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Carotid-to-femoral pulse wave velocity (cf-PWV) is considered a critical index
to evaluate arterial stiffness. For this reason, estimating Carotid-to-femoral
pulse wave velocity (cf-PWV) is essential for diagnosing and analyzing different
cardiovascular diseases. Despite its broader adoption in the clinical routine, the
measurement process of carotid-to-femoral pulse wave velocity is considered a
demanding task for clinicians and patients making it prone to inaccuracies and
errors in the estimation. A smart non-invasive, and peripheral measurement of
carotid-to-femoral pulse wave velocity could overcome the challenges of the
classical assessment process and improve the quality of patient care. This paper
proposes a novel methodology for the carotid-to-femoral pulse wave velocity
estimation based on the use of the spectrogram representation from single
non-invasive peripheral pulse wave signals [photoplethysmography (PPG) or
blood pressure (BP)]. This methodology was tested using three feature extraction
methods based on the semi-classical signal analysis (SCSA) method, the Law’s
mask for texture energy extraction, and the central statistical moments. Finally,
each feature method was fed into different machine learning models for the
carotid-to-femoral pulse wave velocity estimation. The proposed methodology
obtained an R2 ≥ 0.90 for all the peripheral signals for the noise-free case using
the MLP model, and for the different noise levels added to the original signal,
the SCSA-based features with the MLP model presented an R2 ≥ 0.91 for all the
peripheral signals at the level of noise. These results provide evidence of the
capacity of spectrogram representation for efficiently assessing the carotid-to-
femoral pulse wave velocity estimation using different feature methods. Future
work will be done toward testing the proposed methodology for in-vivo signals.
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pulse wave velocity, spectrogram, PPG, distal blood pressure, machine learning (ML),
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1 Introduction

Carotid-to-femoral pulse wave velocity (cf-PWV) is considered
a critical index to evaluate arterial stiffness. For this reason,
estimating Carotid-to-femoral pulse wave velocity (cf-PWV) is
essential for diagnosing and analyzing different cardiovascular
diseases. Despite its broader adoption in the clinical routine, the
measurement process of cf-PWV is considered a demanding task for
clinicians and patients making it prone to inaccuracies and errors in
the estimation. A smart non-invasive, and peripheral measurement
of cf-PWVcould overcome the challenges of the classical assessment
process and improve the quality of patient care.This paper proposes
a novel methodology for the cf-PWV estimation based on the use of
the spectrogram representation from single non-invasive peripheral
pulse wave signals [photoplethysmography (PPG) or blood pressure
(BP)]. This methodology was tested using three feature extraction
methods based on the semi-classical signal analysis (SCSA)method,
the Law’s mask for texture energy extraction, and the central
statistical moments. Finally, each feature method was fed into
different machine learning models for the cf-PWV estimation. The
results obtained for each feature method provide evidence of the
capacity of spectrogram representation combined with machine
learning models as an intelligent tool for efficiently assessing
the cf-PWV estimation. Cardiovascular diseases (CVDs) are the
leading cause of mortality worldwide, with 17.9 million deaths
in 2019, representing 32% of all global deaths, (Mensah et al.,
2019). Patients at risk of evolving CVDs are assessed by evaluating
different bio-markers ranging from age and sex to arterial stiffness
(AS), (Gade et al., 2021). Arterial stiffness is considered one of the
highest risk markers and has attracted much attention in clinical
and experimental studies, (van Sloten et al., 2014). Arterial stiffness
depicts the rigidity of the arterial vessels, positively associated with
arterial pulse pressure, which can significantly affect the heart and
vascular physiology.

Over the last decades, a myriad of techniques for evaluating AS
have been explored and validated, some of which are more widely
functional nowadays in clinical practice than others, for example,
the cardio-ankle vascular index that reflects the stiffness from the
ascending aorta to the ankle arteries (Matsushita et al., 2019), the
pulse pressure defined as the difference between the diastolic and
systolic pressure (Mackenzie et al., 2002) assessing arterial stiffness.
It is usually evaluated by dividing the distance traveled by the pulse
wave between two arterial sites divided by the time taken to travel
the distance (path length between the two sites). When the two
arterial sites are the carotid and femoral sites, then we refer to
the Carotid to femoral pulse wave velocity (cf-PWV) and usually
provide information on the central arterial stiffness.The feasibility of
cf-PWV in evaluating vascular stiffness has been validated through
a strong correlation with major parameters and conditions such
as hypertension severity levels, vascular aging, and atherosclerosis
(Blacher et al., 1999; Shokawa et al., 2005; Mattace-Raso et al., 2006;
Willum Hansen et al., 2006; Choi et al., 2007; Kim and Kim, 2019).
Despite the crucial role of cf-PWV, there is no reliable method for
estimating the cf-PWV. Most methods that exist in the literature
have limitations. For instance, they rely on experienced personnel
to realize the correct measurement, consisting in acquiring
the carotid and femoral pressure waveform and measuring the
traveling distance, as highlighted in (Matsushita et al., 2019). The

measurement can therefore be subject to errors and inaccuracies,
in particular, when evaluating the path length between the carotid
and femoral sites (Tavallali et al., 2018). Further discussions on the
measurementmodalities and themain advantages and limitations of
cf-PWVmeasurements can be read in (Rajzer et al., 2008).

Recent papers have investigated the use of Artificial Intelligence
(AI) in estimating pulse wave velocity where non-invasive available
measurements are used. AI-based approaches present the advantage
of estimating the cf-PWV from non-invasive measurements which
can be incorporated into the clinical routine without involving any
complex protocol or experienced personnel. For instance, a non-
calibrated carotid tonometry pressure waveform has been combined
with a clinical routine variable to feed a machine learning model
with Intrinsic Frequency features (Tavallali et al., 2015). Recently,
a multi-layers perceptron-based cf-PWV estimation using fiducial
points-based features extracted from the photoplethysmogram
(PPG) signal and its first, second, and third derivatives, has been
proposed. Another investigation byWeiwei et al., in (Jin et al., 2021),
has proposed two machine learning pipelines, namely the Gaussian
process regression and Recurrent Neural Network for the cf-PWV
estimation from the radial blood pressure waveform. The two
proposed machine learning pipelines used key features generated
from the timing and magnitude of the fiducial points and the heart
rate. More recently, in 2022, (Garcia et al., 2022) used a Multiple
Linear Regression model to study the feasibility of the Semi-
Classical Signal Analysis (SCSA)-based features extracted from
Blood Pressure (BP) and PPG signals extracted from peripheral
locations. In this study, feature extraction from a two-dimensional
signal representation of the BP and PPG signals improved the
estimation accuracy and robustness compared to the original
one-dimensional signals’ results. Finally, (Li et al., 2022) proposed
the cf-PWV prediction based on the XGBoost algorithm using
wrist photoplethysmogram (wPPG) signals acquired from wearable
devices. Despite the promising results, AI-based algorithms are not
yet reliable and require improvements in terms of accuracy but also
in terms of the universality of the algorithms, which refers to the fact
that they can perform well for data that have not been considered in
the training of the machine learning model.

In this paper, our objective is to contribute to improving AI-
based algorithms for the estimation of the cf-PWV by proposing
the use of spectrograms of pulse wave signals instead of one-
dimensional signals. We believe that using the spectrogram, which
provides both temporal and frequency dimensions of the signal,
will help in improving the accuracy of measuring cf-PWV and
therefore would help in including the cf-PWV measure in the
clinical routine practice without the need for an expert. The use
of spectrogram representation on PPG signals has been studied in
the past proving good performance over different applications. In
2020, (Donida Labati et al., 2021) used a SVM model with features
extracted from the PPG spectrogram for biometric recognition.
Another use of PPG spectrogram representation is presented by
(Siam et al., 2021) where they use the spectrogram as an input
image for Blood Pressure estimation using Siamese networks and
Convolutional neural networks (CNN).

This work used the spectrogram representation from peripheral
signals for cf-PWV estimation using three feature methods. The
first feature type was based on the Semi-Classical Signal Analysis
(SCSA) method that relies on the Schrodinger operator’s spectral
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FIGURE 1
Schematic illustration of the estimation pipeline of the carotid-to-femoral pulse wave velocity based on pulse wave images. PPG indicates the
photoplethysmography signals, BP the blood pressure signals and ML indicates machine learning models.

problem. The second type was based on the Law’s mask filters that
compute the energy texture of an image, and the third was based on
the central moments that give a statistical description of the image.
Finally, these features were fed individually to different machine
learning models to obtain the final estimation. Figure 1 illustrates
the proposed estimation pipeline of the cf-PWV.

2 Materials and methods

2.1 Materials

2.1.1 Dataset
Due to the absence of real hemodynamic data to validate and

test the proposed approach, in this paper, we used an in silico
hemodynamic public database1. A pre-validated one-dimensional
model has been used for generating the database of simulated pulse
wave signals at different arterial locations. This model generates
the signals based on different cardiovascular properties such as
age, heart rate, blood density, and arterial diameter among other
cardiovascular parameters (Charlton et al., 2019). These signals are
often used to evaluate various pre-clinical assessment studies and
hemodynamic analyzer algorithms, such as assessing pulse wave
velocity. The database emulates pulse wave signals of one cardiac
cycle of length from 4,374 virtual healthy adults with different ages
between 25 and 75 in 10-year increments (six age groups) and heart
rate between 66 bpm and 86 bpm, using a sampling frequency of
500 Hz for each signal. Each group has 729 virtual subjects’ pulse
waves with distinct cardiac and arterial parameters like arterial
stiffness and heart rate within normal ranges. In this study, PPG and
BP waveforms at the level of the brachial, radial, and digital arteries
were used to create the spectrograms and estimate the cf-PWV.

2.2 Method

The proposed methodology is summarized in Figure 1. A
spectrogram is created using pulse wave signals from the in silico
data. Then, features are extracted from three different methods
and are fed individually into the learning approach stage. The best

1 https://peterhcharlton.github.io/pwdb/index.html

features were selected to train the model and estimate the cf-PWV
value.

2.2.1 Spectrogram generation
The spectrogram is a time-frequency representation used to

analyze the change of frequency with respect to time from a given
input signal. In this paper, spectrograms are generated using the
function spectrogram from MATLAB. It is well known that the
selection of parameters involved in the creation of the spectrogram
will define the quality of the representation, as shown in (Jablonski
and Dziedziech, 2022). For this reason, windows’ parameters,
spectrogram’s shape, and overlapping percentage were finely tuned.

Regarding the window type, it has been shown that Hamming
and Kaiser’s windows are good options for generating spectrograms
from pulse wave signals such as PPG (Zong and Jafari, 2015;
Esgalhado et al., 2021). Overlapping percentage values of 0, 60,
and 95 for Hamming windows and 0, 61, and 70 for Kaiser, were
selected based on the values reported in (Trethewey, 2000) and
(Heinzel et al., 2002). However, for theKaiser window, it is necessary
to define an extra parameter called α which changes depending
on the overlapping percentage (Heinzel et al., 2002). Values of 0.5,
3, and 5 were used for the 0, 61, and 70 overlapping percentages,
respectively. Additionally, the shape selectionwasmade, considering
the requirement from the 2D-SCSA feature extractionmethod to use
square images (Kaisserli and Laleg-Kirati, 2014). For this reason, a
squared spectrogram of sizes 250, 166, 100, 50, and 20 was used.

Finally, to select the final values, the spectrogram quality
coefficients used in (Jablonski andDziedziech, 2022) were calculated
for each combination of parameters, as follows,

Q f =
1
F

F

∑
f=1

σ f [ f]
μ f [ f]

Qt =
1
T

T

∑
t=1

σt [t]
μt [t]

Qt f = Q fQt (1)

where t and f represent the time (rows) and frequency (columns) of
the spectrogram, and T and F are the number of time and frequency
points respectively. σ represents the standard derivation, μ is the
mean. Higher values in these metrics represent a better capacity of
the spectrogram to represent the variability of a given signal.

Finally, the combination of parameters with the higher values
for the metrics was obtained using the Hamming window, with 0%
of overlapping and an image size of 250 × 250 pixels. More details on
the parameters tuning and obtained results for all the combinations
can be found in the Supplementary Material.
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2.2.2 Semi-classical signal analysis method
2.2.2.1 Definition

The semi-classical signal analysis (SCSA) method has been
proposed in (Laleg-Kirati et al., 2013) for pulse-shaped signal
reconstruction, denoising, and characterization, where the signal
is decomposed into a set of signal-dependent adaptive squared
eigenfunctions of the Schrödinger operator. The SCSA method has
been successfully used for features extraction of blood pressure (BP)
and PPG signals by (Laleg-Kirati et al., 2013; Li and Laleg-Kirati,
2021a; Garcia et al., 2022), showing the feasibility of this method to
provide useful information on the shape of the input signal which
helps to detect morphology changes in the signal. This method
has been extended to image representation (Kaisserli and Laleg-
Kirati, 2014), denoising (Chahid et al., 2017; Chahid et al., 2018),
and feature extraction (Garcia et al., 2022).

Definition 1: Let I(x, y) be a positive real valued square matrix, the
image representation I2h of I(x, y) using the 2D-SCSA is defined as
follows:

I2h (x,y) = [

[

h2

Lcl2,γ

Mh

∑
m=1
(−λmh)

γΨ2
mh (x,y)]

]

1
γ+1

(2)

where h ∈ ℝ*+ is known as the semi-classical signal parameter,
γ ∈ ℝ+ .λmh are the negative eigenvalues, and Ψ1h,Ψ2h,…,ΨMh

correspond to their associated L2-normalized eigenfunctions
(m = 1,…,Mh the number of eigenvalues) extracted from the
two-dimensional semi-classical Schrodinger operator described
as follows:

H2,h (I2)ψ = −h
2(

∂2ψ
∂x2
+
∂2ψ
∂y2
)− Iψ (3)

and Lcl2,γ is the suitable semi-classical constant defined as:

Lcl2,γ =
1
(2√π)2

Γ (γ+ 1)
Γ (γ+ 2)

(4)

where Γ is the Gamma function.

2.2.2.2 Numerical computation
The 2D-SCSA requires the computation of eigenvalues and

eigenfunctions from a 2D operator, leading to a complex and
time-consuming process. To reduce the computational burden, a
separation of variables approach has been proposed in (Kaisserli
and Laleg-Kirati, 2014) where the standard 1D-SCSA is used for
each row and each column; the results are then combined using the
following formula: (Kaisserli and Laleg-Kirati, 2014):

Ih,γ [i, j] = [

[

h2

Lcl2,γ

Kh

∑
k=1

Rh

∑
r=1
(−(βi,k,h + ρj,r,h))

γ×ψ2
i,k,h [j]ϕ

2
j,r,h [i]]

]

1
1+γ

(5)

where βi,k,h, k = 1,…,Kh and ρj,m,h,m = 1,…,Mh are the eigenvalues
for each row and each column respectively, with ψ2

kh[j] and ϕ2mh[i]
are the corresponding eigenvectors.

2.2.2.3 Parameters selection
The semi-classical parameter h and the parameter γ play crucial

roles in the SCSA representation as described in (Laleg-Kirati et al.,

2013; Kaisserli and Laleg-Kirati, 2014). When the h value tends to 0,
the SCSA reconstruction converges to the original image producing
the best result. However, it has been noticed that the number of
eigenvalues is restricted by the number of samples (Piliouras, 2020).
Even knowing that the SCSA representation improves when h tends
to 0, this value cannot be very small as it also depends on the
number of samples. In addition, selecting the parameter γ given a
specific h is also important since it affects the intensity values of the
reconstructed images. It has been found that for small h values, γ
tends to increase; in contrast, when h increases, γ tends to decrease.

An appropriate h interval has been proposed in (Piliouras, 2020)
for 1D-signals, where a minimum value for h based on the sampling
theorem is introduced. This value had been successfully used in
(Piliouras, 2020; Li et al., 2021), providing good accuracy for signal
representation. This minimum value is defined as:

hmin =
Ts

π
√Vmax (6)

where Vmax is the maximum value of the input signal and Ts is the
sampling period of the images.

In this paper, we propose to extend the idea of using the hmin
to image representation. hmin is computed for all the rows (hrmin)
and columns (hcmin) in the image, as is shown in Figure 2. However,
given that each pixel is affected by the h value taken from columns
and rows, the mean between these two values was computed to
obtain the h value (hmmin) for each pixel in the image.

hmmin (i, j) =
hrmin (i) + hcmin (j)

2
i = 1..N j = 1..M (7)

To obtain a single h value for the entire image (ĥmin), the
maximum value from hmmin matrix was selected to avoid a bad
representation or aliasing in the representation.

ĥmin =max(hmmin) (8)

The value of the γ parameter was selected by a sensitivity
analysis. Different values of γ have been tested to maximize the
structural similarity index measure (SSIM) and the Peak Signal
to Noise ratio (PSNR) between the original spectrogram and the
reconstructed one using 2D-SCSA. More information about the
obtained results from the sensitivity analysis is presented in the
Supplementary Material.

2.2.3 Features extraction
In this study, three different feature methods were computed.

Obtaining 36 SCSA-based features, 102 Energy-based features, and
6 Statistic based features for the PPG and BP spectrograms for
the Radial, Digital, and Brachial locations. Each feature was fed
separately into the feature selection method to finally be combined
with the different machine learning algorithms to estimate the cf-
PWV values. The features used in this study are shown in Table 1,
and with the relevant advantages and disadvantages of the three
types of features.

2.2.3.1 SCSA-based features
2D-SCSA features were considered to be the eigenvalues

computed from each of the three following eigenvalues matrices
obtained after applying the 2D-SCSA on the spectrogram:

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2023.1100570
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Vargas et al. 10.3389/fphys.2023.1100570

FIGURE 2
Computation of the 2D-SCSA’s design parameters h. hrmin and hcmin represent the hmin values extracted from every row and every column of the
spectrogram respectively.

1. Matrix composed by the extracted eigenvalues from the rows of
the spectrogram.

2. Matrix composed of the extracted eigenvalues from the columns
of the spectrogram.

3. Matrix composed by the sum of the matrices above.

The first features calculated were the three first invariants
proposed by (Laleg-Kirati et al., 2013), consisting of some
momentum of the negative eigenvalues. In this work, we compute
the invariants for all three cases above: row eigenvalues, column
eigenvalues, and combined eigenvalues:

INV1 = 4ĥmin

Nh

∑
n=1

Mh

∑
m=1

κh [m,n] ,

INV2 =
16ĥmin

3

Nh

∑
n=1

Mh

∑
m=1

κh[m,n]3,

(9)

INV3 =
256ĥmin

7

Nh

∑
n=1

Mh

∑
m=1

κh[m,n]7 (10)

where ĥmin is the semi-classical constant used for the reconstruction
as described in the previous section.Nh is the number of eigenvalues
(or columns) andMh represents the number of rows in the previous
eigenvaluematrices. For eachmatrix, we denote appropriate κm,n,h
values depending on the corresponding eigenvalue problem (row,
column, or combined) as follows:

κ[m,n]h = (−λmh)
γ (11)

These invariant parameters were used by (Laleg-Kirati et al.,
2010; Li and Laleg-Kirati, 2021b; Garcia et al., 2022) for signal

processing features extraction and in (Garcia et al., 2022) for image
processing features extraction. This shows the feasibility of these
invariants to obtain relevant information from pulse wave signals
such as BP and PPG.

Furthermore, based on the first three eigenvalues that
approximate the general profile of the image (Laleg-Kirati et al.,
2013; Li and Laleg-Kirati, 2021a), the mean value of the three first
eigenvalues and κ for each matrix were calculated as follows:

Kn =
1
Mh

Mh

∑
m=1

κh [i,n] , En =
1
Mh

Mh

∑
m=1
(κh [i,n])

1
γ n = [1,2,3] (12)

We also considered other features as described in (Li et al., 2021)
and which consists of the ratio between the first κ of the eigenvalues
matrix and ĥmin (Rh) and the ratio between the median of the κ of all
eigenvalues (MRh), as following:

Rh =
κ1h
ĥmin
, MRh =

median(κmh)

ĥmin
(13)

Themeannumber of eigenvaluesMh obtained in each eigenvalue
matrices was used as a feature since this value gives valuable
information on signal shape (Li et al., 2021), helping to identify
changes in the morphology. Finally, the mean and standard
deviation of the κ were used as descriptors of the pixel distribution
of the eigenvalues matrices.

2.2.3.2 Energy-based features
Laws’ mask features are standard image processing based

features used to measure the “Texture energy” of a group of pixels
in an image. This method has been used in the past for feature
extraction for biomedical images (Rachidi et al., 2008), speech
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TABLE 1 Features computed by each type.

Type Features Description Advantages/limitations

SCSA INV1,
INV2, INV3

Three first invariants consisting of some momentum SCSA has shown great performance as a feature extraction method of pulse wave signals in different applications
Laleg-Kirati et al. (2013), Li and Laleg-Kirati (2021a), Garcia et al. (2022). ṠCSA can filter the signal at the same
time that extracts the features.

of the negative eigenvalues Laleg-Kirati et al. (2013).

This makes these features robust against noisy signals Li and Laleg-Kirati (2021b), Li et al. (2021), Garcia et al.
(2022). Ṫhe limitation of this feature extraction method is the computational complexity causing high running
times.

Kn Mean value of the three first kappas Laleg-Kirati et al. (2013), Li and Laleg-Kirati (2021a).

En Mean of the three first eigenvalues Laleg-Kirati et al. (2013), Li and Laleg-Kirati. (2021b).

Rh Ratio between the first κ of the eigenvalues matrix and h Li et al. (2021).

Mh Ratio between the median of the κ of all eigenvalues and h Li et al. (2021).

Nh Number of eigenvalues Garcia et al. (2022)

Mean(κ) Mean value of the kappas Garcia et al. (2022).

STD(κ) Stand deviation from Kappas Garcia et al. (2022).

Energy ME(Emask) Mean value of the Emask extracted for the 3 × 3 masks Law’s mask has shown great performance as a texture feature extraction method for biomedical images and
spectrograms Rachidi et al. (2008), Wang (2014), Dash and Jena (2017)

and 5 × 5 masks Rachidi et al. (2008). L̇aw’smask has shown robustness against noise andmorphological changes in the images Rachidi et al (2008),Wang
(2014), Dash and Jena (2017).

STD(Emask) Standard deviation of the Emask extracted for the 3 × 3 masks and 5 × 5 masks Rachidi et al. (2008).

EN(Emask) Entropy of the Emask extracted for the 3 × 3 masks and 5 × 5 masks Rachidi et al. (2008).

Stratistic F1 Log base 10 of the standard deviation of the spectrogramMulimani and Koolagudi (2018). Statistical features based on central moments have been used as features extraction for event classification and
inference detection using spectrograms Dennis et al. (2011), Mulimani and Koolagudi (2018), Oh and Kim (2019)

Ṡtatistical features are highly interpretable and easy to implement.

F2 Skewness of the spectrogram Mulimani and Koolagudi (2018). Ṫhe main limitation is the robustness against noisy data.

F3 Log base 10 of the kurtosis of the spectrogram Mulimani and Koolagudi (2018).

F4 Standar deviation of the normalize spectrogram (Mulimani and Koolagudi, 2018).

F5 Skewness of the normalize spectrogram Mulimani and Koolagudi (2018).

F6 Kurtosis of the normalize spectrogram Mulimani and Koolagudi (2018).
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recognition using spectrograms (Wang, 2014), texture classification
(Dash and Jena, 2017), and as a method of segmentation based on
the texture presented on the image (Kvyetnyy et al., 2017).

The principle of this method is to estimate the texture features
using a set of texture energy transformations (Laws, 1980). This
transformation detects the variation within a fixed-size window
using different convolution masks that compute the energy of the
image. This group of masks is invariant to changes in luminance,
contrast, and rotation that allows the detection of textures under
different conditions (Laws, 1980; Stockman and Shapiro, 2001).

All the convolutionmasks used for the energy texture estimation
came from the following set of one-dimensional (1-D) kernels of five
or three pixels:

• Kernels with length 3

L3 = [1,2,1] , E3 = [1,0,−1] , S3 = [1,−2,1] (14)

• kernels with length 5

L5 = [1,4,6,4,1] ,

E5 = [−1,−2,0,2,1] ,

S5 = [−1,0,2,0,−1] ,

W5 = [−1,2,0,−2,1] ,

R5 = [1,−4,6,−4,1]

where L (Level) detects the average grey level, E (Edge) extracts edge
features, S (Spot) extracts spots, W (Wave) extracts wave features,
and R (Ripple) extracts ripples in the image (Laws, 1980). The
convolutionmasks used for the feature extraction were generated by
convoluting any vertical one-dimensional vector with a horizontal
vector to generate the following 3 × 3 and 5 × 5 filters:

• 3 × 3 filters

LT3L3 ET3L3 ST3L3

LT3E3 ET3E3 ST3E3

LT3S3 ET3S3 ST3S3

• 5 × 5 filters

LT5L5 ET5L5 ST5L5 WT
5L5 RT

5L5

LT5E5 ET5E5 ST5E5 WT
5E5 RT

5E5

LT5S5 ET5S5 ST5S5 WT
5S5 RT

5S5

LT5W5 ET5W5 ST5W5 WT
5W5 RT

5W5

LT5R5 ET5R5 ST5R5 WT
5R5 RT

5R5

The images obtained after convolution between each mask
and the images should be normalized to make the descriptors
contrast-independent. The normalization was made based on
the implementation made by (Miroslav and Rodojevi´c, 2007),

where all the images were normalized using the image min-
max normalization as follows

̂Imask =
Imask −min(Imask)

max(Imask) −min(Imask)
(15)

After the normalization, each outputs Imask were converted to a
texture energy image (Emask) by using a moving non-linear window
average of absolutes (Rachidi et al., 2008)

Emask (r,c) =
c+7

∑
j=c−7

r+7

∑
i=r−7
|Imask (i, j) | (16)

Finally, the mean (Eq. 17), standard deviation (Eq. 18), and
entropy (Eq. 19) to each of the texture energy images obtained was
computed to obtain a measurement of the global energy texture for
each mask (Rachidi et al., 2008).

ME(Emask) =
∑M

i=0
∑N

j=0
[Emask (i, j))]

M×N
(17)

STD(Emask) =
√∑

M
i=0
∑N

j=0
(Emask (i, j) −Mean)2

M×N
(18)

EN(Emask) =
∑M

i=0
∑N

j=0
(Emask (i, j))

2

M×N
(19)

2.2.3.3 Central moment features
Statistical central moments are a set of features used to describe

the spread and shape of the pixel’s distribution in an image
(Grubbström and Tang, 2006) and are computed as

μ̂k = E(I− μ)
k k = 1,2,3,4 (20)

where μk represents the kth central moment about the mean μ of the
spectrogram image I.

These features have been used for different applications where
spectrograms are involved such as event classification and inference
detection (Dennis et al., 2011; Mulimani and Koolagudi, 2018; Oh
and Kim, 2019).

In this work, we extracted a set of features inspired by features
used for audio event classification in (Mulimani and Koolagudi,
2018) derived from the second, third, and fourth central moment,
described as follows:

F1 = log10 (√μ2) ,

F2 = μ3,

F3 = log10 (μ4) ,

F4 = √ ̂μ2,

F5 = ̂μ3,

F6 = ̂μ4,

(21)

where √μ2 represents the standard derivation, μ3 is the skewness,
and μ4 represents the kurtosis which indicates the flatness of the
image histogram. The ̂μk with k = 1,2,3,4 represent the central
moments computed from the normalized spectrogram ( ̂I).

̂Ii,j =
I (i, j) −min (I)
max (I) −min (I)

(22)
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TABLE 2 Number of features selected for BP and PPG spectrogram.

Signal Location SCSA Energy Statistical

BP Radial 11 17 6

Digital 11 15 6

Brachial 14 5 5

PPG Radial 11 25 6

Digital 10 19 6

Brachial 13 21 6

2.3 Feature selection

The feature selection is a technique used to reduce the number of
features by eliminating the irrelevant, redundant, and noisy features
to improve the model performance (Kumar andMinz, 2014). In this
study, we use the Maximum Relevance—Minimum Redundancy
(MRMR) algorithm, which is a feature selection method that
chooses S̈ number of features that has maximum relevance with
respect to the target variable and minimum redundancy with
respect to the features that have been selected at previous iterations
(Zhao et al., 2019). We relied on the F-test correlation quotient
(FCQ) variant of theMaximumRelevance—MinimumRedundancy
(MRMR) algorithm to rank the features. This variant is based on
the relevance of a feature to predict the desired variable, measured
by the F-statistic between the feature and the target variable and
the redundancy of the feature computed by the average Pearson
correlation between the feature and all the other features.

FCQscore ( f) =
F (Y, f)

1
̈S
∑

s∈S
ρ ( f, s)

(23)

where ρ( f, s) is the Pearson correlation, F(Y, f) is the F-statistic and Y
is the target variable to estimate, S the set of selected features, S̈ is the
number of feature selected, s is a feature such as s ∈ S and f denotes
a feature currently not selected ( f ∉ S) (Zhao et al., 2019).

Finally, the number of features (S̈) to be selected was chosen
by a sensitivity analysis taking a different number of features which
range between 1 and the total number of features to predict the cf-
PWV using the proposed machine learning models with the default
hyperparameters defined by the python library scikit-learn. Then,
the set of features that produce the best mean R2 performance of
the models is selected to ensure high performance. Table 2 shows
the number of features selected for each feature type, details on the
feature selection can be found in the Supplementary Material.

2.4 Machine learning models

To create the training and testing dataset for supervisedmachine
learning models, the dataset was split into two different groups
where the 70% of the total dataset was used for the training set, and
the 30% left was used for the testing set. Finally, each of the three
different features types were fed into the followingmachine learning
methods: Random forest regression (RF), Gradient Boost Regressor

(GBR), multilayer perceptron (MLP), Multiple Linear regression
(MLR), and Suppor Vector Regression (SVR).

2.4.1 Model training
A common practice in machine learning to increase the

performance of the models is to standardize the features to have
mean 0 and variance 1 using the z-score defined as follows,

x̃(j)i =
x(j)i − μi

σi
(24)

where x(j)i represents the value of the ith feature of the jth
data point, μi represents the mean of each feature, and σi is
the standard deviation of each feature. In addition, tuning the
hyperparameters of the models helps to maximize the performance
on the test data for given a specific problem (Elgeldawi et al.,
2021). In this project, the hyperparameters optimization of the
Machine learning models was made using a random search that
has been used in the past for hyperparameter tuning (Jin et al.,
2021; Garcia et al., 2022). This algorithm randomly selects different
combinations of hyperparameters from a predefined space of values
and tests the model’s performance model. Finally, the combination
of hyperparameters with the best performance was selected. More
information about the hyperparameters space and the values
selected for eachmodel can be found in the supplementarymaterial.
In combination with the hyperparameter tuning, a 5-fold cross-
validation method was implemented to avoid over-fitting during
the models’ training and hyperparameter tuning and increase the
generalization capacity.

2.4.2 Model evaluation
To evaluate the performance of the models, we used the R-

squared (R2) value and the root mean square error (RMSE) between
the actual value and the predicted by themodel (Bahloul et al., 2021;
Garcia et al., 2022).

R2 = 1−
∑N

n=1
(cf−PWVn

real − cf−PWVn
predicted)

2

∑N
n=1
(cf−PWVn

real − μ(cf−PWVreal))
2 , (25)

RMSE = √
∑N

n=1
(cf−PWVn

real − cf−PWVn
predicted)

2

N
, (26)

where μ is a function that evaluates the mean of cf−PWVreal over N
subjects.

2.5 Noise addition

To test the performance of the proposed methodology against
noisy data, a high-frequency Gaussian white noise was added to the
pulse wave signals to simulate the electrical noise found during the
recording (Ban and Kwon, 2016). The typical cause for this type of
noise is radio, TV, cellular, and distant lightning (Kularatna et al.,
2019). The intensity of the noise was defined using the signal-to-
noise ratio (SNR) defined as follows:

SNR =
Ps
Pn
, (27)
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where Ps and Pn correspond to the power of the signal andGaussian
white noise, respectively (Bahloul et al., 2021; Garcia et al., 2022).
The selected noise intensity for the BP signals is 20, 10, and 5 dB
based on the values used by (Jin et al., 2021). For the PPG signals, we
define the values as 65, 45, and 30 dB based on the values reported
by (Maxim integrated, 2017) (Elsamnah et al., 2019).

3 Results

3.1 Noise-free case

This project proposed a novel methodology based on
spectrogram representation of the signals to estimate the cf-PWV.
Table 3 shows the result for the PPG spectrograms where the
MLP and SVR models obtained the best results with a R2 = 0.90
or higher and a RMSE = 0.71 or lower for the three features
types, producing the best performance values of R2 = 0.99 and
RMSE = 0.16 for the SVR with energy features applied to the
brachial location. In contrast, the MLR model shows the worst
performance of R2 = 0.73 and RMSE = 1.09 using statistical features
extracted from the Brachial location. However, it is important to
notice that in the case of the SCSA and energy features, the MLR
models presented R2 = 0.90 for higher and RMSE = 0.66 or lower,
obtaining the best results of R2 = 0.95 and RMSE = 0.47 for the
energy features extracted from the Radial location. The feature type
with the better overall performance in the estimation was the energy

feature presenting a mean of R2 = 0.97 and RMSE = 0.32 for all the
models in the three different locations. Similarly, the result obtained
for the BP spectrograms showed the best performance for the SVR
and MLP models with at least a R2 = 0.97 and a RMSE = 0.36 for
all the features with a maximum difference of 0.02 for the R2 and
0.19 between the features. On the other hand, the worst results were
presented for the MLR models with a lower value of R2 = 0.77 and
RMSE = 1.00 for the Brachial location using the statistical features.
As in the PPG spectrogram, the energy features presented the best
overall result with a mean value of R2 = 0.97 and RMSE = 0.36 for
all the models in the three different locations. Finally, it is important
to notice that all the features obtained a performance of R2 between
0.90 and 0.99 for the BP and PPG spectrograms in the different
locations.

These results show the capacity of the spectrogram as signal
representation for cf-PWV estimation using noise-free PPG and
BP signals from the Radial, Brachial, and Digital locations. It is
important to notice that BP shows a better performance with all
three different features compared with the results obtained for the
PPG where the energy-based features performed better than the
other features for the three locations proposed. It is important to
notice that the MLRmodel with SCSA and energy features obtained
values of R2 ≥ 0.90 showing a great capacity to obtain a linear
relationship between the features extracted from the spectrogram
and the cf-PWV. This is a great advantage since these linear
models can allow an easier implementation of the model in real-life
applications.

TABLE 3 Free-noise results obtained for PPG and BP spectrogram.

Signal Location Feature RF GBR MLP MLR SVR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

PPG Radial Statistic 0.81 0.85 0.78 0.86 0.60 0.92 1.00 0.77 0.64 0.91

SCSA 0.58 0.92 0.58 0.92 0.44 0.96 0.66 0.90 0.39 0.96

Energy 0.39 0.97 0.30 0.98 0.25 0.99 0.47 0.95 0.25 0.99

Digital Statistic 0.83 0.84 0.82 0.84 0.61 0.91 0.99 0.77 0.65 0.90

SCSA 0.59 0.92 0.59 0.92 0.44 0.96 0.57 0.93 0.37 0.97

Energy 0.41 0.96 0.28 0.98 0.25 0.99 0.49 0.95 0.19 0.99

Brachial Statistic 0.82 0.84 0.82 0.84 0.64 0.90 1.09 0.73 0.69 0.89

SCSA 0.54 0.93 0.54 0.93 0.41 0.96 0.57 0.93 0.35 0.97

Energy 0.39 0.96 0.27 0.98 0.19 0.99 0.49 0.94 0.16 0.99

BP Radial Statistic 0.59 0.92 0.57 0.93 0.33 0.98 0.72 0.88 0.30 0.98

SCSA 0.50 0.94 0.46 0.95 0.30 0.98 0.45 0.95 0.24 0.99

Energy 0.37 0.97 0.25 0.99 0.22 0.99 0.55 0.93 0.17 0.99

Digital Statistic 0.58 0.92 0.55 0.93 0.32 0.98 0.76 0.87 0.30 0.98

SCSA 0.51 0.94 0.48 0.95 0.33 0.97 0.46 0.95 0.26 0.98

Energy 0.41 0.96 0.28 0.98 0.24 0.99 0.54 0.93 0.22 0.99

Brachial Statistic 0.74 0.87 0.71 0.88 0.32 0.98 1.00 0.77 0.32 0.98

SCSA 0.54 0.93 0.54 0.93 0.28 0.98 0.51 0.94 0.25 0.99

Energy 0.36 0.97 0.36 0.97 0.33 0.98 0.71 0.88 0.36 0.97
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TABLE 4 Results obtained for noisy data.

Signal Location Feature Noise level RF GBR MLP MLP SVR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

PPG Radial Statistic SNR = 65 0.81 0.85 0.80 0.85 0.61 0.91 1.01 0.76 0.65 0.90

SNR = 45 0.90 0.81 0.91 0.81 0.80 0.85 1.13 0.70 0.82 0.85

SNR = 30 0.93 0.80 0.97 0.79 0.95 0.79 1.14 0.70 0.93 0.80

SCSA SNR = 65 0.60 0.92 0.58 0.92 0.43 0.96 0.66 0.90 0.40 0.96

SNR = 45 0.64 0.91 0.61 0.91 0.48 0.95 0.69 0.89 0.46 0.95

SNR = 30 0.72 0.88 0.71 0.88 0.61 0.92 0.80 0.86 0.64 0.91

Energy SNR = 65 0.43 0.96 0.40 0.96 0.40 0.96 0.47 0.95 0.48 0.95

SNR = 45 0.58 0.92 0.57 0.93 0.63 0.91 0.77 0.86 0.77 0.87

SNR = 30 0.68 0.89 0.67 0.90 0.76 0.87 1.00 0.77 0.90 0.82

Digital Statistic SNR = 65 0.82 0.85 0.82 0.85 0.62 0.91 0.99 0.77 0.65 0.90

SNR = 45 0.87 0.83 0.88 0.82 0.76 0.87 1.17 0.68 0.78 0.86

SNR = 30 0.90 0.81 0.90 0.81 0.88 0.82 1.23 0.65 0.88 0.82

SCSA SNR = 65 0.59 0.92 0.60 0.92 0.45 0.95 0.58 0.92 0.37 0.97

SNR = 45 0.60 0.92 0.64 0.91 0.50 0.94 0.68 0.89 0.45 0.95

SNR = 30 0.78 0.86 0.76 0.87 0.63 0.91 0.78 0.86 0.66 0.90

Energy SNR = 65 0.46 0.95 0.40 0.96 0.34 0.97 0.41 0.96 0.46 0.95

SNR = 45 0.62 0.91 0.57 0.92 0.66 0.90 0.69 0.89 0.77 0.87

SNR = 30 0.72 0.88 0.69 0.89 0.77 0.86 0.90 0.82 0.96 0.80

Brachial Statistic SNR = 65 0.79 0.86 0.78 0.86 0.59 0.92 0.99 0.78 0.62 0.91

SNR = 45 0.87 0.83 0.88 0.82 0.76 0.87 1.17 0.68 0.78 0.86

SNR = 30 0.90 0.81 0.90 0.81 0.88 0.82 1.23 0.65 0.88 0.82

SCSA SNR = 65 0.55 0.93 0.55 0.93 0.39 0.96 0.57 0.92 0.35 0.97

SNR = 45 0.57 0.93 0.56 0.93 0.45 0.95 0.62 0.91 0.43 0.96

SNR = 30 0.73 0.88 0.72 0.88 0.60 0.92 0.74 0.87 0.60 0.92

Energy SNR = 65 0.39 0.97 0.35 0.97 0.33 0.98 0.40 0.96 0.42 0.96

SNR = 45 0.55 0.93 0.53 0.93 0.63 0.91 0.68 0.89 0.71 0.89

SNR = 30 0.72 0.88 0.69 0.89 0.77 0.86 0.90 0.82 0.96 0.80

BP Radial Statistic SNR = 20 0.62 0.91 0.62 0.91 0.39 0.96 0.76 0.87 0.38 0.97

SNR = 10 0.68 0.89 0.69 0.89 0.55 0.93 0.89 0.82 0.52 0.94

SNR = 5 0.71 0.88 0.70 0.89 0.60 0.92 0.92 0.81 0.61 0.91

SCSA SNR = 20 0.52 0.94 0.49 0.94 0.30 0.98 0.46 0.95 0.27 0.98

SNR = 10 0.55 0.93 0.51 0.94 0.37 0.97 0.51 0.94 0.32 0.98

SNR = 5 0.58 0.92 0.55 0.93 0.39 0.96 0.55 0.93 0.38 0.97

Energy SNR = 20 0.31 0.98 0.26 0.98 0.28 0.98 0.29 0.98 0.33 0.98

SNR = 10 0.43 0.96 0.37 0.97 0.42 0.96 0.47 0.95 0.47 0.95

SNR = 5 0.50 0.94 0.45 0.95 0.50 0.94 0.57 0.93 0.56 0.93

Digital Statistic SNR = 20 0.62 0.91 0.61 0.92 0.39 0.97 0.80 0.85 0.38 0.97

SNR = 10 0.66 0.90 0.66 0.90 0.54 0.93 0.90 0.81 0.55 0.93

SNR = 5 0.69 0.89 0.68 0.89 0.64 0.91 0.92 0.81 0.63 0.91

(Continued on the following page)
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TABLE 4 (Continued). Results obtained for noisy data.

Signal Location Feature Noise level RF GBR MLP MLP SVR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

SCSA SNR = 20 0.53 0.93 0.51 0.94 0.34 0.97 0.47 0.95 0.29 0.98

SNR = 10 0.56 0.93 0.54 0.93 0.36 0.97 0.54 0.93 0.34 0.97

SNR = 5 0.60 0.92 0.57 0.92 0.41 0.96 0.58 0.92 0.39 0.97

Energy SNR = 20 0.34 0.97 0.28 0.98 0.27 0.98 0.31 0.98 0.34 0.97

SNR = 10 0.48 0.95 0.39 0.97 0.41 0.96 0.47 0.95 0.48 0.95

SNR = 5 0.53 0.94 0.46 0.95 0.50 0.94 0.56 0.93 0.56 0.93

Brachial Statistic SNR = 20 0.79 0.86 0.79 0.86 0.46 0.95 1.14 0.70 0.46 0.95

SNR = 10 0.79 0.86 0.77 0.86 0.61 0.92 1.18 0.68 0.64 0.91

SNR = 5 0.80 0.85 0.79 0.85 0.65 0.90 1.16 0.69 0.71 0.88

SCSA SNR = 20 0.64 0.91 0.57 0.93 0.31 0.98 0.57 0.93 0.29 0.98

SNR = 10 0.67 0.90 0.61 0.91 0.36 0.97 0.66 0.90 0.37 0.97

SNR = 5 0.71 0.89 0.64 0.90 0.39 0.96 0.75 0.87 0.44 0.95

Energy SNR = 20 0.47 0.95 0.35 0.97 0.33 0.98 0.44 0.96 0.45 0.96

SNR = 10 0.57 0.93 0.46 0.95 0.45 0.95 0.58 0.92 0.54 0.93

SNR = 5 0.62 0.91 0.51 0.94 0.57 0.93 0.69 0.89 0.63 0.91

3.2 Noisy case

Table 4 shows the results obtained for the different levels of
noise. The highest results obtained for each of the nose levels were
R2 = 0.98 and RMSE = 0.33 for the SNR = 65 using the MLP models
with the energy features applied to the Brachial location. In addition,
SCSA features applied in the brachial location presented the best
result for the SNR = 45 with values R2 = 0.96 and RMSE = 0.43 using
the SVR model, and values of R2 = 0.92 and RMSE = 0.60 for the
SNR = 30 using the MLP and SVR models. In contrast, the worst
results were obtained in all the cases by the MLP models using
statistic features with values of R2 = 0.76 and RMSE = 1.01 for the
Radial location with SNR = 0.65, R2 = 0.68 and RMSE = 1.17 for
Digital and brachial location with SNR = 0.45, and R2 = 0.65 and
RMSE = 1.23 for Digital and brachial location with SNR = 0.30. For
the BP spectrogram, The best values obtained were applied for
Radial locations with values of R2 = 0.98 and RMSE = 0.26 for the
SNR = 20 using the GBR model with the energy features, R2 = 0.98
and RMSE = 0.32 for the SNR = 10 using the SVR model with the
SCSA features, andR2 = 0.97 andRMSE = 0.38 for the SNR = 5 using
the SVR model with the SCSA features. In contrast, similar to the
PPG spectrograms, the lower results were obtained for the MLR
models using the statistical features obtaining values of R2 = 0.70
and RMSE = 1.14 for SNR = 20, R2 = 0.68 and RMSE = 1.18 for
SNR = 10, and R2 = 0.69 and RMSE = 1.16 for SNR = 5.

These results show that even with different levels of white
gaussian noise added to the original signals, the proposed
methodology obtained R2 ≥ 0.90 for the PPG signals with the
different levels of noise, using the MLP and SVR models for the
different locations. In contrast, similar to the case of noise-free, the
BP signals obtained better results, presenting an R2 ≥ 0.90 using the
MLPmodel for the three different features in the proposed locations.

Furthermore, in the case of BP signals, the MLR model obtained
accurate results for the cf-PWV.

4 Discussion

This study investigated a novel methodology to estimate the cf-
PWV based on the application of the spectrogram representation of
single PPG or BP signals extracted from a peripheral location. The
use of the spectrogram representation for the analysis of biomedical
signals such as PPG had been studied before as input for data-
driven approaches like the classification of peripheral diseases by
(Allen et al., 2021), or biometric recognition, (Donida Labati et al.,
2021). For this reason, in this project, the use of the spectrogram
from BP or PPG signals to estimate the cf-PWV values is
investigated as a novel methodology to take advantage of the
frequency and temporal information encoded in the spectrogram
matrix.

In this project, three feature types based on the Schrodinger
spectrum, the image’s energy texture, and the image’s statistical
distribution were combined with different machine learning
algorithms to estimate the carotid-to-femoral pulse wave velocity
(cf-PWV). The results for the noisy-free signals presented a mean
value of R2 = 0.92 and RMSE = 0.54 for the PPG spectrograms
and R2 = 0.95 and RMSE = 0.44 for the BP spectrograms for
the noisy-free signals extracted from the Radial, Digital and
Brachial location, showing the spectrogram’s capacity to encode
valuable information that can be extracted to estimate the cf-PWV
presenting. The energy-based features using Law’s masks presented
the best performance for the PPG and BP signals with values of
R2 = 0.99 and RMSE = 0.16 for the SVR applied to PPG spectrogram
the Brachial location and R2 = 0.99 and RMSE = 0.17 for the SVR
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applied to BP spectrogram the Brachial location. Nevertheless, it
is important to recall that all three different feature types obtained
one or more models with at least a R2 = 0.90 and RMSE = 0.64
for all the locations. These results show the feasibility of the
different types of features to extract valuable information from a
spectrogram created using noisy-free signals to estimate the cf-PWV
values.

In contrast, for the noisy cases, the PPG spectrograms presented
values of R2 = 0.92 and RMSE = 0.56 for the SNR = 65, R2 = 0.88
and RMSE = 0.70 for the SNR = 45, and R2 = 0.82 and RMSE = 0.84
for the SNR = 30, showing a decrease in the performance for the
SNR = 45 and SNR = 30 cases of 0.04 and 0.10 for the R2, and 0.16
and 0.30 for the RMSE. It is important to notice that the SCSA
features presented the best overall performance for the noisy cases,
obtaining the best mean results value of R2 = 0.94 and RMSE = 0.50
for MLP and SVR models applied for the different noisy PPG
spectrograms and R2 = 0.97 and RMSE = 0.34 for the SVR model
applied for the noisy BP spectrograms, obtaining in a value of
R2 = 0.90 or higher for each of the noise level presented in this study.
However, it is important to notice that the SCSA method presented
a high computational complexity to compute the features for each
combination of signals (PPG or BP) and location (Radial, Digital,
Brachial). For this reason, it is essential to develop future works to
reduce this complexity to extend this method for real applications
where time and computational cost play an essential role.

Previous studies have been using machine learning or deep
learningmodels to estimate the cf-PWV based on PPG or BP signals
(Tavallali et al., 2015; Jin et al., 2021; Li et al., 2022). However, a
direct comparison between our work and many of the previous
studies cannot be made given that these studies use real data for
the estimation, in contrast with the in silico data used in this study.
Nevertheless, the study made by (Jin et al., 2021) used the same
Blood Pressure in silico signals from the Radial location for the noisy
case. In this study, the authors proposed the use of an LSTM deep-
learning model to estimate the cf-PWV, obtaining an R2 ≥ 0.98 and
a RMSE ≤ 0.24. In contrast, the proposed method obtained a similar
performance of an R2 ≥ 0.97 and a RMSE ≤ 0.38.

It is important to notice that the model parameters used for the
generation of the in silico pulse wave signals were changed with age,
allowing the investigation of the effects of aging in the estimation of
cf-PWV. Previous studies had demonstrated that there could exist a
decrease in the performance of the estimation for high PWV values
associated with the sensitivity to variations in the transit time during
the cf-PWV estimation (Li et al., 2022; Jin et al., 2021). This same
behavior was noticed in this project for some of the models where
there is an increase of the error estimation for higher values of
cf-PWV (usually higher than 9 m

s
), these values are presented for

virtual patients between 55 and 75 years old (Charlton et al., 2019).
h Nevertheless, the models with the best performances (R2 ≥ 0.98)
do not present this increase of error for the high cf-PWV, showing
a great capacity to estimate the cf-PWV for all the different ages
(25–75) without presenting an important increase in the error
produced by the age of the virtual patient. These results are similar
to the results reported in Jin et al. (2021) where they use the LSTM
for the noisy data estimation obtaining a great capacity to estimate
the cf-PWV regarding the age of the virtual patient.

Even if these results are promising, it is crucial to consider
the different limitations presented in this project. The principal
limitation is the use of in silico data rather than real data
collected from a specific human population. Nevertheless, the
in silico data allows us to achieve an initial validation of the
proposed methodology, whose results will permit us to proceed
with the use of real data. Another limitation of this project is the
spectrogram representation made using one-cycle signals; given
that the real PPG and BP signals present multiple cycles, this will
change the spectrogram image obtained, and this could make the
features computed in this work may not work for the multi-cycle
representation. However, future work will be done toward solving
this limitation to validate the proposed methodology to obtain
a more realistic analysis of the feasibility of the spectrogram to
estimate the cf-PWV.

5 Conclusion

This paper investigates a new methodology to estimate cf-PWV
based on the spectrogram representation obtained from BP or
PPG signals taken from peripheral signals using machine learning
models. The proposed approach incorporates three different types
of features to probe the feasibility of the spectrogram to accurately
estimate the cf-PWV. The results prove that the three different
methods could obtain good performance, where the energy features
showed the best performance for all the models without noise
and the SCSA presented the best results against the noise levels
proposed in the study. In the future, further validation of the
proposedmethodology in real human signals needs to be conducted
to overcome the limitation of using in silico data with one
cardiac cycle. This proposed method may be implemented for
personal healthcare applications upon successful clinical validation.
Also, it can open the door for future investigations of new
machine learning methods and feature extraction techniques
to improve the estimation of cf-PWV based on spectrogram
representation.The code is available at https://github.com/EMANG-
KAUST/Spectrogram_AS_Frontiers. We welcome developments
to the existing code or contributions of new algorithms for
inclusion in future versions of the arterial stiffness prediction
platform.
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