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Objectives: We developed ultrasound (US) image-based convolutional neural
networks (CNNs) to distinguish between tubal-ovarian abscess (TOA) and ovarian
endometriosis cyst (OEC).

Methods: A total of 202 patients who underwent US scanning and confirmed tubal-
ovarian abscess or ovarian endometriosis cyst by pathology were enrolled in
retrospective research, in which 171 patients (from January 2014 to September
2021) were considered the primary cohort (training, validation, and internal test sets)
and 31 patients (from September 2021 to December 2021) were considered the
independent test cohort. There were 68 tubal-ovarian abscesses and 89 OEC, 4 TOA
and 10 OEC, and 10 TOA and 21 OEC patients belonging to training and validation
sets, internal sets, and independent test sets, respectively. For the model to gain
better generalization, we applied the geometric image and color transformations to
augment the dataset, including center crop, random rotation, and random horizontal
flip. Three convolutional neural networks, namely, ResNet-152, DenseNet-161, and
EfficientNet-B7 were applied to differentiate tubal-ovarian abscess from ovarian
endometriosis cyst, and their performance was compared with three US physicians
and a clinical indicator of carbohydrate antigen 125 (CA125) on the independent test
set. The area under the receiver operating characteristic curves (AUROCs) of
accuracy, sensitivity, and specificity were used to evaluate the performance.

Results: Among the three convolutional neural networks, the performance of
ResNet-152 was the highest, with AUROCs of 0.986 (0.954–1). The AUROCs of
the three physicians were 0.781 (0.620–0.942), 0.738 (0.629–848), and 0.683
(0.501–0.865), respectively. The clinical indicator CA125 achieved only 0.564
(0.315–0.813).

Conclusion: We demonstrated that the CNN model based on the US image could
discriminate tubal-ovarian abscess and ovarian endometriosis cyst better than US
physicians and CA125. This method can provide a valuable predictive reference for
physicians to screen tubal-ovarian abscesses and ovarian endometriosis cysts
in time.
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1 Introduction

Annually, pelvic inflammatory disease (PID) accounts for over
700,000 cases in the United States (Gradison, 2012). A tubal-ovarian
abscess (TOA) is a complex, severe, acute-onset complication of PID
caused by the infection of the female upper genital tract, found in
15%–34% of patients (Mohammad et al., 2022). Delayed diagnosis
contributes to inflammatory sequelae, including infertility, ectopic
pregnancy, and chronic pelvic pain (Curry et al., 2019). If the abscess
ruptures, it can cause more acute and severe complications such as
acute diffuse peritonitis or sepsis, which can be life-threatening
(Brunham et al., 2015). Ovarian endometriosis cyst (OEC) is the
main presence of endometrial-type mucosa and stroma outside the
uterine cavity (Vercellini et al., 2014). It is primarily ectopic to the
ovary and is a chronic inflammatory disease dependent on estrogen,
affecting women in their reproductive years and producing clinical
symptoms similar to TOA. In contrast to TOA, its progression is
relatively slow, and the prognostic risk is much lower than that of
TOA. Therefore, early differential diagnosis and timely intervention
treatment play a crucial role in patients’ overall course of treatment.

Ultrasound (US) is often regarded as the first-line imaging
examination method due to its many advantages, such as low cost
and non-invasiveness. The atypical sonographic appearance of TOA is
often confused with other cystic masses, especially OEC. Because both
of them frequently occur in the ovary and its surrounding fallopian
tubes, they are cystic masses with poor sound transmission (absence of
color Doppler flux within the cyst) and adhesion to the surrounding
tissues. Another report showed that TOA originating from non-
gynecological diseases might remain challenging to differentiate
from OEC on computed tomography (CT) (Revzin et al., 2016).
Therefore, this problem has caused a dilemma for clinicians to
some extent.

Convolutional neural networks (CNNs) are frequently used for
imaging tasks in deep learning. By combining different numbers of
transformation methods (data augmentation and attention
mechanism), CNNs’ learning ability can be enhanced and used to
solve practical problems well (LeCun et al., 2015). It has been widely
reported that CNNs have been applied for classification tasks in
medical images (Anwar et al., 2018; Liang et al., 2020; Che et al.,
2021). Liang et al. (2020) showed that using segmented ultrasound
images can improve the performance of CNNmodels for the diagnosis
of breast and thyroid nodules. Moreover, CNN not only can be applied
to medical images (Rahaman et al., 2020) but also performs well in
histopathology images (Chen et al., 2022b; Chen et al., 2022c; Li et al.,
2022), microorganism images (Zhang et al., 2021; Zhao et al., 2022),
and cell image and video analysis (Chen et al., 2022a; Liu et al., 2022).
Therefore, we aim to determine whether the CNN models can
precisely differentiate TOA from OEC on US images to assist
physicians in making decisions in the clinic.

2 Materials and methods

2.1 Subjects and datasets

The Institutional Review Board approved this retrospective study,
and the requirement to obtain informed consent was waived. We
retrieved the pathological database from January 2014 to September
2021 in our institution. The patients with histologically confirmed

TOA or OECwere enrolled in our study as a primary cohort. A total of
157 patients were involved in the training and validation sets, and
14 patients were involved in the internal test set. In addition, from
September 2021 to December 2021, we included 31 patients as an
independent test cohort. Figure 1 summarizes the selection process of
the patient cohort in the current study. The basic characteristics of the
patients, including age, weight, lesion diameter, tumor marker,
biochemical examination, and US diagnosis reports, were collected
from the medical record. To ensure that the CNN models could learn
better feature information from the images, three or four of the most
typical US images of each patient were selected by an ultrasound
physician with more than 10 years of experience for further analysis.

2.2 US image data acquisition protocol

All subjects were positioned in the lithotomy position with the
vulva exposed for continuous multi-section scanning of the uterus,
cervix, and ovary using an ACUSON Sequoia system (Siemens
Healthineers, Germany) or LOGIQ (GE Healthcare, United States)
ultrasonic diagnostic system. All equipment has the default
gynecological examination mode, equipped with 3.5–6.0 MHz
convex array probes and 7.5–12 MHz intracavitary (transvaginal)
probes. These examinations were performed by three
ultrasonologists with at least 5 years of clinical experience. The US
images were saved in the Joint Photographic Experts Group (JPEG)
format in the picture archiving and communication system (PACS)
workstation. Figure 2 shows the sample dataset image in this study.

2.3 Data pre-processing

Data augmentation is the most common strategy for a limited
dataset (Wang et al., 2021), which can increase the dataset up to ten
times its original scale via random geometric image and color
transformations. Our study used a package named “Torchvision” to
perform data augmentation, including center crop, random rotation,
random horizontal flip, random vertical flip, and random color jitter
(brightness, contrast, saturation, and hue). On the one hand, this
strategy can ensure that the model pays more attention to the lesions
rather than the noise information. On the other hand, the data
augmentation method can also help avoid network overfitting and
learn more details of the image on the training dataset (Kayalibay et al.,
2017). We resized the image to 224 × 224 pixels to standardize the
distance scale and meet the input requirement of the model.

2.4 Deep learning model construction,
training, and validation

Nowadays, CNNs are the most popular type of deep learning
frameworks for medical image analysis (Litjens et al., 2017). There is
also no doubt over the remarkable performance delivered by CNNs in
the classification tasks of the medical imaging field. The classical CNN
models included AlexNet (Krizhevsky et al., 2017), VGG-16/19Net
(Simonyan and Zisserman, 2014), and residual neural network
(ResNet) (He et al., 2016).

In this research, three CNNs were pre-trained via the ImageNet
natural image library (http://www.imagenet.org/) and were used to
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deploy and differentiate TOA from OEC based on US images,
including ResNet-152, DenseNet-161, and EfficientNet-B7.

The weights of the model learned from natural images may not be
directly suitable for medical images. Therefore, we used transfer
learning for the analysis of ultrasound images. CNNs with pre-
trained weights were used to fine-tune our training and validation
sets. The best parameters of the CNN models were selected via the
highest accuracy on the validation set. The stochastic gradient descent
(SGD) optimizer with 0.9 momentum trained the network. The batch
sizes were 166, the epochs were 300, and the learning rate was 0.01. It
was always a better choice for the classification task to use the cross-
entropy function as the loss function. The use of batch normalization
has many advantages. For example, 1) it can accelerate the training
speed of the network, solving the problem of gradient vanishing and 2)
it can improve the network’s generalization ability, reducing the
overfitting phenomenon but not relying on regularization methods

such as dropout/L2. We changed the last fully connected layer of the
network from 1,000 to 2 to accommodate our task.

Internal and independent test sets were used to assess the
generalization of the CNNs. The output of the CNN models was
regarded as predicted probability, and we chose the class of the highest
probability as the prediction outcome. As mentioned previously, there
were multiple images from each patient which could cause an
inaccurate overcount of the sample size and would falsely decrease
the estimated uncertainty. In order to remove this phenomenon, a
common way is to take the average output prediction from images as
an individual probability, which produces a more robust estimation.
We also used the clinical indicator CA125 for further comparison.
Moreover, we invited three ultrasound physicians with more than
10 years of experience to implement a reader test. The performance of
the reader test, CA125, and CNN models was compared on an
independent test set.

FIGURE 1
Inclusion workflow of subjects in this study.

Frontiers in Physiology frontiersin.org03

Hu et al. 10.3389/fphys.2023.1101810

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1101810


2.5 Statistical analysis

The area under the receiver operating characteristic curves
(AUROCs), accuracy, sensitivity, specificity, true-positive rate
(TPR), false-positive rate (FPR), true-negative rate (TNR), false-
negative rate (FNR), positive predictive value (PPV), negative
predictive value (NPV), and F1-score were used to evaluate the
performance of the CNN models, sonographers, and CA125. The
comparison of different AUROCs was carried out using the DeLong
test (DeLong et al., 1988), and p < 0.05 was considered a significant
statistical difference. The Shapiro–Wilk test was used to evaluate
continuous data distribution. If the data presented normal
distribution, the t-test was used; otherwise, the Mann–Whitney
U-test was used. The data with normal distribution were indicated
by the mean ± SD, and the data with non-normal distribution were
indicated by the median (IQR). The statistical analysis was conducted
using R software version 4.1.2 (https://www.r-project.org/). The
construction, training, and testing of the CNN models were carried
out under the PyTorch framework version 1.9.0 (https://pytorch.org/)
of Python version 3.8 (http://www.python.org/). The computer core
hardware used in this study includes a CPU with Intel Core 12th Gen
i9-12900K, a GPU with Nvidia RTX 3060 Ti 8 GB, and a RAM with
Kingston DDR4-3600 64 GB.

3 Results

3.1 Patient characteristics

A total of 202 patients were enrolled in this study, of which
171 patients belonged to the primary cohort (training, validation, and
internal test sets) while 31 patients (TOA patients, n = 10; OEC
patients, n = 21) belonged to the independent test cohort. The training
and validation sets included 68 TOA and 89 OEC patients, and the
internal test set included 4 TOA and 10 OEC patients. We obtained
456 images from the training and validation sets, 43 from the internal

test set, and 94 from the independent test set. The median age was 40
(33, 47) years (range, 20–60 years) for the training and validation sets,
the mean age was 41.79 ± (6.92) years (range, 28–51 years) for the
internal test set, and the median age was 38 (27, 44) years (range,
20–48 years) for the independent test set. The details of the patient
characteristics are given in Table 1.

3.2 Performance of three CNN models,
ultrasound physicians, and CA125

Our model was trained on the training set with 2840 US images
(355 original US images from the training set multiplied by the eight
types of the data augmentation strategy). We first verified the
predictive ability of the different CNN models on the internal test
set, and ResNet-152 achieved an ideal performance to distinguish
TOA andOEC patients, with AUROCs of 1 (95%CI: 1–1), an accuracy
of 1 (0.785–1), a sensitivity of 1 (0.510–1), and a specificity of 1
(0.722–1). DenseNet-162 achieved diagnostic performance with
AUROCs of 0.975 (0.906–1), an accuracy of 0.929 (0.685–0.996), a
sensitivity of 1 (0.510–1), and a specificity of 0.9 (0.596–0.995).
EfficientNet-B7 achieved diagnostic performance with AUROCs of
0.925 (0.760–1), an accuracy of 0.929 (0.685–0.996), a sensitivity of
0.750 (0.301–0.987), and a specificity of 1 (0.772–1).

Second, we verified the performance of different CNN models on
the independent test set. For ResNet-152, the AUROCs, accuracy,
sensitivity, and specificity were 0.986 (95% CI: 0.954–1), 0.968
(0.838–0.998), 0.9 (0.596–0.995), and 1 (0.845–1), respectively. For
DenseNet-161, the AUROCs, accuracy, sensitivity, and specificity
were 0.924 (0.791–1), 0.903 (0.751–0.967), 0.9 (0.596–0.995), and
0.905 (0.711–0.973), respectively. For EfficientNet-B7, the
AUROCs, accuracy, sensitivity, and specificity were 0.976
(0.935–1), 0.936 (0.793–0.982), 1 (0.890–1), and 0.905
(0.711–0.973), respectively.

Obviously, the efficacy of the CNN models was superior to the
diagnosis performed by sonographers and CA125. As shown in

FIGURE 2
Sample dataset image in this study. (A) Ovarian endometriosis cyst (OEC) and (B) tubal-ovarian abscess (TOA).
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Table 2, on the independent test set, the AUROCs, accuracy,
sensitivity, specificity, TPR, FPR, TNR, and FNR were only 0.781
(95% CI: 0.620–0.942), 0.774 (0.602–0.886), 0.8 (0.49–0.943), 0.762
(0.549–0.894), 0.8, 0.238, 0.762, and 0.2 for Reader 1; 0.738
(0.629–848), 0.645 (0.469–789), 1.00 (0.722–1), 0.476 (0.283–0.676),
1, 0.524, 0.476, and 0 for Reader 2; and 0.683 (0.501–0.865), 0.677
(0.501–0.814), 0.7 (0.397–0.892), 0.667 (0.454–0.828), 0.7, 0.333,
0.667, and 0.3 for Reader 3, respectively. Furthermore, in this
study, the diagnostic efficacy of ResNet-152 was the highest among
the three models.

It is worth mentioning that the performance of the clinical
predictor CA125 differs greatly from others. The AUROCs,
accuracy, sensitivity, specificity, TPR, FPR, TNR, and FNR were
only 0.564 (0.315–0.813), 0.677 (0.501–0.814), 0.6 (0.313–0.832),
0.714 (0.5–0.862), 0.6, 0.286, 0.714, and 0.4 for CA125, respectively.
Figure 3A depicts the comparison of the AUROCs among different

evaluators. According to the results verified on the independent test
set, the AUROCs of ResNet-152 showed a significant difference
compared with those of Reader 1 (p = 0.019), Reader 2 (p <
0.001), Reader 3 (p = 0.003), and CA125 (p = 0.003). There was no
difference in the AUROCs of DenseNet-161 compared to Reader 1
(p = 0.184), but there was a difference in the AUROCs of Reader 2,
Reader 3, and CA125 (p < 0.05). Compared to other evaluators,
EfficientNet-B7 also showed differences (p < 0.05). The details are
shown in Table 3. Figure 3B shows the consistency of predictive and
observative probabilities among the CNN models, Reader 1, Reader 2,
Reader 3, and CA125.

As shown in Figure 4, the confusion matrices could intuitively
enable us to understand the diagnostic performance of the CNN
models, ultrasound physicians, and clinical predictor CA125.
Gradient-weighted class activation mapping (Grad-CAM)
could be even better at telling us what the CNN models

TABLE 1 Baseline characteristics of the subjects in this study.

Baseline characteristic Training and validation sets Internal test set Independent test set

TOA patients (n = 68) OEC patients (n = 89) TOA patients (n = 4) OEC patients (n = 10) TOA patients (n = 10) OEC patients
(n = 21)

Age, years 45.00 (39.00, 49.25) 35.00 (30.00, 44.00) 48.75 ± 1.71 39.00 ± 6.16 42.00 (38.50, 45.75) 31.00 (26.00, 43.00)

Weight, kg 58.37 (55.00, 62.63) 60.00 (54.00, 66.50) 51.50 ± 10.47 59.85 ± 8.34 58.56 (56.00, 61.88) 57.00 (52.00, 61.00)

WBC, 109/L 11.55 (7.65, 15.58) 5.90 (5.00, 6.90) 7.08 ± 1.73 5.64 ± 1.18 12.75 (9.78, 17.00) 6.10 (5.50, 7.20)

RBC, 1012/L 4.00 (3.80, 4.30) 4.30 (4.10., 4.60) 4.30 (3.98, 4.43) 4.40 (4.08, 4.40) 3.99 ± 0.40 4.29 ± 0.43

CA125, μ/mL 50.60 (24.55, 69.22) 57.8 (33.30, 98.30) 74.70 (9.88, 152.80) 80.40 (38.15, 85.00) 73.37 (28.98, 122.45) 49.20 (31.10, 61.22)

Largest diameters, cm 7.90 (6.45, 9.35) 6.00 (4.00, 7.30) 6.93 ± 2.19 6.80 ± 2.45 7.78 ± 3.02 6.97 ± 2.39

Abbreviation: TOA, tubal-ovarian abscess; OEC, ovarian endometriosis cyst; WBC, white blood cell; RBC, red blood cell; CA125, carbohydrate antigen 125.

TABLE 2 Performance of ResNet-152, DenseNet-161, EfficientNet-B7, CA125, and readers.

Evaluator AUROC
(95% CI)

Acc (95% CI) Sen (95% CI) Spe (95% CI) NPV PPV FPR TPR TNR FNR F1-
score

Internal test set

ResNet-152 1.000 (1–1) 1 (0.785–1) 1 (0.510–1) 1 (0.722–1) 1 1 0 1 1 0 1

DenseNet-161 0.975 (0.906–1) 0.929
(0.685–0.996)

1 (0.510–1) 0.9 (0.596–0.995) 1 0.8 0.1 1 0.9 0 0.889

EfficientNet-B7 0.925 (0.760–1) 0.929
(0.685–0.996)

0.750
(0.301–0.987)

1 (0.772–1) 0.910 1 0 0.75 1 0.25 0.857

Independent
test set

ResNet-152 0.986 (0.954–1) 0.968
(0.838–0.998)

0.9 (0.596–0.995) 1 (0.845–1) 0.955 1 0 0.9 1 0.1 0.947

DenseNet-161 0.924 (0.791–1) 0.903
(0.751–0.967)

0.9 (0.596–0.995) 0.905
(0.711–0.973)

0.950 0.818 0.095 0.9 0.905 0.1 0.857

EfficientNet-B7 0.976 (0.935–1) 0.936
(0.793–0.982)

1 (0.890–1) 0.905
(0.711–0.973)

1 0.833 0.095 1 0.905 0 0.909

Reader 1 0.781 (0.620–0.942) 0.774
(0.602–0.886)

0.8 (0.49–0.943) 0.762
(0.549–0.894)

0.889 0.615 0.238 0.8 0.762 0.2 0.696

Reader 2 0.738 (0.629–848) 0.645 (0.469–789) 1 (0.722–1) 0.476
(0.283–0.676)

1 0.476 0.524 1 0.476 0 0.645

Reader 3 0.683 (0.501–0.865) 0.677
(0.501–0.814)

0.7 (0.397–0.892) 0.667
(0.454–0.828)

0.824 0.5 0.333 0.7 0.667 0.3 0.583

CA125 0.564 (0.315–0.813) 0.677
(0.501–0.814)

0.6 (0.313–0.832) 0.714 (0.5–0.862) 0.789 0.5 0.286 0.6 0.714 0.4 0.545

Abbreviation: AUROC, area under the receiver operating characteristic curve; Acc, accuracy; Sen, sensitivity; Spe, specificity; NPV, negative predictive value; PPV, positive predictive value; FPR, false-

positive rate; TPR, true-positive rate; TNR, true-negative rate; FNR, false-negative rate; 95% CI, 95% confidence interval.
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focused on and how the CNN models identified the slight
difference between TOA and OEC. Figure 5 depicts the
heatmap generated by Grad-CAM; the red area represents

highly predictive, and the blue area represents low
predictability. The deeper the color is, the higher will be the
probability of being the discriminative region.

FIGURE 3
Comparison of AUROCs (A) and calibration curve (B) among CNN models (ResNet-152, DenseNet-161, and EfficientNet-B7), sonographer 1,
sonographer 2, sonographer 3, and CA125 on the independent test set.

TABLE 3 Comparison of AUROC values by using the DeLong test among different evaluators on the independent test set.

Evaluator AUROC value p-value

ResNet-152 vs Reader 1 0.986 vs 0.781 0.019*

ResNet-152 vs Reader 2 0.986 vs 0.738 <0.001***

ResNet-152 vs Reader 3 0.986 vs 0.683 0.003**

ResNet-152 vs CA125 0.986 vs 0.564 0.003**

DenseNet-161 vs Reader 1 0.924 vs 0.781 0.184

DenseNet-161 vs Reader 2 0.924 vs 0.738 0.039*

DenseNet-161 vs Reader 3 0.924 vs 0.683 0.041*

DenseNet-161 vs CA125 0.924 vs 0.564 0.016*

EfficientNet-B7 vs Reader 1 0.976 vs 0.781 0.027*

EfficientNet-B7 vs Reader 2 0.976 vs 0.738 <0.001***

EfficientNet-B7 vs Reader 3 0.976 vs 0.683 0.004**

EfficientNet-B7 vs CA125 0.976 vs 0.564 0.003**

Reader 1 vs CA125 0.781 vs 0.564 0.158

Reader 2 vs CA125 0.738 vs 0.564 0.217

Reader 3 vs CA125 0.683 vs 0.564 0.452

Reader 1 vs Reader 2 0.781 vs 0.738 0.608

Reader 1 vs Reader 3 0.781 vs 0.683 0.157

Reader 2 vs Reader 3 0.738 vs 0.683 0.534

Abbreviation: AUROC, area under the receiver operating characteristic curve; * <0.05, ** <0.01, and *** <0.001.
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FIGURE 4
Confusionmatrix was used to evaluate the classification accuracy of amodel or indicator. The upper left and lower right corners represent the number of
accurate predictions. From left to right are ResNet-152 (A), DenseNet-161 (B), EfficientNet-B7 (C), CA125 (D), Reader 1 (E), Reader 2 (F), and Reader 3 (G).

FIGURE 5
Heatmap illustrating the region of interest of the CNN model on OEC class (A,B) and TOA class (C,D).
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4 Discussion

We proposed CNN-based models for automatically classifying
TOA and OEC patients in this retrospective study. These CNNmodels
achieve excellent diagnostic performance in both internal and
independent test sets, regardless of whether it is ResNet-152,
DenseNet-161, or EfficientNet-B7. Based on our research, it is
revealed that such models can be useful in identifying TOA and
OEC. If TOA can be accurately diagnosed and treated, patients can
avoid the occurrence of life-threatening acute complications to a large
extent, such as acute diffuse peritonitis and sepsis.

TOA and OEC appear similar on ultrasound images, but the
pathological components other than water in the cystic fluid differ
slightly. The main components of TOA are pus, with or without
hemorrhage, and granulation tissue formation. Generally speaking, a
doctor cannot make a diagnosis merely based on indicators (blood
tests, physical exam findings, etc.) or US images in a clinical setting. It
would be extremely beneficial for the patient if the doctor could
comprehensively consider the results of the CNN models and other
indicators. Some physicians considered the elevated
CA125 concentration as one of the diagnostic indicators for
endometriosis. We also analyzed this aspect. The AUROCs,
accuracy, sensitivity, and specificity were only 0.564 (0.315–0.813),
0.677 (0.501–0.814), 0.6 (0.313–0.832), and 0.714 (0.5–0.862),
respectively. As reported in some studies, plasma
CA125 concentrations were significantly increased in some
endometriosis patients. However, the CA125 concentration was not
raised or slightly raised during the luteal phase in patients with mild
endometriosis. In healthy women, the plasma concentration of
CA125 was slightly elevated during ovulation and markedly
elevated during menstruation. Hence, serum CA125 cannot serve
as a typical biomarker for diagnosed endometriosis and has a low
value in these clinical situations (Muyldermans et al., 1995).

We deployed three types of CNNs to analyze this task, which have
one thing in common: a relatively large number of layers. The greater the
number of CNN layers, the more high-level features are obtained after
convolution. For this reason, such amodel has good performance not only
in the classification task of natural images but also in medical images.
Deep learning models have many advantages in ultrasound image
applications: 1) they can automatically learn useful features from
ultrasound images, which can reduce the workload of manual feature
engineering. 2) Since deep learning models can learn more complex
patterns from data, they can improve analysis accuracy by eliminating
physician subjectivity to some extent. 3) Considering that different
hospitals may use different ultrasound devices, they can also process
images taken by different ultrasound devices, ensuring strong
generalization ability of the deep learning model. 4) Deep learning
models can perform a diagnosis in a very short time (a few seconds),
which can help doctors improve their efficiency and help them diagnose
complex diseases. Overall, deep learning has great potential in ultrasound
image analysis to provide physicians with more effective tools to improve
clinical efficiency and quality. In the image characteristics of ultrasound,
TOA is manifested as a complex multilocular cystic mass with thick and
irregular cyst walls and septa and mixed and complex echoes inside, and
the anatomical boundary between the ovary and fallopian tube is unclear
(Chappell and Wiesenfeld, 2012). General sonographic features of OEC
are diffuse low-level internal echogenicity, septations, thickened walls, and
wall nodularity (Berker and Seval, 2015). To sum up, TOA andOEC have
a lot in common on US images, including similar anatomical locations,

and both are cystic masses and have wall thickness and septations.
Interestingly, in the US images, our model pays more attention to the
boundaries of the lesion and the subtle differences in its adjacent organs
(Figure 5). Nevertheless, the sonographer is more interested in differences
in intralesional composition. However, changes in the internal
components are not always consistent at different stages of disease
development, which may also be one reason the model performs
better. In real time, the differential diagnosis is more than just TOA
and OEC. The clinicians will inevitably consider other possible diseases
when faced with a diagnosis. However, the advantage of machine learning
was that the possible outcomes were only two.

There were some limitations to our study.

1. It was a retrospective study. The results of the model could only
illustrate the diagnostic performance of TOA and OEC patients in
our institution.

2. Ultrasonography was manual and highly subjective, so different
physicians would cause differences in image quality.

3. Our study was single-center, and the performance of the CNN
models was considerably high on both internal and independent
datasets, which is due to the small test sample size of 11 and
31 patients, respectively.

Hence, we hope to actively cooperate with other centers to carry
out multi-center, large-sample prospective studies to further validate
these results in larger populations.

In conclusion, we proposed US image-based CNN models that
could improve the diagnostic coincidence rate of TOA and OEC. The
CNNs could provide a valuable predictive reference for screening
TOA andOEC and be combined with other tests to assist physicians in
making a diagnosis more precisely.
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