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Liver cancer is a malignancy developed from underlying liver disease that
encompasses liver injury and metabolic disorders. The progression from these
underlying liver disease to cancer is accompanied by chronic inflammatory
conditions in which liver macrophages play important roles in orchestrating the
inflammatory response. During this process, bioactive lipids produced by
hepatocytes and macrophages mediate the inflammatory responses by acting as
pro-inflammatory factors, as well as, playing roles in the resolution of inflammation
conditions. Here, we review the literature discussing the roles of bioactive lipids in
acute and chronic hepatic inflammation and progression to cancer.
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1 Introduction

Liver cancer consists of primarily hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (iCCA) with HCC accounting for 75%–85% of all liver cancers (Sung
et al., 2021). Virtually all liver cancers are characterized by the presence of inflammation. The
majority of HCC emerge in livers with chronic liver diseases that include viral hepatitis and
hepatitis caused by alcoholic liver disease (ALD/ASH), and non-alcoholic fatty liver disease
(NAFLD/NASH). HBV (Hepatitis B Virus) and HCV (Hepatitis C Virus) infection are
associated with 33% and 21% of HCC respectively (Singal et al., 2020). ALD/ASH
contributes to 30% of HCC worldwide (Singal et al., 2020), and NAFLD/NASH is
estimated to contribute to up to 60% of HCC cases (Sanyal et al., 2010). Recent clinical
advances using immune check-point therapy to target inflammation showed promising results
for liver cancer treatment (Kudo, 2017; Kubes and Jenne, 2018). Thus, liver inflammation is
deemed to play important roles in liver disease progression and cancer development.

We shall discuss the effects of bioactive eicosanoids and oxylipins in liver injury,
inflammation and cancer progression with a focus on macrophages, which play important
roles in orchestrating liver inflammation and liver disease progression (Tu et al., 2020).
Bioactive lipids influence acute and chronic phases of inflammation in a manner that is
important for the progression of liver disease. First, during the acute phase of inflammation
induced by liver injury, eicosanoids are produced to induce proinflammatory response and
mitogenic signal to promote regeneration. Production of pro-resolving oxylipins resolves this
inflammation and returns the liver to homeostasis. Second, during sustained liver injury,
eicosanoids support chronic inflammation by inducing M2 macrophage polarization but
decreased pro-resolving lipids leads to reduced phagocytosis, permitting chronic
inflammation. During chronic inflammation, the reprogrammed macrophages orchestrate
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other immune cell types (not discussed in this review) to establish the
tumor microenvironment to promote cancer development. Here, we
will first briefly summarize the metabolism of the three major groups
of bioactive lipids based on the enzymes that metabolize them.We will
also introduce the general biological functions of each group of
bioactive lipids. We will then review the literature demonstrating
the roles of these lipids on liver inflammation, injury and cancer
progression. To further address the role of these lipids in liver disease
progression, the last section will focus on their functions in liver
macrophage action including polarization and phagocytosis function.
Finally, we will provide a summary postulating how these lipids are
involved in the progression from liver injury to cancer.

2 Overview of bioactive lipids and their
functions

Lipids are important energy sources and also serve as essential
nutrients needed for the maintenance of membrane structure and
integrity in addition to other functions. Polyunsaturated fatty acids
(PUFAs) (Figure 1), particularly the n-6 family of linoleic acid (18:2 n-6,
LA), gamma linolenic acid (18:3 n-6, γ-LNA)and arachidonic acid (20:
4 n-6, AA) together with the n-3 family of alpha linolenic (18:3 n-3, α-
LNA), eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid
(22:6 n-3, DHA) serve as substrates for the production of bioactive lipids
that mediate inflammatory responses (Saini and Keum, 2018). These
PUFAs are primarily oxidized by three sets of enzymes that act on
different carbon positions of the acyl chain to produce a variety of
bioactive oxidized lipids known as oxylipins. Figure 2 depicts these three
enzymatic processes using AA (20:4, n-6) as the prototype substrate.

2.1 Enzymatic pathways for the biosynthesis
of oxylipins

Among the enzymes, cyclooxygenases (COX1&2 encoded by PTHS
genes) are the most studied (Lambert et al., 1987; Dubois et al., 1998;
Kawahara et al., 2015). The COX enzymes add two oxygens to the acyl
chains of PUFA, leading to the formation of prostanoids with the 5-
carbon member ring structure and the endoperoxide bridge from which
products of COX are derived. These products include the prostaglandins
(D, E, F, G, H, and I) and thromboxane (TXA and TXB) where those
produced fromAA are designated with 2-series and those produced from
EPA are designated with 3-series. The actions of lipoxygenases (5-LOX,
12-LOX, 15-LOX and LOXE3 encoded by corresponding ALOX genes)
produce leukotrienes (LTs), so named because they were originally
isolated from leukocytes (Mashima and Okuyama, 2015; Kulkarni
et al., 2021). These are products of oxidation and epoxidation
reactions occurring on different positions of the acyl chain. These
products (LTA, LTB, LTC, LTD and LTE) are designated with 4-
series from AA and 5-series from EPA. In addition, intermediate
products such as hydroperoxyl- and hydroxy-eicosatetraenoic acids
(HETEs) that are also biologically active themselves.

Metabolites due to the pleiotropic effect of cytochrome
p450 monooxygenase (CYP) activity are added to the family of
bioactive lipids with omega hydroxylation primarily carried out by
the CYP4 isoform subset, and epoxygenation by CYP2 isoforms of the
CYP enzymes (Panigrahy et al., 2010). As the biological functions of
these intermediates and derivatives are discovered after their structure,

they are often named based on their chemical structures. For example,
EETs (epoxyeicosatrienoic acid, 5,6-EET, 8,9-EET, 11,12-EET, and
14,15-EET) with the numbers designating the position of the epoxy
groups are epoxygenase products of AA due primarily to the action of
CYP2C and 2J whereas those produced from EPA are referred to as
EEQs or EpETEs (epoxyeicosatetraenoic acids) (Panigrahy et al., 2010).
The biologically active EETmetabolites are thenmetabolized further via
soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids
(DHETs) (Yu et al., 2000). Another group of Cyp enzymes, Cyp4s
with ω-hydroxylase activity produces HETEs (16-HETE, 17-HETE, 18-
HETE, 19-HETE and 20-HETE) from AA. These Cyp enzymes also act
on EPA and produce HEPEs (hydroxy eicosapentaenoic acids) which
have one more double bond than corresponding HETEs. The
microsomal Cyp enzymes also react with AA to produce HETEs via
an intermediate hydroperoxy-compound similar to the reaction of LOX.
Many of these derivatives are not stable and are rapidly converted to
other products via both enzymatic and non-enzymatic actions. Finally,

FIGURE 1
Polyunsaturated fatty acids that serve as substrates for bioactive
lipids. Linoleic acid (LA, 18:2 n-6), the essential fatty acid of the n-6
polyunsaturated fatty acid (PUFA) family is converted to arachidonic acid
(AA, 20:4 n-6) via elongation and desaturation. Linolenic acid (LNA,
18:3 n-3), the semi-essential fatty acid of the n-3 PUFA family is
converted to eicosapentaenoic acid (EPA, 20:5 n-3) and longer
docosahexaenoic acid (DHA, 22:6 n-3) PUFAs via elongation,
desaturation as well as retro-conversion processes. Diet are rich sources
for these PUFAs. Figure created with biorender.com.
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non-enzymatic oxidation of PUFAs also produces metabolites that are
structurally related to the enzymatic metabolites (Milne et al., 2008;
Austin Pickens et al., 2019).

2.2 Proinflammatory roles of eicosanoids and
eicosanoids-like bioactive lipids

The PGs, TXs and LTs, the better-known bioactive lipids are
referred to as eicosanoids. Many of these were first discovered as

important mediators for inflammatory cell/cardiovascular system
functions prior to the discovery of their substrate precursors. The
general functions of these classical eicosanoids are summarized in
Table 1 and have been extensively reviewed. Typically, EPA-derived 3-
series PGs/TXs and 5-series LTs have milder effect compared to those
produced from AA, and thus are the preferred inflammatory
mediators.

The functions of the non-classical eicosanoids are less
characterized. These include the pro-resolving eicosanoids
produced from EPA and DHA as well as the EETs and HETEs

FIGURE 2
Metabolism of bioactive lipids with arachidonic acid as prototype polyunsaturated fatty acid precursor. Arachidonic acid (AA) is released via PLA2 and
metabolized into one of three distinct enzymatic pathways. First, two isoforms of cyclooxygenase (COX) metabolize AA by forming the signature 5-carbon
ring structure observed in prostaglandins (PGH2, PGD2 and PGE2). The intermediate metabolite PGH2 is further metabolized to PGD2, PGE2, PGI2, or
TXA2 via the action of specific enzymes that leading to their synthesis. PGE2 and TXA2 (thromboxane A2) are further hydrolyzed to PGF2a and TXB2.
Second, three primary forms of lipoxygenase (LOX) acts on AA to produce leukotrienes (LTA4, LTB4 and LTC4). 12-LOX also act upon the primary leukotriene,
LTA4 to produce lipoxins (LXA4 and LXB4), which have pro-resolving function towards inflammation, rather than pro-inflammation. 15-LOX action can also
lead to the production of LXA4 and LXB4. Third, two groups of cytochrome P450 (Cyp2 and Cyp4) act upon AA to produce a series of HETE, EET and DHET
products with 20-HETE being the most abundant and best characterized member of these metabolites. Like lipoxins, EETs also possess pro-resolving
properties but they are relatively shorter half-life. Non-enzymatic reactions that produce eicosanoids-like compounds are not shown here in the figure. The
numbers in circle—indicate receptors that the respective eicosanoids uses to signal. The receptors corresponding to the circled numbers are listed at the
bottom of the figures with their respective signals. Up arrows are indicative of activation, and down arrows of downregulation of expression. Eicosanoids with
red circled numbers have general functions towards inflammation whereas those with blue circled numbers are generally pro-resolving towards
inflammation. Some eicosanoids play a dual role in both activation and inhibition of signaling cascades. Figure created with biorender.com.
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TABLE 1 Examples of Eicosanoid’s function in the liver.

Eicosanoid Primary liver cells of interaction Biological implication

PGE2, PGD2, PGF2a Hepatocytes, Kupffer Enhanced proliferation, vasodilation, increased immune infiltration, proinflammatory

TXA2 Kupffer, Stellate Vasoconstrictor, increased immune infiltration, proinflammatory, enhanced fibrosis

LTA4, LTB4, LTC4 Kupffer, Hepatocytes Proinflammatory, increased immune infiltration

LXA4, LXB4 Kupffer, Hepatocytes Pro-resolving, enhanced efferocytosis, decreased immune infiltration

12-HETE, 20-HETE Hepatocytes, Kupffer Proinflammatory, increased immune infiltration, angiogenesis, vasoconstrictor

5,6-EET, 11,12-EET Sinusoidal endothelial Pro-resolving, enhanced proliferation, angiogenesis

RvE1, RvD1, MaR1 Kupffer, Hepatocytes Pro-resolving, decreased immune infiltration, decreased fibrosis

FIGURE 3
Pro-resolving lipids metabolized from EPA and DHA. EPA and DHA are the primary n-3 PUFA substrated of eicosanoid metabolites and are released via
PLA2. Like AA, EPA and DHA are also metabolized by COX and LOX to produce the pro-inflammatory eicosanoids (prostaglandins, thromboxanes and
leukotriens, not shown in the figure) with less potency compared to those produced from AA. In addition, EPA and particularly DHA produces pro-resolving
metabolites. These pro-resolving eicosanoids (lipoxin A5, LXA5) are produced via the action of 12-LOX, similar to LXA4 produced by 15-LOX; or via
CYP450 to produce Resolvin E (RvE1, E2 and E3) from EPA. The action of 12-LOX and 15-LOX on DHA produces not only resolvins (RvD1, D2, D3, and D5) but
also neuroprotectin D1 and Maresins (MaR). The cellular receptors for each pro-resolving eicosanoids and their respective signaling pathway are presented in
the bottom of the figure and labeled with circled numbers—near the metabolites. Up arrows indicate enhanced activation, down arrows are indicative of
downregulation of signaling pathway. Figure created with biorender.com.
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produced from AA. Similar to PGs, TXs and LTs, HETEs produced
from AA display a pro-inflammatory role in general. For example, 20-
HETE, one of the best characterize HETEs, is considered to be pro-
inflammatory as it mediates the effects of angiotensin II (AngII) on
vasoconstriction and other vascular and renal functions (Savas et al.,
2016). Treatment of human endothelial cells with 20-HETE resulted in
the induction of inflammatory cytokines including IL-4, IL-8, and IL-
13 (Ishizuka et al., 2008). Systemic inflammatory response is also
associated with the induction of 12-LOX in macrophages and 12-
HETE has been found to induce the expression of pro-inflammatory
cytokines in cultured adipocytes (Chakrabarti et al., 2009). The AA-
derived 5-HETE via 5-LOX is further metabolites to LTs and therefore
displays proinflammatory functions (Enyedi et al., 2013).

2.3 Pro-resolving and anti-inflammatory roles
of eicosanoids and eicosanoids-like bioactive
lipids

In the presence of 12-LOX, 5-HETEs can also be converted to
lipoxins and their derivatives that possess anti-inflammatory functions
(Figure 2). Lipoxins were first discovered from leukocytes treated with
calcium ionophore (Serhan et al., 1984). They elicit the generation of
oxygen particles from neutrophil without inducing elastase release
from the lysosome. Subsequent studies established lipoxin to have
both anti-inflammation and pro-resolving functions of inflammation
via inducing phagocytosis of apoptotic neutrophils by macrophages
(Godson et al., 2000; Maderna and Godson, 2009). In addition, EETs
produced via Cyp2 enzymes are also anti-inflammatory as they
attenuate VCAM expression in endothelial cells and inhibit
macrophages secretion of cytokines (Fleming, 2014).

Beyond AA, the extra double bonds in EPA and DHA derived
metabolites present unique anti-inflammatory and also pro-resolving
functions (Ishihara et al., 2019). HEPEs produced from EPA and
HDHAs (hydroxy docosahexaenoic acids) produced from DHA
possess pro-resolving functions towards inflammation (Figure 3).
These products, also referred to as specific pro-resolving
metabolites (SPM) include lipoxins (LXA5 produced from EPA,
and also LXA4 from AA) and also resolvins (RvD and RvE),
maresins (MaR) and neuroprotectins (NPD).

2.4 Receptor mediated signals of bioactive
oxylipins

Once released from the source cells, these lipids bind to cell surface
receptors that are G-protein coupled receptors (GPCR) on
surrounding cells via Gs-coupled cAMP release (Figure 2).
PGE2 binds to PGE receptors EP1, EP2, EP3, and EP4 in a
concentration dependent manner (Kalinski, 2012). EP1 and
EP2 stimulation requires higher PGE2 concentrations to initiate the
signaling cascade whereas EP3 and EP4 are stimulated with lower
PGE2 concentrations. Stimulation of the EP2 and EP4 receptors then
activate ERK1/2, AKT, NFκβ, and β-catenin signaling pathways to
improve cell survival and motility (Banu et al., 2009). Other
prostanoids also have their own specific receptors and signaling
pathways (Figure 2). The biological response to these prostanoids
is dependent on the receptors/signaling pathways (Shapiro et al.,
2016).

Mechanistically, resolvins (RvD, E and MaRs) binds to the same
receptor (ALXR) that LXA4 acts on (29). Originally identified as low-
affinity N-formyl-methionyl-leucyl-phenylalanine receptor-like-1
(FPR1), ALXR also binds to other pleiotropic ligands including
RvD/E and MaRs (Scannell and Maderna, 2006). The actions of
EETs and HETEs also requires G protein coupled receptors.
Several EET and HETE receptors have been documented including
GPR75, GPR40, and GPR120 (Wong et al., 1993; Yang et al., 2008;
Nguyen et al., 2016; Garcia et al., 2017; Park et al., 2018).

3 Biological functions of oxylipins in liver
disease and cancer progression

Bioactive lipids have been identified as important mediators for
the progression of liver disease and cancer. In HBV-cirrhosis andHCC
patients, 42 and 31 PUFA metabolites, respectively, were found to be
significantly altered (Gong et al., 2017). In mouse models of HCC,
distinct eicosanoid serum profiles also distinguish between HCC and
normal control mice (Li et al., 2018). Here, we will discuss the
literature demonstrating the involvement of eicosanoids/oxylipin
and their metabolizing enzymes in the progression of liver disease
and cancer development.

3.1 COX and PGE2 in liver disease and cancer
progression

The naive liver expresses high levels of COX1 as well as
downstream enzymes whereas the expression of COX2 is low
(Koga et al., 1999; Bezugla et al., 2006). LPS induction leads to the
upregulation of COX2 concurrent with PGE2 synthase 1 (PGES1) in
liver resident macrophages, the Kupffer cells (Bezugla et al., 2006).
Consistently, LPS induces the robust production of PGE2 and
TXA2 in the liver (Bowers et al., 1985; Bezugla et al., 2006; Miller
et al., 2007; Miao et al., 2016; Zhang et al., 2020a). Thus, the induction
of COX2 appears to contribute to the inflammatory response and is
also considered to have generally cytoprotective effects that are
attributed primarily to PGE2 (Figure 4).

3.1.1 COX2, PGE2 and liver injury
The pro-inflammatory role of COX2 and PGE2 in the liver are

illustrated by studies using diet to induce chronic inflammation or
bacterial toxins/physical injury to induce acute inflammation
(Figure 4). During chronic liver injury conditions, such as NAFLD
and NASH, COX2 metabolism is implicated where both COX1 and
COX2 expressions are induced (Lampiasi et al., 2006; Henkel et al.,
2018; Garcia-Jaramillo et al., 2019; Sztolsztener et al., 2020). EPA
feeding inhibits NAFLD (Ishii et al., 2009; He et al., 2010; Albracht-
Schulte et al., 2019; Chen et al., 2021a) suggesting that AA-derived
eicosanoids play a role in the development of NAFLD. Consistently,
interventions that reduce NAFLD is associated with decreased
PGE2 in circulation (Cansancao et al., 2020; Maciejewska-
Markiewicz et al., 2022). Furthermore, pharmacological inhibition
of COX2 with celecoxib attenuates hepatic steatosis and associated
inflammation (Chen et al., 2011;Wu et al., 2016; Liu et al., 2018; Zhang
et al., 2022). AKT kinase, NFκβ and autophagy are implicated in this
role of COX2. In addition, deficiency of PGES2 also led to reduced
liver injury and inflammation in Methionine-choline deficient (MCD)
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diet induced NASH (Zhong et al., 2022), suggesting that PGE2 maybe
driving the effects of COX2. In response to acute injury, liver also
upregulates the expression of COX2 and production of PGEs and TXs
(Bowers et al., 1985; Reilly et al., 2001; Bezugla et al., 2006; Miller et al.,
2007; Shimada et al., 2020). COX2 inhibition resulted in reduced
neutrophil infiltration and protection against ischemia reperfusion (I/
R) injury (Kuzumoto et al., 2005; Ozturk et al., 2006; Tolba et al.,
2014). In LPS/Galactosamine (GalN) induced acute liver injury model,
decreasing PGE2 with hepatocyte-targeted expression of 15-PGDH
led to less hepatic apoptosis/necrosis (Yao et al., 2017). Thus,
COX2 and its metabolites indeed play a proinflammatory role
during both acute and chronic liver injury (Figure 4).

While COX2 and PGE2 induce inflammation, suggesting that they
might promote further liver injury, genetic studies have also
demonstrated a hepatoprotective effects for these lipids. This
cytoprotective effects is responsible for hepatocyte regeneration
after injury (Figure 4). Using the apolipoprotein E (ApoE)
promoter to drive the expression of COX-2 led to protection
against diet-induced liver steatosis (Frances et al., 2015). Consistent
with this result, global loss of PGES1 augmented hepatocyte apoptosis
and increased liver inflammation, particularly TNFα releases when
treated with LPS (Henkel et al., 2018). As COX enzymes and PGE2 are
also expressed in liver hepatocytes, these genetic studies together

suggest cell- and context-specific functions of COX2-PGE2 axis in
liver injury. Supporting this notion, deletion of COX2, treatment with
celecoxib or CAY10526, a PGES inhibitor result in more severe
toxicity/lethality induced by overdose of acetaminophen (Reilly
et al., 2001; Cavar et al., 2010). Thus, the mitogenic role of
PGE2 on inducing hepatocyte proliferation may have contributed
to this “cytoprotection” effect of PGE2 and COX2 (Bowers et al., 1985;
Tsujii et al., 1993) despite of their proinflammatory function.
However, some recent data also suggests an anti-inflammatory
properties of PGE2 in the cardiovascular system (Gitlin and Loftin,
2009; Kirkby et al., 2014) that might be receptor isoform mediated
(Takayama et al., 2002; Tang et al., 2012). In the liver, this is supported
by the accelerated development of NASH in MCD diet fed mice
lacking PGI2 receptor (Kumei et al., 2018) and reduced neutrophil
infiltration and protection against I/R injury in EP4 agonist treated
mice (Kuzumoto et al., 2005). Therefore, a balanced pro- and anti-
inflammatory function of COX2/PGE2 and their role towards cell
growth and apoptosis during liver disease progression likely determine
their roles at given stages of the disease (Figure 4).

3.1.2 COX2, PGE2 and progression to liver cancer
Overexpression of COX-2 and PGE2 receptors is observed in most

tumor types, including HCC (Koga et al., 1999; Kondo et al., 1999;

FIGURE 4
The Function of Eicosanoids and Oxylipins in Liver Inflammation and Liver Disease Progression. During acute inflammatory response, prostanoids
(PGE2 an TXA2, etc.) and leukotrienes (LTA4, etc.) are induced to induce inflammation. These eicosanoids plays roles to sustain inflammatory state as well as
induce regeneration by acting as mitogenic signals for hepatocytes. During this process, induction of pro-resolving eicosanoids (LXA4, RvD, RvE, MaR, etc.)
resolves inflammation, return the liver to homeostasis. With sustained injury, induction of eicosanoids sustains inflammation and establishes an
environment for tumor growth. These eicosanoids also acts as mitogenic signals to promote tumor cells growth. The lack of pro-resolving lipids contributes
to the chronic inflammatory state. Addition of pro-resolving eicosanoids also directly attenuate tumor cell growth.
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Shiota et al., 1999; Sung et al., 2004; Breinig et al., 2008; Zang et al.,
2017) and is further induced when coupled with HFD (Koga et al.,
1999; Hamzawy et al., 2015). Expressions of COX2 also correlates with
the differentiation status of liver cancer (Koga et al., 1999; Kondo et al.,
1999; Shiota et al., 1999; Sung et al., 2004) where high COX-2
expression is associated with lymph vascular invasion and distant
metastasis with poor 5-year survival (Tai et al., 2019). Supporting a
pro-tumor role of COX-2 in HCC development, knockdown of COX-
2 resulted in reduced cell proliferation and significantly decreased
colony formation in cultured HCC cell lines (Austin Pickens et al.,
2019). Expression of COX2 in cultured hepatocytes also suppressed
caspase activity concurrent with reduced p53 and Bax expression,
suggesting a role of COX-2 in apoptosis as well (Fernandez-Martinez
et al., 2006). Consistently, ectopic expression of COX-2 in the livers of
transgenic mice was sufficient to induce spontaneous HCC
development (Chen et al., 2017), though other studies show
preneoplastic lesions with minor contribution to the malignant
transformation to HCC (Llorente Izquierdo et al., 2011). Further,
inhibition of COX-2 attenuates HCC growth in animal models
(Hamzawy et al., 2015; Ali et al., 2022) and celecoxib dose-
dependently reduce tumor weight (Cui et al., 2005; Li et al., 2016).
These genetic and pharmacological studies indicate a pro-tumor role
of COX-2 and its metabolite in liver cancer progression (Figure 4).

As the major product of the COX2-mediated metabolites of
AA(26), elevated serum PGE2 levels are associated with larger
HCC tumor sizes and poor overall survival (Gong et al., 2017; Li
et al., 2018; Tai et al., 2019; Pelizzaro et al., 2021). Transgenic
expression of HBV X protein (HBx) that promotes tumor
development also leads to increased PGE2 in the serum (Lan et al.,
2022). In HCC cells, PGE2 level is associated with enhanced cell
proliferation and invasion due to upregulated expression of survivin
(Bai et al., 2010), c-Myc (Xia et al., 2014), and β1-integrin (Bai et al.,
2014). The mitogenic effects of PGE2 has been found to be mediated
via EP3 receptor in cultured rat hepatocytes in which PGE2 dose- and
time-dependently induced DNA synthesis (Hashimoto et al., 1997). A
role of PGE2 on inducing tumor cell invasion and migration has also
been reported (Mayoral et al., 2005; Bai et al., 2009; Zhang et al., 2014a;
Zhang et al., 2014b; Cheng et al., 2014; Xia et al., 2014). Consistent
with a promo-tumor growth role of PGE2, genetic studies showed that
overexpression of 15-PGDH suppresses while its knockdown induces
the growth of HCC cells and tumor grafts (Lu et al., 2014). An opposite
effect is observed when PGES1 is targeted (Lu et al., 2012).

The involvement of serine/threonine kinase AKT and mTOR in
COX-2 regulated pro-tumor effects have been reported (Leng et al.,
2003; Liu et al., 2005; Qiu et al., 2019; Tai et al., 2019). In steatotic
livers, celecoxib blocks insulin regulated lipid accumulation via its
actions on AKT (Lu et al., 2016), which has been shown to drive de
novo lipogenesis (He et al., 2010; Li et al., 2013; Palian et al., 2014;
Chen et al., 2021a). COX-2 also regulates apoptosis and cell
proliferation in HCC via AKT signaling as dephosphorylation of
AKT is observed concurrent with induction of cell death and
reduced PCNA staining (Leng et al., 2003; Liu et al., 2005). The
regulation of tumor suppressor PTEN, a negative regulator for AKT-
mTOR signal (Tu et al., 2020), and its effect on tumor progenitor cells
may play a role in the effect of COX-2 on hepatic tumorigenesis
(Rountree et al., 2009; Galicia et al., 2010; Chu et al., 2014; Guo et al.,
2015; Debebe et al., 2017; Chen et al., 2021b). Other signals involved in
PGE2 regulated cell growth and survival includes growth factor signals
(Koide et al., 2004; Fernandez-Martinez et al., 2006; Odegard et al.,

2012; Tveteraas et al., 2012; Zhang et al., 2014a), mitochondrial
function (Kern et al., 2006), ER stress signal (Lee et al., 2020; Su
et al., 2020) as well as the HIF-1α pathway (Dong et al., 2018). A
synergistic effect has been observed for sorafenib, the multikinase
inhibitor used as first-line therapy for HCC and celecoxib (Cervello
et al., 2013).

3.2 Thromboxanes, leukotrienes and
proinflammatory oxylipin in liver disease

Compared to PGE2 and COX2, significantly less is understood
regarding the roles of other eicosanoids/oxylipins in liver disease
progression. In general, other eicosanoids and the proinflammatory
oxylipins exhibited similar effects towards hepatoprotection/
proliferation and tumor growth (Figure 4). Like PGE2 and COX2,
these effects are cell type specific and the functional outcome is
dependent on the cell types which the manipulations are targeted
in a given experiment (Figure 4).

3.2.1 Thromboxanes
Thromboxanes regulate liver micro vasoconstriction functions and

stimulates the release of proinflammatory cytokines that impacts
platelets and recruitment of leukocytes (Iwata, 1994; Yokoyama
et al., 2005). In response to LPS stimulation, TXA2 and its stable
metabolite TXB2 are released from macrophages prior to PGE2,
likely due to the expression of TXA2 synthase that is already present
in the naïve livers (Bowers et al., 1985; Bezugla et al., 2006; Miller et al.,
2007). Elevated plasma thromboxane is found to correlate with the
severity of liver injury (Nanji et al., 1993; Shimada et al., 1994; Suehiro
et al., 1996; Nanji et al., 1997). Treatment with TX receptor antagonist or
TXA synthase inhibitor prevents the necroinflammatory changes,
reduced injury and also reduces alcohol feeding induced fibrosis
(Suehiro et al., 1996; Nanji et al., 1997; Ito et al., 2003; Nanji et al.,
2013). In addition, reducing levels of TXA2/B2s is implicated in statin
and riboflavin mediated suppressive effects on NASH induced injuries
(Ajamieh et al., 2012;Wang et al., 2018). Despite this pro-inflammation/
injury role, TX signal is also necessary for promoting liver regeneration.
Deletion of TXA2 receptor TP or treatment with TXA2 inhibitor results
in impaired ability for mice to recover from partial hepatectomy (PHx)
or carbon tetrachloride (CCL4) induced injury with elevated necrosis
and delayed hepatocyte proliferation (Minamino et al., 2012; Mohamed
et al., 2020). Thus, similar to that of PGE2, the mitogenic function of
TXA2 versus its effects towards inflammatory response determines
whether TXA2 has a hepatoprotective or pro-injury/inflammation
effects in any given experimental condition (Figure 4). Non-etheless,
these observations indeed implicate a pro-tumorigenic role of TXA2 in
modulating the tumor immune environment as well as tumor growth,
though experimental data are still needed to specifically address this
function of TXA2 in liver cancer. Of note, in a model of colon cancer
metastasis to the liver, inhibiting TXA2 synthase showed more
significant inhibition than aspirin (Yokoyama et al., 1995),
suggesting that the TXA2 indeed supports a pro-tumor
microenvironment.

3.2.2 Lipoxygenase, leukotrienes and
proinflammatory oxylipins

In HCC patients, elevated leukotriene metabolites is reported
(Zhou et al., 2011). Experimental evidence demonstrates that 5-
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LOX expression is increased in several rodent models of liver disease,
including liver fibrosis induced by CCl4 and MCD diet (Pu et al.,
2021), acetaminophen-induced liver injury (Pu et al., 2016), diethyl
nitrosamine (DEN)-induced HCC (Xu et al., 2011), HFD-induced
NAFLD/NASH (Ma et al., 2017), and hepatic steatosis due to ApoE
deficiency (Martinez-Clemente et al., 2010). Accordingly, inhibition or
loss of 5-LOX attenuates or protects the mice against these conditions
(Martinez-Clemente et al., 2010; Hohmann et al., 2013; Pu et al., 2016;
Ma et al., 2017; Pu et al., 2021). Mechanistically, 5-LOX and its
metabolite LTB4 is found to activate NF-Kβ in HCC cells (Zhao
et al., 2012). Inhibition of 5-LOX and LTB4 resulted in decreased
PCNA and cyclin D expression after HPx (Lorenzetti et al., 2019). A
positive feedback loop for 5-LOX and FASn is identified that involves
LTB4 (Chiu et al., 2019). Production of another metabolite of LOX, 5-
HETE is also perturbed in the DDC induced liver injury model
(Pandey et al., 2014). Reducing 5-HETE leads to mitigation of
arsenic-induced NASH (Wei et al., 2020). These studies together
support a pro-inflammatory role of 5-LOX and its metabolites
during liver injury and a pro-growth role on hepatocytes (Figure 4).

Similar functions in liver disease and cancer have been reported
for 12-LOX and 15-LOX (Tanaka et al., 2012; Xu et al., 2012; Ma et al.,
2013; Yang et al., 2019). In HCV-HCC patient samples, both 12-HETE
and 15-HETE are found elevated (Fitian et al., 2014). Deficiency of 12-
LOX and 15-LOX activity attenuated steatosis, liver injury and
inflammations observed in ApoE−/− mice (Martinez-Clemente et al.,
2010). 12-HETE, the product of 12-LOX is found to be increased in
plasma of NASH mice induced by MCD diet (Tanaka et al., 2012).
Inhibiting 12-LOX activity attenuates HCC tumor cell growth and
inhibits HFD promoted HCC development (Xu et al., 2012; Yang et al.,
2019). 15-HETE production is disturbed in DDC treated mouse livers
(Pandey et al., 2014). Reducing 15-HETE via inhibiting 15-LOX
results in apoptosis (Ma et al., 2013). Similar to that of COX
enzymes, PI3K-AKT signals are proposed to be involved in the cell
survival/proliferation regulation by 12- and 15- LOX (Ma et al., 2013;
Yang et al., 2019).

3.2.3 Cyp450 and proinflammatory oxylipin
CYP enzymes are highly expressed in the liver. These enzymes are

responsible for the vast majority of drug metabolism, but also play a
significant role in xenobiotic elimination, where their dysfunction can
lead to underlying liver diseases (Mukkavilli et al., 2014; Shoieb et al.,
2020). Previous studies have established that etiologies such as ALD
and cirrhosis have isoform specificities in their impact on CYP
metabolism (Marino et al., 1998; Yang et al., 2003) with CYP2C
and CYP2D being the most altered between healthy controls and liver
disease cohorts (Frye et al., 2006). In HCC, Cyp enzymes responsible
for PUFA metabolism have been identified among the top genes
enriched in a study aimed at elucidating prognostic markers (Ding
et al., 2022). This study also identified CYP26A1, CYP2C9 and
CYP4F2 among a proposed prognostic panel of genes when trying
to model the risks for iCCA and HCC (Ding et al., 2022). In a separate
cohort, the expression of CYP2A6 was also closely associated with
tumor grades and favorable prognosis (Jiang et al., 2021). In addition,
several CYP4 enzymes are found to correlate with favorable outcomes
for HCC and their protein expressions have been verified using
immunohistochemical staining (Eun et al., 2018). Products of Cyp,
such as 14,15-DHET have been found to correlate with liver cancer
diagnosis marker alpha fetoprotein (AFP) in HBV-related HCC
patient samples (Lu et al., 2018a) and NASH/fibrosis (Caussy et al.,

2020). In cultured Huh7 cells, introduction of HCV core protein NS5A
alters the expression of CYP2E1 (Smirnova et al., 2016). Together,
these studies suggest that certain Cyp450 regulated oxylipins also play
a role in promoting liver disease progression and cancer development.

Of the CYP produced oxylipins, 20-HETE is by far the most
abundantly produced, accounting for 50%–75% of all
Cyp450 eicosanoids produced in the liver and as such is one of the
most characterized Cyp450 eicosanoids (Sacerdoti et al., 2003a).
Analysis of cirrhosis cohorts has revealed elevated levels of 20-
HETE as the predominant eicosanoids, even higher than that of
PGs and TXs demonstrating the potential significance these
eicosanoids have in liver disease progression (Sacerdoti et al., 1997;
Li et al., 2023). Plasma levels of 20-HETE are also increased in NAFLD
and alcoholic liver disease (ALD) patients among other
proinflammatory oxylipins including 12-HETE and 8-HETE (Gao
et al., 2019; Li et al., 2020a). In experimental models, 20-HETE has
been shown to induce the activation of LX-2 cells via TGFβ signaling
through proteasome regulation (Lai et al., 2018; Li et al., 2023) and
inhibiting 20-HETE production attenuates liver fibrosis induced with
CCL4 (Li et al., 2023). This effect may involve ubiquitination as 20-
HETE decreases the expression of Nedd4-2 in the liver (Zhao et al.,
2017).

3.3 Pro-resolving and anti-inflammatory
eicosanoids and liver disease

In addition to the proinflammatory metabolites, the SPMs
counteract these effects in the liver (Figure 4). A univariate analysis
revealed that the recurrence-free survival rate was significantly lower
in patients with higher mPGES-1 level in non-cancerous liver tissue
(Nonaka et al., 2010). On the other hand, higher expression of
CYP4F2 in non-neoplastic liver tissues is associated with a less
severe pathological tumor stage (Eun et al., 2018).

3.3.1 AA metabolite EETs produced via Cyp450
Correlation studies have shown that EET levels are inversely

correlated with NAFLD severity (Arvind et al., 2020). As steatosis
progresses to fibrosis, epoxygenase activity significantly declines
resulting in decreased EET levels. The oxylipin11,12-EET
ameliorates free fatty acid induced inflammation through inhibition
of NFκβ signaling in liver macrophages (Wang et al., 2019). The effect
of biologically active EETs on vasoconstriction and inflammation
maybe dependent on its ability to counteract that of 20-HETE
which induces these effects (Lasker et al., 2000; Sacerdoti et al.,
2003b). In experimental models, LPS decreases EET while increases
20-HETE (Anwar-mohamed et al., 2010; Theken et al., 2011). The
importance of the 20-HETE/EET ratio is supported by studies using
CYP4F2 transgenic mice (Zhang et al., 2016). In HCC, reduced
expression of CYP2A6 modulates the anti-tumor immunity by
disrupting the equilibrium between 20-HETE and EETs (Jiang
et al., 2021).

3.3.2 AA metabolite LXA/B produced via LOX
enzymes

In addition to the pro-inflammatory LTs produced from AA, 12-
LOX, in conjunction with 15-LOX, plays a role in the synthesis of
lipoxins such as LXA4 and LXB4 (Figure 2). In the liver,
administration of LXA4 or treatment with BML-11, a lipoxin
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receptor agonist significantly improves hepatic injury and decreases
fibrosis by reducing inflammatory cytokine release and attenuating
hepatocyte apoptosis/necrosis in all liver injury models tested (Zhang
et al., 2007; Xia et al., 2013; Zhou et al., 2013; El-Agamy et al., 2014;
Zhang et al., 2015; Yan et al., 2016; Hu et al., 2017; Karaca et al., 2022).
The effects of LXA4 are mediated via the renin angiotensin (RAS)
system (Hu et al., 2017; Chen et al., 2019) and downregulation of NFκβ
in hepatocytes and macrophages has been observed with
LXA4 treatment (Kuang et al., 2016). In addition, LXA4 promotes
apoptosis and inhibits cell proliferation and migration, and blocks
EMT in HCC cells (Hao et al., 2011; Xu et al., 2018).

3.3.3 Pro-resolving eicosanoids produced from n-3
PUFAs

Since the 3-series PGs and 5-series of LTs produced from EPA and
DHA are low-inflammatory lipids compared to those produced from
AA metabolism (Li et al., 1994; Whelan et al., 1997), a lower ratio of
EPA/AA is suggested to be a clinical sign of inflammation (Ebright
et al., 2022). In ob/ob mice, supplementation of n-3 PUFAs attenuates
hepatic steatosis (Gonzalez-Periz et al., 2006; Gonzalez-Periz et al.,
2009). In the liver cancer model where PTEN loss drives steatosis and
cancer (Stiles et al., 2004; He et al., 2016; Jia et al., 2017; Chen et al.,
2021b), supplementation with a n-3 PUF, EPA, significantly attenuates
both NASH and cancer development (Ishii et al., 2009).
Supplementation with fish oil, the major dietary source for EPA
and DHA antagonizes the production of AA-derived eicosanoids
(Li et al., 1994) and also significantly ameliorates biochemical
parameters observed in HCC induced by DEN treatment (Metwally
et al., 2011). Together with the observation that RvD inhibits
FOXM1 expression in CAFs and represses EMT and cancer
stemness (Sun et al., 2019), a potential role of resolving lipids in
regulating cancer stemness through PTEN-PI3K signaling maybe
proposed.

Attenuation of GPCR and cAMP mediated signaling is associated
with the anti-tumor effects observed with EPA and DHA (Smith et al.,
2006), suggesting the involvement of eicosanoids, oxylipins and their
receptor signaling in these effects. During the progression of NAFLD/
NASH in HFD models, levels of RvD1 and MaR1 significantly
decreases with disease progression (Maciejewska et al., 2020).
Lower circulating levels of MaR1 and RvD1 were also reported for
NAFLD/NASH patients (Monserrat-Mesquida et al., 2020; Fang et al.,
2021). RvD1, MaR1 as well as RvE1 are found to regulate lipid
biosynthesis in hepatocytes (Jung et al., 2014; Rius et al., 2017;
Jung et al., 2018; Oh et al., 2022). In vivo, treatment with these
SPMs led to reduced expression of FASn and ACC-1 and lower
levels of liver TG (Laiglesia et al., 2018; Rodriguez et al., 2020;
Zeng et al., 2022). During liver injury, these SPMs display a
hepatoprotective effect (Figure 4) via attenuating the inflammatory
responses, inhibiting hepatocyte apoptosis and oxidative stress
(Murakami et al., 2011; Zhang et al., 2015; Kuang et al., 2016;
Wang et al., 2016; Li et al., 2020b; Zhang et al., 2020b; Soto et al.,
2020; Tang et al., 2021; Hardesty et al., 2023). In cultured hepatocytes,
RvD1 also inhibits hepatocyte proliferation and is implicated in
attenuating cancer growth (Lu et al., 2018b). Consistently, both
RvD and RvE prevent the progression to cancer (Kuang et al.,
2016; Rodriguez et al., 2020) and MaR treatment mitigated fibrosis
induced by DEN (Rodriguez et al., 2021). Again, the AKT-mTOR
regulated autophagy in HSC contributes to the RvD inhibited fibrosis
(Li et al., 2021). Together, these studies suggest RvD and RvE

antagonize the protumor cell growth signals from the tumor
microenvironment (Figure 4). Finally, in primary hepatocytes, MaR
transcriptionally regulates FGF21 (Martinez-Fernandez et al., 2019),
of which the function is mimicked by the recently approved liver
fibrosis therapy efruxifermin (Tillman et al., 2022). Together, these
studies suggest a role of resolvins in tumor microenvironment
signaling.

4 Oxylipin and functions in liver
macrophages

Chronic liver injury and accompanied inflammation establishes
the liver microenvironment that permits and promotes cancer growth
(Tu et al., 2022). Liver is known as an immunosuppressive organ as
illustrated by the lower dose of immunosuppressive therapy needed
for liver transplantation as compared with other organ
transplantations (Huang et al., 2018). Liver resident macrophages,
i.e. Kupffer cells play a critical role in this process as they inhibit
cytotoxic T lymphocytes and induce T cell apoptosis (Huang et al.,
2018). In healthy mouse livers, Kupffer cells develop this unique
response by inducing the proliferation of select T regulatory cells,
resulting in systemic immune suppression (Heymann et al., 2015).
Cytokines produced by resident as well as infiltrating macrophages
such as TNFα, TGF-β, IL-6 and IL-18 are highly associated with the
development and progression of HCC (Hanahan andWeinberg, 2011;
Del Campo et al., 2018; Tanwar et al., 2020). Consistently, increased
macrophage activation/recruitment is a hallmark of liver cancer and
implicated in a poor prognosis in patients (Hanahan and Weinberg,
2011; Debebe et al., 2017; Tu et al., 2022).

In the liver tumor adjacent tissues, COX-2 expression is highly
expressed (Koga et al., 1999) and this increase is correlated with a
shorter disease-free survival (Kondo et al., 1999). Later studies show that
macrophage and mast cell populations are also higher in the tumor
surrounding regions than within the tumors themselves, suggesting a
role of COX-2 in modulating the immune microenvironment in
addition to directly acting within the tumor cells (Cervello et al.,
2005). Inhibition of COX-2 and downregulation of PGE2 with
treatment of celecoxib/etoricoxib or loss of PGES1 leads to
downregulation of IL-1β and TNFα, two microphage produced
cytokines in the liver (Henkel et al., 2018; Ali et al., 2022), further
indicate a role of COX2/PGE2 in macrophage function. In addition, the
induction of 5-LOX was accredited to the stemness promoting function
of CAF-programedmyeloid-derived suppressor cells in iCCA (Lin et al.,
2022). The induction of 5-LOX and elevated LTB4 or cysteinyl-LTs are
associated with macrophage morphology and number changes in liver
injury induced inflammation (Li et al., 2014; op denWinkel et al., 2013).
Thus, alterations of bioactive lipid metabolism in the tumor
microenvironment likely alters macrophage function and plays a role
in liver cancer progression. In this section, we will review the literature
exploring the production of bioactive lipids during liver injury and their
functions on liver macrophages.

4.1 Macrophages produce oxylipins during
liver disease progression

As with other macrophages, short term exposure of endotoxin
dose-dependently induces release of prostanoids from the primary
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liver resident macrophages, Kupffer cells (Bowers et al., 1985; Tripp
et al., 1988; Dieter et al., 1989; Peters et al., 1990; Horiuchi et al., 1992;
Dieter et al., 2002; Bezugla et al., 2006). Compared to other
macrophages, Kupffer cells in the liver are the most active at
producing PGE2 (Wu et al., 1993). Both COX2 and
PGES1 expressions are induced in liver macrophages 3–24 h after
LPS treatment (Connor et al., 2013). In patients and animal models of
steatotic liver disease, macrophages are also identified to be the source
for the secreted PGE2 (Cao et al., 2022) and depletion of Kupffer cells
led to reduced PGE2 production in the liver (Bai et al., 2010).
Inhibiting COX2 in Kupffer cells also resulted in reduced
TXA2 production in the liver (Pestel et al., 2002; Schade et al.,
2002; Yokoyama et al., 2003), while depletion of Kupffer cells leads
to reduced TXB2 production in perfusion extracts of livers (Oikawa
et al., 2002). In multiple experimental settings, Kupffer cells are shown
to be the primary source for TXA2 (Pestel et al., 2002; Schade et al.,
2002; Steib et al., 2007). Media from cultured Kupffer cells from BDL
mouse livers contains significantly higher concentrations of
TXA2 than those from normal uninjured mice (Miller et al., 2007),
indicating that the macrophage production of TXA2 can be induced
during inflammatory response. These TXAs produced from Kupffer
cells bind to their receptors, TP to induce T-cell activation and
promote immune infiltration (Kabashima et al., 2003).

When COX2 activities are inhibited, Kupffer cells switch to
produce LTB4 and 15-epi-LXA4 (Planaguma et al., 2002). Kupffer
cells from injured livers also produce more LTs than PGE2 in response
to phorbol ester or calcium ionophore treatment (Alric et al., 2000).
Kupffer cells synthesize LTAs, and hepatocytes then convert these
LTAs into LTCs (Sorgi et al., 2017). Hepatocytes readily uptake and
can metabolize injected leukotrienes (Keppler et al., 1987; Leier et al.,
1992). Supporting this, 5-LOX expression is primarily expressed in
Kupffer cells and stellate cells, but to a lesser extent in hepatocytes
themselves (Sala et al., 2010). In addition, studies depleting Kupffer
cells suggest a role of Kupffer cells in 12- and 15-LOX regulated LT
productions in the liver (Dragomir et al., 2011). When exposed to
apoptotic cells, liver macrophages are also shown to express 15-LOX
and produce immunosuppressive HETEs and HDEAs (Snodgrass
et al., 2021), though spleen and bone marrow derived macrophages
may be the major sources of the pro-resolving SPMs rather than
Kupffer cells (Noureddine et al., 2022). As the bioactive lipids are
important mediators for inflammatory functions, the amount and
species produced by macrophages under specific disease conditions
dictates the specific inflammatory responses.

4.2 The effects of bioactive lipids on kupffer
function during liver disease progression

Bioactive lipids also program liver macrophages during liver
disease progression (Figures 5, 6). Consistently, treatment with
inhibitors for 5-LOX and its activating protein (FLAP) lead to
changes in morphology and apoptosis in Kupffer cells, resulting in
macrophage depletion and decreased inflammation in the liver (Titos
et al., 2003; Titos et al., 2005). Inhibition of leukotriene synthesis with
lipoxygenase inhibitors (azelastine, ketotifen and AA861) attenuates
ROS production from macrophages induced by liver injury (Shiratori
et al., 1990). In addition, disrupting LTB4 receptor suppresses
expression of EGF, VGEF and VGEF receptors in macrophages
and plays a role in macrophage recruitment and liver injury

induced by ischemia reperfusion (Ohkubo et al., 2013). On the
other hand, PGE2 and TXA2 also attenuate liver macrophage
recruitment and PGE2 treatment inhibits IL-1, IL-6 and ROS
production from liver primary macrophages in a dose-dependent
manner (Funaki et al., 1992; Kulkarni et al., 2021; Xun et al., 2021;
Lan et al., 2022). PGE2 exerts its effects on the LPS-induced release of
cytokines in rat liver macrophages via the EP2 and EP4 but not
EP1 and EP3 receptors (Treffkorn et al., 2004; Lan et al., 2022).

The SPMs promote the anti-inflammatory and inflammation
resolution responses of macrophages (Wall et al., 2010; Brennan
et al., 2021). In sepsis mice, the EPA pre-conditioned adipose
tissue mesenchymal stem cells normalize the morphology of liver
macrophages (Silva et al., 2019). In HepG2 cells cultured with
conditioned medium from activated macrophages, the macrophages
stimulate hepatocyte proliferation is attenuated with treatment of
LXA4 (Hao et al., 2011). Depleting KCs by liposome clodronate
abrogates the effects of RvD1 on proinflammatory mediators in the
injured livers (Kang and Lee, 2016), suggesting a role of macrophage in
RvD1 regulated resolution of inflammation. RvD1 also markedly
attenuates macrophage changes induced by IR and inhibited
hypoxia-induced expression of IL-1β and IL-6 (Rius et al., 2014;
Kang and Lee, 2016). The effects of RvD on liver macrophages also
primes the caloric restriction on steatosis and cancer (Rius et al., 2014;
Debebe et al., 2017).

4.2.1 Macrophage polarization during liver disease
progression

Macrophage functions can be defined by their polarization based
on their cytokine production profiles in response to specific stimuli.
The various degrees of polarization from M1 to M2 represent
macrophage heterogeneity/reprogramming during the inflammatory
responses. Tissues undergoing inflammatory response often harbor
macrophages with both M1 and M2 polarizations. During liver injury,
Kupffer cells are polarized to pro-inflammatory M1 phenotype in an
effort to repair the tissue (Kang and Lee, 2016; Tu et al., 2020).
Reprograming from M1 towards M2 phenotype is associated with
resolution of inflammation and tissue regeneration. The bioactive
lipids are implicated in this shifting of macrophage polarization from
M1 towards M2 inflammatory phenotypes (Figure 5). This is
evidenced by the altered macrophage polarization due to changes
of dietary ratio of AA and EPA (Enos et al., 2015).

While often defined for their pro-inflammatory functions,
eicosanoids also play a role in resolution of inflammation by
promoting M2 polarization of macrophages. Liver macrophages
from mice lacking PGES1 or treated with EP4 antagonist are
polarized towards M1 inflammatory profiles (Nishizawa et al.,
2018; Fang et al., 2021). In coculture systems using HCC cells,
macrophages and T cells to mimic HCC microenvironment,
M2 polarization is observed and found dependent on COX-2
expression (Xun et al., 2021). Thus, PGE2 production from
macrophages appears to be associated with a M2 inflammatory
state. These M2 polarized macrophages produce cytokines and
growth factors that interacts with other cell types in the liver to
drive the disease progression. For example, the M2 macrophages
induces stellate cell (HSCs) autophagy to drive liver fibrosis (Cao
et al., 2022). This process involves the production of PGE2 from the
M2 macrophages and EP2 receptor that mediates the proliferation
inhibition of the HSCs (Koide et al., 2004). Other proinflammatory
eicosanoids have been shown to have opposite effects on HSCs (Pu
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et al., 2021; Li et al., 2023), though the involvement of macrophages
were not explored. In the coculture system with macrophage, T-cells
and hepatocytes, M2 polarized macrophages produce TGFβ to
regulate T cell activity (Xun et al., 2021). Exhaustion of CD8+

T cell in this culture is caused by high COX-2-expressing HCC cell
lines.

Consistent with an anti-inflammatory role of EPA produced
eicosanoids, EPA-PC and EPA-PE reduce the elevated levels of
serum TNF-alpha, IL-6 and MCP1 and attenuated macrophage
infiltration in the liver (Wei et al., 2020). During liver injury, a
proinflammatory condition is induced with decreasing M2 and
increased M1 markers are observed in Kupffer cells (Kang and Lee,

FIGURE 5
Regulation of Macrophage Polarity by Eicosanoids and Oxylipins and Its Role in Liver Disease Progression. Liver resident macrophages, Kupffer cells (KC)
are the first responders to liver injury. In response to injury, they are programmed to produce M1 proinflammatory cytokines to orchestrated inflammatory
response. Both eicosanoids with proinflammatory functions and pro-resolving eicosanoids induces macrophage polarization towards M2 phenotype. The
M2 polarized macrophage also produces eicosanoids to promote tissue regeneration an tumor growth.

FIGURE 6
Regulation of Macrophage Phagocytosis by Eicosanoids and Oxylipins and Its Role in Liver Disease Progression. Kupffer cells (KC) are the primary
phagocytic cells in the liver. Their phagocytic activities are induced in response to apoptotic cell debris, lipid particles and other signals. PGE2 and pro-
resolving lipids both programs KCs to induce their phagocytosis abilities. The induced phagocytotic KCs promote resolution of inflammation, leading to
regeneration from liver injury. When the phagocytotic activity of KCs are not induced or not sufficient to produce resolution, chronic inflammation
establishes the tumor microenvironment to promote tumorigenesis.
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2016). RvD attenuates these effects and leads to resolution of the
proinflammatory conditions, while depletion of KCs by liposome
clodronate abrogates this effects of RvD1 on proinflammatory
mediators and macrophage polarization (Rius et al., 2014; Kang
and Lee, 2016). Serving as a ligand for ROR, MaR1 also induces a
M2 polarization in liver macrophages (Han et al., 2019). Together,
these studies suggest both eicosanoids and pro-resolving oxylipins
play roles in M2 macrophage polarization (Figure 5).

4.2.2 Phagocytic functions of macrophages during
liver disease progression

In addition to influencing macrophage polarization and cytokine
production, the ability of macrophages to phagocytize apoptotic cells
is also affected by eicosanoids. Efferocytosis, resulting from
phagocytosis of engulfed apoptotic cells, particularly neutrophils,
plays a key role in resolving underlying inflammation in liver
disease. The unresolved inflammation and resulting chronic
inflammation establish the immune tumor microenvironment for
the development of HCC in the liver (Westbrook and Dusheiko,
2014; Fishbein et al., 2021; Heredia-Torres et al., 2022). While very
little is known about the involvement of eicosanoids in efferocytosis of
liver macrophages specifically, a role of eicosanoids in macrophages
efferocytosis in general is well established (Thornton and Yin, 2021).
In particular, SPMs are shown to be highly effective at promoting

resolution of inflammation (Figure 6). Upon exposure to apoptotic
cells, macrophages upregulate 5-LOX expression and enhances their
ability to produce the pro-resolving SPMs including 15-HETE, 17-
HDHA and RvD5 to participate in resolving inflammation (Snodgrass
et al., 2021). The pro-resolving M2 macrophages prepared from
human monocytes upregulate several resolvins include RvD, RvE
and MaR and LXA4 and downregulate other pro-inflammatory
eicosanoids including LTB4 to modulate their abilities to
participate in efferocytosis (Dalli and Serhan, 2012). The pro-
resolving lipoxins primarily exert their pro-resolving effects by
binding to GPR32 on phagocytes and enhance their ability to
phagocyte zymosan and apoptotic neutrophils (Krishnamoorthy
et al., 2010). Due to the pro-resolving functions of LXA4 (Serhan
et al., 1993), a stable LXA4 analogue, NAP1051 with a longer half-life
has been developed (Dong et al., 2021). Like LXA4, this analogues
inhibits neutrophil migration, and induce apoptosis of neutrophils,
leading to a general resolving function.

During the phagocytic process, macrophages actively
downregulate the production of cytokines including IL-1, IL-10,
TNFα as well as LTC4 and TXB2 (Fadok et al., 1998). The
production of PGE2, however, is increased in this process (Fadok
et al., 1998). In several studies, blocking COX2 expression and
PGE2 production is associated with reduced macrophage
efferocytosis (Medeiros et al., 2009; Frasch et al., 2011; Salina et al.,

FIGURE 7
Bioactive lipids and progression of liver disease. During homeostasis, hepatocytes and macrophages produce a balanced levels of pro- and anti-
inflammatory lipid species to maintain liver immune environment (Sung et al., 2021). In response to acute injury, apoptotic cell debris alters macrophage
polarization to produce both pro- and anti-inflammatory lipids. These lipids are involved in the resolution of inflammation as well as regeneration of
hepatocytes (Singal et al., 2020). During chronic inflammation when sustained injury is present such as those presented with steatohepatitis,
proinflammatory eicosanoids together with apoptotic cell debris sustain injury by polarizing macrophage towards a M2 phenotype (Sanyal et al., 2010). In
addition, downregulation of resolvins permits chronic inflammation with reduced phagocytic activities from macrophages. The mitogenic signal from the
proinflammatory eicosanoids and pro-tumor cytokines present a pro-tumor immune microenvironment to promote the progression from chronic
inflammation to HCC (Kudo, 2017). They also interact with other cells (HSC an T cells as example) in the liver to regulate liver disease progression.
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2017; Sheppe and Edelmann, 2021; Ampomah et al., 2022). This
function of PGE2 is thought to play a role in inflammation resolution
during efferocytosis (Fadok et al., 1998; Takayama et al., 2002; Tang
et al., 2012; Ampomah et al., 2022). Supporting this phagocytosis
promoting role of PGE2, the phagocytosis ability of peritoneal and
bone marrow derived macrophages is both attenuated in IBD mice
carrying macrophage deletion of COX2 (Meriwether et al., 2022). In a
zebra fish model, similar effects are observed (Loynes et al., 2018).
However, here, PGE2 is shown to dose dependently drive neutrophilic
inflammation resolution in the absence of macrophages (Loynes et al.,
2018). Given the previous defined pro-inflammatory functions of
PGE2, these effects of PGE2 on phagocytosis likely indicate a
context-dependent role of PGE2 on inflammation and its
resolution. The role of PGE2 in liver Kupffer cell phagocytosis and
resolution of inflammation remain to be understood.

5 Forward and perspective

Inflammation is indispensable for the development and
progression of liver disease from acute and chronic liver injury to
metabolic liver disease to fibrosis and cancer. During this process,
eicosanoids and other oxylipins are shown to regulate the balance of a
pro-inflammatory vs anti-inflammatory conditions (Figure 7). In
general, acute liver injury induces a pro-inflammatory conditions.
AA-derived eicosanoids play a role in promoting this condition that
include multiple inflammatory cell types while promoting
regeneration via their mitogenic signal (Finetti et al., 2020). During
chronic liver disease such as those involved in the development of
NASH, fibrosis and HCC, eicosanoids with pro-inflammatory
functions are maintained. Paradoxically, these pro-inflammatory
eicosanoids also play a role in resolution of inflammation by
regulating macrophage polarity and phagocytotic function.
Together with SPMs, the pro-inflammatory eicosanoids such as
PGE2 induces macrophage polarization towards a M2 phenotype.
During this progression, the lack of SPMs may have attenuated the
ability of macrophages to perform its phagocytotic function for full
resolution of inflammation, resulting in accumulation of M2 polarized
TAMs in the inflammatory tumor microenvironment. While this
review is focused on the changes of eicosanoids during liver disease
progression and their functions in macrophages, the effect of these
lipids on other cells types such as HSCs, T-cells, neutrophils also play a
role in establishing the inflammatory tumor microenvironment
(Figure 7). Eicosanoids, particularly PGEs have been shown to
regulate the function of these other cell types (Zhang et al., 2010;
Hao et al., 2011; Brudvik et al., 2012; Xun et al., 2021). However, as the
lipid species, their effects on different cell types, and the reaction of the
different cell types change significantly throughout the stages of liver
disease, a more clearly defined stage/disease condition related profile
of lipid species and cellular heterogeneity needs to be defined prior to
fully understand how they interact with each other. Such effort has
been put forth in recent years as illustrated by studies showing that
HSC produced PGE2 in NASH promote tumor tumor growth (Loo
et al., 2017).

The M1/M2 polarity is often used in defining the role of these
bioactive lipids on macrophage function. However, the liver

macrophages are highly heterogenous comparing to other tissue
types. A simple M1 vs M2 phenotyping does not distinguish the
diverse macrophage types in the liver and both M1 and
M2 phenotypes are stimulated simultaneously in different state of
the disease progression. For example, the liver resident macrophage
KCs maintain liver homeostasis by inhibiting the cytotoxic T cells
(anti-inflammatory) while presenting the ability to eliminate antigens
through phagocytotic functions (resolution) and release IL-6 (pro-
inflammatory) when treated with LPS. In this scenario, KCs secret
PGE2 and 15-deoxy-delta12,14-PGJ2 (15 days-PGJ2) to suppress
effector T cells induced by other APCs (You et al., 2008). Thus,
while PGE2 is associated with a traditional M2 polarizing cytokine
phenotype, this view to define their function towards inflammation
and their roles in liver disease progression is limited. Recent single cell
RNA-seq studies have started to define the macrophage diversity
under different conditions (MacParland et al., 2018; Ramachandran
et al., 2019; Bleriot et al., 2021). A more precise view of the diverse
macrophage populations (as well as other cell types), and their
eicosanoids profile needs to be defined together with their
functions during liver disease progression. In either case, the
current literatures established the roles of both pro- and anti-
inflammatory bioactive lipids in liver disease progression and
macrophage function. However, significant knowledge gap needs to
be filled to fully understand how they contribute to and their
regulation during liver disease progression and cancer development.
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