10:00 showing
significantly less preference for the ground subhabitat.
Interestingly, adults showed higher flying activity during

midday (Figure 3; Supplementary Figure S2). During night
time, the preferred subhabitat for locusts was the plant canopy
with a sharp increase towards the ground just before sunrise
(Supplementary Figure S3).

FIGURE 3
Conditional mosaic plot based on the contingency table with the number of locust records for all instars (left figure) and adults (right) in daytime. For each
development group it shows the departure from expectations per vegetation position (y-axis) and hour (x-axis). See details in Figure 2.

FIGURE 4
Conditional mosaic plot based on the contingency table with the number of locust records for female (left figure) and male (right) in daytime. For each
development group it shows the departure from expectations per vegetation position (x-axis) and hour (y-axis). See details in Figure 2.
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During day time, both female and male showed a similar
behaviour pattern (Figure 4; Supplementary Figure S3). They
tended to significantly prefer higher positions in the vegetation at
two peaks (10:00–11:00 h and 14:00–15:00 h). Interestingly, males
moved up earlier in the morning and later in the afternoon.
During night time, both sexes preferred the canopy as their main
subhabitat (Supplementary Figure S4).

3.2 The diurnal pattern of internal body
temperature of L. m. manilensis in two
different zones

The mean body temperature during the day was 38.42°C
(±3.52 SD; Min: 28.7; Max: 47.2) while during the night body
temperature was 28.23°C (±1.65 SD; Min: 24.7; Max: 37.8). Internal
body temperature of L. m. manilensis showed a characteristic
diurnal pattern reaching rather constant minimum temperatures
during the night and reaching maximum peaks at mid-day with
high variability (Figure 5). Locust body temperature was
consistently higher than ground ambient temperature,
particularly during night time (Figure 5). This pattern was
consistent in both study areas (Figure 5). According to the
linear mixed model, body temperature was significantly related
to ground temperature (p < 0.0001).

3.3 The relationship between locust traits and
internal body temperature of L. m. manilensis

During day time, mean internal body temperature increased with
the development stage of the insect (Figure 6). Adults, 4th and 5th
instars showed higher temperature than 3rd instars (p < 0.05,
Figure 6). In contrast, mean body temperature between locust sex,
study areas and position at the vegetation did not show significant
differences.

The pattern during night-time was clearly different than for the day
(Figure 7). Body temperature decreased with development stage, with
adults and 5th instar showing lower temperature than younger instars.
Males showed higher body temperature than females, but there was no
significantly difference found. Locusts in the canopy showed higher

temperature than at ground (Figure 7). Body and ground temperature
were positively related for day (beta: 0.34, t value: 18.57, p < 0.001) and
night sampling (beta: 0.64, t value: 4.05, p < 0.001).

Body length was significantly related to body temperature
(Figure 8), with a positive trend during the day (beta: 0.55, t value:
4.07, p < 0.001) and negative during the night (beta: −1.08, t value:
−6.44, p < 0.001).

4 Discussion

Ectotherms are intrinsically affected by fluctuations in ambient
temperature, as the latter determines the rate of biochemical and
physiological reactions including the development of both the host
and the pathogen. Thus, the study of body temperature in insects is not
only important for ontogeny, but also critical for improvement in the
control effect of biopesticide and sustainable pest management.
Previously studies implied that the body temperature of L. m.
manilensis was a similar tendency for variation of natural
subhabitat ground temperature (Liu et al., 2018). Similarly, the
body temperature of Oedaleus decorus asiaticus (Bey-Bienko)
increased/decreased with increases/decreases inground temperature,
respectively during the daytime (Cheng et al., 2022). This study
identified under natural conditions, how subhabitat and species
traits modulate L. m. manilensis internal body temperature across
two separate study breeding regions in China. These results are
extremely relevant to improve tailored biopesticide applications
taking advantage of habitats frequented and traits that modulate
internal body temperature.

The results showed that L. m. manilensis preferred the ground as
their major activity habitat regardless of the locust breeding regions.
Only adults showed a distinct pattern to move upwards in the
vegetation during short periods of time during the day. This
behaviour is essential to survive as they have limited capacity to
internally regulate their body temperature and mainly rely on the
surrounding environment (Angilletta, 2009). During the day the
Oriental migratory locusts showed two peaks of activity where it
tended to climb the vegetation. Specifically, locust chose to move up
after sunrise resting at mid and top of the canopy, and then moved
back to the shade at noon possibly to avoid injury due to high
temperature. Finally, once the ambient temperature was cooling

FIGURE 5
Diurnal pattern of locust body temperature (red) and ground temperature (blue) in the two study areas: Dagang (left) and Dongying (right). For each hour
the plot indicates the mean (line) and confidence intervals (i.e., standard error).
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down, the locusts left the ground and moved up in the canopy with a
peak around 15:00 h in the afternoon. This behavioural pattern is
characteristic of other diurnal insects. For instance, Ellis and Ashall,
(1957) noted that bands of hoppers of S. gregaria had a definite diurnal

pattern of behavior. Before dawn, the hoppers were mainly roosting
and again during the hottest part of the day, most of them roosted
(Ellis and Ashall, 1957). Chapman (1959) also found a similar pattern
for Red locust, Nomadacris septemfasciata (Serville). In the morning

FIGURE 7
Boxplots of internal body temperature of Locustamigratoriamanilensis, instar, sex and position at night-time (raw data 19:00–05:59). Letters above each
level indicate significant differences (p < 0.05) between levels in a mixed model including all indicated factors and controlling by hour.

FIGURE 6
Boxplots of internal body temperature of Locusta migratoria manilensis across provinces (DAG-Dagang, DON-Dongying), instar, position and sex
(F-female, M-male) at daytime (6:00–18:59). Letters above each level indicate significant differences (p < 0.05) between levels in a mixed model including all
indicated factors and controlling by ambient temperature and site.
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and evening, all the locusts inhabit higher plants, which may be related
to the increase of light intensity and the decrease of environmental
temperature.

During the night, locusts in this study preferred the canopy as
main resting habitat. In a similar context to our study, Cheng et al.
(2020) found that the position of the Oriental migratory locust was
different in different times of the day. In contrast to daytime, locusts at
night preferred the canopy as resting subhabitat. Specifically, Cheng
et al. (2020) found that during night, the Oriental migratory locust
preferred to choose the place higher than 60 cm. Chapman (1959) also
found that N. septemfasciata inhabited higher plants all night.
Similarly, the hoppers of Moroccan locust, Dociostaurus
maroccanus (Thnb.), remained on or near the ground during the
day, moving to the top of the plants at night (Uvarov et al., 1951). In
contrast, Senegalese grasshopper, O. senegalensis (Krauss), was
observed feeding in the evening, and spent the night on the ground
in India desert (Chandra, 1983).

Regarding sex differences in habitat preference, this study results
implied that both female and male tended to show similar behaviour.
However, the proportion of female adults preferred to the lower part of
the plant comparing the male adults of O. d. asiaticus and Calliptamus
abbreviates (Ikovnnikov). The female adults of Euchorthippus unicolor
(Ikonnikov) preferred to choose the upper and top parts of plants
more thanmale adults (Bai et al., 2014). The reason would be related to
the different locusts requesting different habitat and hosts. The
physiological needs driven their movement. In general, the locusts
were plentiful in breeding grounds in the plain where female locusts
were ovipositing (Uvarov et al., 1951).

The differences in internal body temperature are mainly related to
the species traits (i.e., size and development stage) irrespectively of the
breeding region or position preference at reed vegetation. Both
selected breeding regions, North Dagang Reservoir area at the
southeast of Tianjin City and the Yellow River Delta area, are two
of the main areas in east coast China prone to the migratory locust
plagues, where the central government and local governments
established long-term monitoring and management scheme.
Despite the distance between the regions, both areas share similar
vegetation, geographical context and availability of natural breeding
habitat determining the occurrence of the oriental migratory locust.

Thus, the physical process that links ambient and internal body
temperature through locust morphological traits seems to be
constant across these characteristic locust breeding regions in east
coast China. This pattern implied that the comprehensive body
temperature of locust in one habitat region may represent the cases
in similar habitats, and can provide enough fundamental information
to establish the biopesticide model to precisely control.

Themain factor affecting the average body temperature of locusts was
development stage. At night, position at the vegetation was also a key
factor affecting the average body temperature of locusts. These patterns
arose once fluctuation in ambient temperature was controlled (i.e., ground
temperature) indicating that endogenous traits such as development age
have a clear relevance in how locust thermoregulates in relation to the
surrounding temperature. Thomas and Blanford. (2003) also identified
that some internal characteristics of insects can affect insect
thermoregulation, such as body length, age, sex, colour. Similarly, we
also identified a significant relation between body length of L. m.
manilensis and internal body temperature. In fact, body length or size
are factors to absorb the energy from the ambient. Body size is a major
trait that impacted on nearly all aspects of an individual’s life history
(Woodward et al., 2005; Brose, 2006). Furthermore, as ectotherms
increase in size, solar radiation will raise their body temperature
further above the ambient temperature due to the reduced effect of
convection on larger organisms (Porter and Gates, 1969; Stevenson,
1985). This explanation is plausible for the pattern observed during
daytime, where bigger individuals heated by the Sun light showed
higher average body temperature than smaller ones. In adults, the
prediction of increased body temperature with increased size has been
confirmed by comparison across many different insect species (Willmer
and Unwin, 1981). As for developmental size change, early work on the
desert locust, S. gregaria, suggested increased body temperature between
the first and last instars (Stower and Griffiths, 1966), and more recent
work on Manduca sexta (L.) clearly demonstrates this pattern across all
larval stages (Woods, 2013).

We would expect a similar pattern between body temperature and
size during the night time. As body size affects the rate of heating and
cooling, larger animals should show higher thermal inertia than
smaller ones (Stevenson, 1985). Thus, we would expect larger
animals that have been heated during the day to keep their

FIGURE 8
Scatterplots of the relation between body temperature of Locusta migratoria manilensis and body length at day (left plot) and night (right plot). Black line
shows the fitted linear mixed model for the Dongying region and average ground temperature.
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temperature higher than smaller individuals. Nevertheless, the night-
time data showed the opposite pattern, with a decrease in body
temperature with body size. A possible explanation for this finding
is the behavioural change across development stages. In fact, not only
does body size directly affect body temperature (Stevenson, 1985;
Woods, 2013), but size should also alter thermoregulatory behaviour,
with subsequent indirect changes in body temperature. It is possible
that adults, with higher mobility than other instars, are able to track
changes in microhabitat temperature moving to specific areas where
temperature is more suitable for development or indirectly to escape
predators.

The activity pattern may provide the useful information for field
spray good timing. We have identified main characteristics in daily
variation of L. m. manilensis subhabitat preference and the main
factors affecting their internal body temperature. Based on these
findings, the application of biopesticides should focus on younger
locusts at dawn or dusk when temperatures tend to be lower and
temperatures more suitable for EFP development. This will help
biopesticides play their roles and minimize the risk of outbreak
escalation. In addition, the advanced technology against crop insect
pests and diseases including the Earth observation, agricultural Apps,
generally demanded the ground truth data of the pests. It is not
possible to carry out all the collation everywhere, thus the results of
this study contribute to the efficacy of biopesticides, and predict such
variability in the performance of fungal biopesticides increasing
confidence in their use.
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