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The extracellular matrix (ECM) provides physical support and imparts significant
biochemical and mechanical cues to cells. Matrix stiffening is a hallmark of liver
fibrosis and is associated with many hepatic diseases, especially liver cirrhosis and
carcinoma. Increasedmatrix stiffness is not only a consequence of liver fibrosis but is
also recognized as an active driver in the progression of fibrotic hepatic disease. In
this article, we provide a comprehensive view of the role of matrix stiffness in the
pathological progression of hepatic disease. The regulators that modulate matrix
stiffness including ECM components, MMPs, and crosslinking modifications are
discussed. The latest advances of the research on the matrix mechanics in
regulating intercellular signaling and cell phenotype are classified, especially for
hepatic stellate cells, hepatocytes, and immunocytes. The molecular mechanism
that sensing and transducing mechanical signaling is highlighted. The current
progress of ECM stiffness’s role in hepatic cirrhosis and liver cancer is introduced
and summarized. Finally, the recent trials targeting ECM stiffness for the treatment of
liver disease are detailed.
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1 Introduction

The extracellular matrix (ECM) is a cell-secreted extracellular microenvironment
containing various components, such as collagen, fibronectin, laminin, and hyaluronic acid
(Li et al., 2021). This extracellular microenvironment is crucial in hepatic functions and
provides not only biochemical but also mechanical cues to influence cellular phenotype and
behavior (Yeh et al., 2002; Desai et al., 2016). Increasing ECM stiffness is associated with liver
pathological conditions including hepatic fibrosis resulted from viral hepatitis B and C, non-
alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, hereditary diseases such as
Wilson’s disease, and liver cancer (Parola and Pinzani, 2019). The stiffness of ECM is typically
reported as elastic modulus (E, also known as Young’s modulus) or shear modulus (G). Several
mechanical test methods have been used to measure the ECM mechanical property, including
atomic force microscopy, ultrasound elastography, magnetic resonance elastography, and
fluorescent microscopy (Guo et al., 2022). The accumulated evidence revealed that ECM
stiffening, a symbol of tissue fibrosis, is not merely an epiphenomenon of liver fibrosis, but can
actively promote dysregulation of cellular function, leading to persistent and/or progressive
liver fibrosis (Chen et al., 2019).

Here we aim to present an overview of the role of ECM stiffness in liver disease.We will start
with summarizing the regulators of ECM stiffness in the liver mainly including ECM
components, matrix metalloproteinase (MMPs), enzymatic or non-enzymatic crosslinking,
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and cell properties. We discuss the effects of matrix stiffness on cellular
behavior and phenotype in various liver cell types, and the activity of
key biomolecules (TGF-β). We review how cells sense ECM
mechanical signals and the intercellular mechanotransduction
pathways. Finally, we summarize the role of matrix stiffness in
liver cirrhosis and hepatic cancer, and potential mechanotherapy.
Collectively, this review reinforces the importance of matrix
mechanics in hepatic fibrosis, and hopes to provide novel research
directions and targets for hepatic disease.

2 Modulation of hepatic ECM stiffness

Many factors participate in promoting stiffness of the ECM in the
pathological liver tissues (Figure 1), including the abnormal
accumulation of ECM components such as collagen, fibronectin,
and elastin, the dysregulated secretion of MMPs and TIMPs, and
the excessive crosslinking. Moreover, the cell property also modulates
the mechanics of the ECM.

2.1 ECM components and MMPs

During the fibrotic process, ECM components present an obvious
change as the advanced fibrotic hepatic tissue contains approximately
6 times more ECM than the normal, including collagen type I, III, and
IV, fibronectin, undulin, elastin, laminin, hyaluronan, and
proteoglycans (Bataller and Brenner, 2005). Collagens are mainly
produced by hepatic stellate cells and portal fibroblasts (Karsdal
et al., 2020). In a carbon tetrachloride (CCl4) induced rat liver
fibrosis model, the accumulation of total collagen increased as
fibrosis progressed, which is 4.94% of the liver sections at 4 weeks,
8.25% at 6 weeks, and 9.11% at 8 weeks (Vassiliadis et al., 2011).
Further measurements revealed that the liver matrix was significantly
stiffer in regions approaching fibrillar collagen deposition and
returned to near normal rigidity in areas remote from it within the

same lobule (Desai et al., 2016). Collagen type I is the most common
protein in the body and associated with stiffness across tissues
generally (Swift et al., 2013). It’s the most excessive ECM
components in fibrotic hepatic tissues (Kisseleva and Brenner,
2013), above, the massive deposition of collagen especially collagen
type I is an essential contributing factor in the local stiffening of the
ECM in progressive liver fibrosis. In addition to collagen
accumulation, the stiffness of the ECM may also be influenced by
the orientation of collagen. As Desai et al. (2016) found that the
collagen bridges have more dense collagen but also more aligned
collagen which can influence stiffness.

Elastic fiber is a compound consisted of amorphous elastin and
fibrous fibrillin, which both are mainly made of smaller amino acids
including glycine, valine, alanine, and proline (Kielty et al., 2002). It
is actively synthesized by hepatic stellate cells and portal fibroblasts
in diseased liver (Kanta 2016). In the CCl4-treated liver damage
mice model, the increased stiffness of damaged liver ECM is
accompanied with decreased elastic fibers. While in the
diethoxycarbonyl dihydrocollidine (DDC)-treated livers, the
expression of elastic fibers showed no alteration (Klaas et al.,
2016). From the study conducted on patients with hepatitis C,
the elastin increased from stage F2-F3 (Yasui et al., 2019). These
studies indicate that elastic fibers may play a complex role in the
stiffness of liver fibrosis, which may be associated with the causes of
disease.

Fibronectin (Fn), mainly secreted and synthesized by endothelial
cells, Kupffer cells, and hepatocytes, is a large dimeric glycoprotein
existing in its insoluble form as a part of the ECM(Younesi and
Parsian, 2019). The livers of Fn-null mice present extensive fibrosis,
which is accompanied by elevated hepatic matrix rigidity and impaired
liver functions. Mechanistically, mutant livers show increased TGF-β
bioactivity and TGF-β-regulated lysyl oxidase (LOX) expression,
which in turn promote ECM remodeling and stiffening (Iwasaki
et al., 2016). These studies indicate a potential association between
Fn-mediated control of TGF-β bioavailability and collagen fibril
stiffness regulated by LOX.

FIGURE 1
Regulators participated in ECM stiffening in the pathological lung tissues. ECM components including collagen type I, III, IV, and elastic fibers are
significantly increased. Crosslinking between ECM components is elevated caused by increased crosslinking enzymes such as LOX family, TGs, and non-
enzymatic AGEs modifications. The balance between MMPs and TIMPs is disturbed due to the increased expression of TIMPs and decreased MMPs. Cells
stiffening and contraction also contribute to the matrix stiffness.

Frontiers in Physiology frontiersin.org02

Guo et al. 10.3389/fphys.2023.1098129

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1098129


Proteoglycans (PGs) are formed by glycosaminoglycans (GAGs)
bound to a core protein, which can be a part of the ECM (Amendum
et al., 2021). PGs have been demonstrated enhancement in remodeling
liver tissues (Kimura et al., 2008). The amount of PGs increased
significantly in stiffened liver tumors, especially perlecan and decorin
(Kovalszky et al., 1993). The knockout of perlecan and decorin results
in decreased matrix stiffness in murine model (Costell et al., 1999;
Robinson et al., 2017).

MMPs and their inhibitors metalloproteinase tissue inhibitors
(TIMPs) are normally in a dynamic balance to keep the expression
and deposition levels of the ECM in the liver. While fibrosis occurs,
their balance will be interrupted and the profibrogenic effects of
TIMP-1 are thought to be mediated via preventing collagen
degradation through inhibition of MMPs (Knittel et al., 2000),
which changes mechanical properties of the liver matrix. Studies
confirmed that increasing expression of TIPMs were detected in
patients with liver injury and cirrhosis (Dechêne et al., 2010;
Latronico et al., 2016). The imbalance secretion of MMP-9 and
TIMPs mediated by rigid matrix perpetuate liver fibrosis
(Lachowski et al., 2019). These finding shows that change of the
deposition of ECM components in liver matrix, eventually altering the
matrix stiffness of liver and affecting the process of hepatic fibrosis.

2.2 Enzymatic and non-enzymatic
crosslinking

In addition to the promotion of matrix stiffness by the change of
ECM components, the degree of cross-linking of the ECM affects the
mechanical characteristics of the matrix.

Enzymatic cross-linking is major mediated by LOX, which
increases the cross-linking of collagens and subsequently elevate
matrix stiffness (Barker et al., 2012). The LOX family, comprising
LOX and four lysyl oxidase-like proteins (LOXL1-4), are secreted
copper-dependent amine oxidases, which catalyze the oxidative
deamination of primary amine groups into reactive aldehyde
condense with other aldehydes or ε-amino groups of selected lysine
and hydroxylysine residues to form covalent intra- and inter-
molecular crosslinks (Shah et al., 1993; Eekhoff et al., 2018). The
stellate cells and portal fibroblasts were the major cellular sources of
LOXs in CCl4-induced model of liver fibrosis, and LOX-mediated
deoxypyridinoline and pyridinoline cross-links increased
correspondingly with liver stiffness (Perepelyuk et al., 2013).
Previous studies found that expression of LOX, LOXL1, and
LOXL2 are increased in patients with liver fibrosis (Vadasz et al.,
2005; Chen et al., 2020). The inhibition of LOX suppressed the cross-
linking of collagen and attenuated CCl4-induced advanced hepatic
fibrosis (Liu et al., 2016). Besides the expression, the increased activity
of LOX family members are also observed in sera of patients with liver
fibrosis cirrhosis (Mesarwi et al., 2015). Studies have shown that higher
expression of LOX is a predictor of progression and poor prognosis in
patients with liver cancers (Lin et al., 2020; Sun et al., 2022). In
addition to collagen, LOX1 could also increase the cross-linking of
elastin and promote the liver cirrhosis (Zhao et al., 2018).

Transglutaminase (TGs) are calcium-dependent enzymes that
catalyze covalent crosslinking between the γ-carboxy-amine group of
glutamine residues and the ε-amino group of lysine residues, generating
ε-(γ-glutamyl)lysine isopeptide crosslinks (Griffin et al., 2002). The
expression of TG is upregulated in experimental liver fibrogenesis

(Mirza et al., 1997; Chen et al., 2008). Further study indicated that
TG-mediated cross-linking occurs in the liver extracellular matrix
during the early, inflammatory, stage of liver fibrosis, whereas cross-
linking by pyridinoline occurs mostly later in the fibrotic process8. The
inhibition of TG has been demonstrated to ameliorate liver fibrogenesis
in animal models (Qiu et al., 2007; Tang et al., 2014).

Advanced glycation end products (AGEs) are non-enzymatic
modifications of protein crosslinking. It differs from enzymatic
process as AGEs can form crosslinks throughout the collagen
molecule not only at the N- and C-terminal ends of the molecule
(Brownlee et al., 1988). Accumulation of AGEs induces abnormal
matrix crosslinking that ultimately leads to a progressive increase in
tissue stiffness. The upregulation of AGEs accelerates liver injury and
fibrosis (Goodwin et al., 2013). In a rat liver fibrosis model, the contents
of AGEs in their blood sera and liver homogenates were increased in the
late phase, and it could reflect the fibrosis degree of the rat livers (Gao
et al., 2006). In patients with hepatitis C-related cirrhosis, AGEs are
powerful parameters associated with the HCC occurrence (Abdel-Razik
et al., 2021). These data suggest that the AGEs accumulation may take a
function in the late stage of liver fibrosis and the inhibition of AGEsmay
provide a novel target for late patients with cirrhosis.

2.3 Cell stiffening and contraction contributes
to the stiffness of liver

The cells’ physical properties and interaction with
microenvironment could alter the stiffness of the ECM. In the
in vitro model for liver cirrhosis, the stiffness of human hepatoma-
derived HepG2 cells was significant increased after treatment with
three known induction factors (collagen substrates, alcohol, and CCl4)
(Sun et al., 2014). The lung with idiopathic pulmonary fibrosis remains
only 44% of the original lung stiffness after decellularized treatment
(Booth et al., 2012). These evidence suggest cell stiffness modulates the
mechanical property of ECM. Active microrheology (AMR) analysis
showed that cells grown in 3D type 1 collagen gels modulate the
mechanical microenvironment in a cellular contraction-dependent
manner. Inhibition of cellular contractility instantaneously softens the
pericellular space and reduces stiffness heterogeneity (Keating et al.,
2017). Rocky et al. further demonstrated that promotion of
contraction of hepatic stellate cells contribute to the cirrhotic liver
(Rockey andWeisiger, 1996). Furthermore, proteoglycans in the ECM
can influence the cell contraction based alignment (Chen et al. Sci
Reports. 2020). Together, these data suggest a central role for cellular
physical property and contractility modifying the ECM stiffness.

3 Functions of the matrix mechanics

3.1 Regulation of phenotype and behavior of
various cell types

3.1.1 Hepatic stellate cells
Hepatic stellate cells (HSCs)are major cellular sources of

myofibroblasts driving liver fibrogenesis. In the fibrogenic liver,
quiescent HSCs transdifferentiate into proliferative, migratory, and
contractile myofibroblasts, manifesting pro-fibrogenic transcriptional
and secretory properties, and secrete ECM molecules (Higashi et al.,
2017). HSC became progressively myofibroblastic as substrate stiffness
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increased on all coatingmatrices (Olsen et al., 2011). It has been shown
that the stiffening of the ECM promotes HSCs activation to
myofibroblasts through CD36-AKT-E2F3 mechanosignaling
pathway, and these HSCs cultured on stiff matrices express high
levels of α-smooth muscle actin (αSMA) (Liu et al., 2021). Wells
et al. (2005) further suggested the interplay between matrix stiffness
and TGF-β promotes HSCs differentiation through a two-step process,
as the mechanical stiffness promotes the αSMA expression and TGF-β
signaling affects the formation of focal adhesions and organization of
stress fibers. Also, stiff matrices promote HSCs secretion of fibronectin
and collagen, which could be inhibited by FHL2 knockdown
(Kostallari et al., 2022).

3.1.2 Hepatocyte
Hepatocytes are the main parenchymal cells and functional units

of the liver. Previous studies have shown that hepatocytes contributed
to the process of liver fibrosis through changing migratory behavior
and biological functions. Hepatocytes are sensitive to substrate
stiffness (Xia et al., 2018). Tingting et al. demonstrated that stiff
matrix promoted hepatocellular migration through enhancing the
formation of actin- and tubulin-rich structures, including the
filopodia and lamellipodia. Moreover, hepatocytes cultured on stiff
substrate showed increased apoptosis (Xia et al., 2020). Thus, matrix
stiffness could change the behavior and phenotype of hepatocytes.
Besides that, stiffer matrix downregulates the expressions of albumin,
CYP450 reductase, and HNF4α collectively (Li et al., 2021; Monckton
et al., 2021), and the HNF4α decrease is closely associated with stiffer
substrates-induced hepatocytes proliferation (Schrader et al., 2011).
The mechanotransduction in primary hepatocytes is transferred
through focal adhesion kinase and downstream Rho/Rho-associated
protein kinase pathway (Desai et al., 2016). Several key drug
transporter genes (NTCP, UGT1A1, and GSTM-2) were
downregulated in hepatocytes cultured on stiff matrix, which helps
illustrate the poor prognosis of liver cirrhosis and carcinoma
(Natarajan et al., 2015). The matrix stiffness-induced hepatocyte
differentiation is mediated with ERK and ROCK (Kourouklis et al.,
2016). Above all, matrix stiffness mediates various functions of
hepatocytes including migration, proliferation, and differentiation.

3.1.3 Immunocyte
In hepatocellular carcinoma (HCC) tissues, macrophage showed

an M2 polarization, and the in vitro study confirmed that a stiff matrix
could strengthen the M2 polarization and induce LOXL2 expression
through integrin β5-FAK-MEK1/2-ERK1/2 pathway (Xing et al.,
2021). This study helps clarify the underlying mechanism of matrix
stiffness-induced premetastatic niche formation in HCC. Interfering
with collagen stabilization reduces ECM content and tumor stiffness,
leading to improved T cell migration and increased efficacy of anti-
PD-1 blockade in the cholangiocarcinoma model (Nicolas-Boluda
et al., 2021). All these data suggest ECM stiffness’s role in mediating
the function of immunocytes, which provide new insight into
interfering with hepatic disease.

3.2 Regulation of biomolecule activity

TGF-β1, a 25-kDa homodimeric protein, has been involved in
hepatic fibrogenesis, regulation of liver cell growth, tumor
development, and induction of hepatocellular apoptosis (Gressner

et al., 1997; Flisiak et al., 2000). The TGF-β1-promoted HSCs
activation is a dominant signal in liver fibrosis (Guvendiren et al.,
2014). Increased TGF-β1 expression has been found in patients with
hepatic fibrosis (Li et al., 2015; Kotsiri et al., 2016). TGF-β1 was
secreted as a large latent complex (LLC), consisting of TGF-β1,
latency-associated pro-peptide (LAP), and the latent TGF-β1
binding protein (LTBP-1). LTBP-1 is an ECM protein binding to
several other ECM components, including fibrillin-1, Fn, and
vitronectin, thereby depositing latent TGF-β1 within the
ECM(Annes et al., 2003; Robertson et al., 2015). Cells contraction
activates latent TGF-β1 from a preformed ECM, and this TGF-β1
activation increases with augmented matrix stiffness (Wipff et al.,
2007; Giacomini et al., 2012). Together, the efficiency of latent TGF-β1
activation depends on the mechanical properties of the ECM.

4 Sensing and mechanotransduction

Integrin-based focal adhesion (FA) complexes are the major
cellular components responsible for detecting mechanical signals
produced by the ECM(Discher et al., 2005). In mouse fibrotic
livers, the stiffened matrix promotes integrin clustering and then
activates the kinase activity of focal adhesion kinase (FAK). The
genetic knockout of FAK in hepatocytes has been shown to protect
mice from inflammation and fibrosis (Santos and Lagares, 2018). The
intercellular mechanotransduction pathway mainly includes the
RhoA/ROCK and the YAP/TAZ signaling way (Figure 2).

4.1 The RhoA/ROCK pathway

The small Rho GTPase RhoA/Rho kinase (ROCK)-mediated
mechanotransduction pathway is activated by matrix stiffness
(Ohashi et al., 2017). The substrate stiffness could directly
activate FAK, and induce the downstream cascades of
intracellular signals of the RhoA/ROCK pathway (Peng et al.,
2019). Specifically, there are two ROCK isoforms (ROCK1 and
ROCK2), and the matrix stiffness-activated ROCK isoforms
differentially regulated the pathways of RhoA/ROCK1/p-MLC and
RhoA/ROCK2/p-cofilin in a coordinate fashion to modulate cell
motility (Peng et al., 2019). Recently, Dou et al. demonstrated that
matrix stiffening can activate AKT through inducing
phosphorylation and accumulation of p300 to the nucleus of
HSCs and promote cancer metastasis by elevating the expression
of paracrine factors such as CXCL12. In this process, the RhoA
pathway of human HSCs was activated by the matrix stiffness from
0.4 kPa to 25.6 kPa and accelerated the downstream nuclear
translocation of p300 leading to HSCs activation, which suggests
that RhoA is required of substrate stiffness-promoted
phosphorylation of p300 (Dou et al., 2018). Inhibition of the
RhoA/ROCK pathway has been demonstrated effective in
attenuating fibrogenesis in several animal hepatic fibrosis models
(Xie et al., 2018; Lai et al., 2019).

4.2 The YAP/TAZ pathway

Yes-associated protein (YAP) and its close paralog transcriptional
coactivator with PDZ-binding motif (TAZ) are activated in HSCs in
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response to matrix stiffening (Caliari et al., 2016).
Immunohistochemical examination of fibrotic liver tissues from
patients with hepatitis C found that the myofibroblasts in the
fibrotic region with strong nuclear staining of YAP and TAZ
(Mannaerts et al., 2015). The stiff substrates promote YAP/TAZ
nuclear translocation from the cytoplasm (Dupont et al., 2011),
and induce the expression of profibrotic genes and increase the
expression of α-SMA and excessive matrix accumulation (Panciera
et al., 2017). The inhibition of YAP by verteporfin reduced HSC
activation and fibrogenesis (Zhang et al., 2016). RhoA/ROCK signaling
is crucial for YAP/TAZ activation, which has been experimentally
demonstrated in various systems, either genetically or by using
inhibitors (Panciera et al., 2017). Though evidence showed that
YAP/TAZ activity in other liver cells including hepatocytes, Kupffer
cells and liver sinusoidal endothelial cells are increased and promotes
inflammation and fibrosis in multiple models of non-alcoholic
steatohepatitis and chemical-induced liver fibrosis, the relationship
between matrix stiffness and its influence on these cells needs
further elucidation (Zhang et al., 2016). Mechanistic studies
suggested that CXCR4 is a critical intracellular signal transducer that
relays matrix stiffness signals to inhibit ubiquitin domain-containing
protein 1 (UBTD1), which then activates YAP signaling pathway (Yang
et al., 2020). And the TAZ could further target geneAREG and CTGF to
promote liver fibrogenesis (Yang et al., 2012).

5 Matrix stiffness in the pathogenesis of
liver disease

5.1 Liver cirrhosis

The pathological stage of hepatic fibrosis is generally divided into
5 grades: F0 is non-hepatic fibrosis, F1 is mild hepatic fibrosis, F2 is
moderate hepatic fibrosis, F3 is severe hepatic fibrosis, and F4 is
cirrhosis. Golo Petzold examined patients with healthy liver or
cirrhosis with 2-dimensional shear wave elastography and found
that the normal liver stiffness to be 4.93 ± 0.83 kPa and
F4 cirrhotic liver to be 13.29 ± 3.27 kPa (Petzold et al., 2019). The
higher liver stiffness indicates a higher possibility of clinical
complications and a worse prognosis in patients with advanced
chronic liver disease (Vergniol et al., 2011; Singh et al., 2013). Even
a study found that the increased stiffness precedes fibrosis and
potentially promotes fibrotic pathogenesis in an animal liver injury
model. This early change appears to result from matrix cross-linking
mediated by an imbalanced LOX family (Georges et al., 2007). Cell
types including hepatocytes, hepatic stellate cells, and liver sinusoidal
endothelial cells, isolated from rats with cirrhosis and cultured on a
rigid matrix, presented an altered nuclear morphology compared with
those on soft matrix, which suggests mechanotransduction could
potentially influence the phenotype of various liver cells and

FIGURE 2
A scheme of liver ECM stiffness-regulated sensing and mechanotransduction pathways. Liver ECM-derived mechanical cues are mainly sensed by
integrin-based FAs located on the cell surface. The intercellular mechanotransduction pathways including the RhoA/ROCK and the YAP/TAZ signaling ways
are further activated and transfer the mechanical cues into nucleus to target profibrotic genes. RhoA/ROCK interacts with YAP/TAZ, and promotes their
nuclear translocation. RhoA activates AKT, promotes P300 phosphorylation, and CXCL 12 expression. Matrix stiffness-induced CXCR4 expression inhibits
UBTD1 and activates YAP. The nuclear translocation of YAP/TAZ promotes expression of α-SMA, AREG, and CTGF. Other mechanotransduction pathway
includes NEAT1-WNT/β-catenin pathway.
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accelerate cirrhosis process (Guixé-Muntet et al., 2020). The
expression of mechanotransducer including TAZ and serum
osteopontin (OPN) is associated with increased liver stiffness in
patients with liver cirrhosis, especially in autoimmune- and
alcohol-related cirrhosis (Khajehahmadi et al., 2020). The nuclear
translocation of TAZ could target genes AREG and CTGF, and the
overexpression of the two genes promotes the liver cirrhosis process
(Mitani et al., 2009; Yang et al., 2012; Mohagheghi et al., 2019). In liver
cirrhosis, the mechanical transduction pathway RhoA/ROCK was
activated and led to increased vascular contractility and portal
pressure (Hennenberg et al., 2006; Trebicka et al., 2007), moreover,
the matrix stiffness-induced RhoA overexpression also interacts with
the cytosolic tyrosine kinase c-SRC and decreases the c-SRC activity to
activate HSC to mediate liver cirrhosis (Görtzen et al., 2015). The
expression of TIMP-1 is increased in hepatic cirrhosis patients, which
is partly caused by matrix stiffness-induced HSC’s elevated exocytosis
and secretion of TIMP-1 in a caveolin-1-and dynamin-2-dependent
manner (Lachowski et al., 2022).

Portal hypertension is a complication for patients with
compensated advanced chronic liver disease or decompensated
cirrhosis. Liver stiffness measurements (LSM) offer valuable
alternatives to detect and monitor portal hypertension. The
thresholds of liver stiffness>15 kPa is highly suggestive of advanced
chronic liver disease, and>20–25 kPa indicates a high likelihood of
clinically significant portal hypertension (Reiberger 2022). Moreover,
LSM has become an important instrument to assess the clinical course
of portal hypertension, as patients with baseline LSM >14 kPa have a
worse prognosis regarding both development of complications or
survival (Stefanescu and Procopet, 2014).

5.2 Liver cancer

Increased matrix stiffness is a mechanical feature of solid tumors,
including liver cancer. HCC cells cultured on stiff matrix showed a
significantly higher proliferative index than that on soft matrix
(Schrader et al., 2011). A rigid matrix promotes proliferation of
HCC cells by stimulating expression of integrin β1, activating the
PI3K/Akt pathway, and upregulating VEGF expression (Dong et al.,
2014). ECM-derived mechanical signals promote HCC cell invasion
and metastasis, which is also mediated by integrin β1 (Zhao et al.,
2010). Moreover, higher stiffness-stimulated HCC cells exhibited
chemotherapeutic resistance to cisplatin (Schrader et al., 2011),
paclitaxel, 5-FU (Liu et al., 2015), weakened oxaliplatin-induced
apoptosis (You et al., 2016), and attenuated metformin-inhibited
invasion and metastasis (Gao et al., 2020). Studies above indicate
that matrix stiffness accelerated the pathogenesis of liver cancer
through mediating HCC cells phenotype. Epithelial-mesenchymal
transition (EMT) is a phenomenon that HCC cells presents
fibroblast-like morphology, cytoskeleton remodeling, protrusive and
invasive pseudopodial structure, similar to morphology and great
migration capability, which promotes the development of liver
cancer (Giannelli et al., 2016). High stiffness could induce EMT in
HCC cell and is related to overexpression of Snail, which is converged
by three signaling pathways including S100A11 membrane
translocation, eIF4E phosphorylation, and TGF-β1 autocrine (Dong
et al., 2019). Besides that, the activated NEAT1-WNT/β-catenin
pathway is confirmed in substrate stiffness-regulated EMT in HCC
cells (Dong et al., 2019). Liver cancer cells with stemness properties

(LCSCs) comprise a small portion of HCC cells. This small proportion
of HCC cells has great self-renewal and metastatic potential. Research
has shown that the stiffnesses of the liver tumor invasive front and core
are different, as the core is softer than the invasive front (Sun et al.,
2021). Boren Tian et al. demonstrated that a soft matrix increases the
stemness of HCC cells, which may be beneficial to maintain dormancy
and adaptation to the surrounding environment and then initiate
tumorigenesis when the microenvironment is suitable (Tian et al.,
2019). Furthermore, the soft spot-enhanced CSCs stemness is related
to drug resistance and HCC metastasis (Ng et al., 2021).

Activated HSCs in the liver microenvironment regulate HCC
growth by paracrine mechanisms, including secreting growth
factors, ECM, and cytokines (Zhang and Friedman, 2012). The
mechanical stimulation of ECM can induce HSCs to differentiate
into cancer-associated fibroblasts (CAFs) (Yeung et al., 2005).
Changwei Dou et al. demonstrated that substrate stiffness-activated
HSCs through a RhoA-AKT-p300 signaling pathway (Dou et al.,
2018). The other study indicated that stiffness-activated CD36-
AKT-E2F3 signaling also takes a role in the HSCs
transdifferentiation to CAFs by FGFR1-mediated PI3K/AKT and
MEK/ERK signaling (Liu et al., 2021). All above suggest matrix
stiffness-promoted HSCs activation is enrolled in HCC growth and
metastasis.

6 Measurements of liver matrix stiffness

Matrix mechanical properties are typically reported as elastic
modulus (E, also known as Young’s modulus) or shear modulus
(G). There is an equation between elastic modulus and shear
modulus, and the elastic modulus is approximately three times the
shear modulus for isotropic and incompressible materials. Several
mechanical test methods have been used to measure the matrix
stiffness, including elastography and atomic force microscopy
(AFM) methodology (Sigrist et al., 2017; Ojha et al., 2022).

6.1 Elastography

Ultrasound elastography (USE) is an imaging technology sensitive
to organ mechanical property that was first introduced in the 1990s
(Gennisson et al., 2013). Shear wave imaging (SWI) employs a
dynamic stress to generate shear waves in the parallel or
perpendicular dimensions. There are currently three technical
approaches for SWI: 1) point shear wave elastography (pSWE), 2)
1 dimensional transient elastography (1D-TE), and 3) 2 dimensional
shear wave elastography (2D-SWE) (Barr et al., 2015). pSWE can be
performed on conventional US machine but it could be only stressed
in a single focal location. 1D-TE can estimate the stiffness along
ultrasonic A-line, but it is not user adjustable and no image-guided.
2D-SWE is the newest SWI method which can test stiffness in a rapid
speed inmultiple focal zones (Ferraioli et al., 2015). However, there are
some common technical limitations for SWI, such as shadowing,
reverberation, clutter artifacts, decreased ultrasound signal for deep
tissues, or the operator-dependent nature of free-hand ultrasound
system (Palmeri and Nightingale, 2011).

Magnetic resonance elastography (MRE) uses a modified phase-
contrast imaging sequence to detect propagating shear waves within
the liver. It provides parameters with high sensitivity to elasticity,
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viscosity, and poroelastic properties for the evaluation of structural
variations in livers at multiple scales (Singh et al., 2016). MRE has been
demonstrated a highly accurate non-invasive diagnostic method to
detect and monitor various liver pathophysiologic states (Li et al.,
2020). MRE is limited by long operating times, high costs, difficulty in
distinguishing tissue stiffening between fibrosis and inflammation or
altered perfusion, such as portal venous hypertension in cirrhosis
(Salameh et al., 2009).

6.2 AFM

One of the major drawbacks of common liver stiffness
measurements including USE and MRE is that they do not provide
cellular-level resolution of stiffness heterogeneity in the liver (Ojha
et al., 2022). During the liver disease development, areas containing
rich collagens show higher stiffness compared to the surrounding
parenchyma (Calò et al., 2020). Thus, changes in local rigidity need to
be characterized on a microscopic level to better understand the
progression of fibrosis. AFM could detect the liver mechanical
properties with high resolution and high force sensitivity. AFM
indents the tissue surface with the tip of a cantilever, and causes
deformation at the microscopic or nanoscopic level according to the
geometric shape and size of the tip. The force response of the tested
sample to the applied strain is then calculated as the deflection in the
cantilever (Binnig et al., 1986). The force displacement curve is
collected from the approach and retraction of the cantilever, which
can be fitted with an appropriate contact mechanical model to evaluate
the local stiffness of the sample. AFM can also provide topographic
information about specific features in the sample, such as the structure
of collagen (Amabili et al., 2021). Moreover, AFM has also been used
in vitro to determine the stiffness of cells and extracellular protein
scaffolds (Norman et al., 2021).

7 Mechanotherapy

As the importance of matrix stiffness in mediating the liver fibrotic
process, targeting the liver mechanics is a promising therapy to
prevent or even reverse liver fibrosis. There are two main methods
to interrupt the pathogenesis including decreasing the matrix stiffness
directly and inhibiting the mechanotransduction pathways.

To reduce the matrix stiffness, targeting the LOXL2-induced
crosslinking through anti-LOXL2 antibody AB0023 has been
demonstrated effective in reliving liver fibrosis in animal models
(Ikenaga et al., 2017). Another study confirmed that silencing
LOXL1 can treat the progression of cirrhosis by reducing the
crosslinking of elastin in CCl4-induced fibrosis mice models (Zhao
et al., 2018). These studies indicated that inhibition of the LOX family
has the potential to treat hepatic fibrosis. However, a phase II clinical
trial conducted in IPF patients showed that the LOXL2-specific
antibody Simtuzumab failed to improve progression-free survival
(Raghu et al., 2017). This result suggests crosslinking and matrix
stiffness involve complex mechanism in mediating organ fibrosis and
needs further investigation in patients with liver fibrosis.

Fasudil is a clinically approved small-molecule inhibitor of ROCK.
Treatment with Fasudil significantly attenuated the activation of
ROCK and alleviates hepatic fibrosis in diabetic rats (Zhou et al.,

2014; Xie et al., 2018). Other studies have shown that selective ROCK
inhibitor Y27632 suppressed the Rho/ROCK pathway and attenuates
α-SMA expression to prevent hepatic fibrosis in animal models (Tada
et al., 2001). It would be promising to see whether targeting Rho/
ROCK pathway could be effective for the treatment of patients with
liver fibrosis.

YAP/TAZ pathway is activated in liver fibrosis, and the
suppression of YAP levels by transfecting siRNAs or
pharmacological inhibition of YAP by verteporfin can effectively
decrease the activation of HSCs in vitro and can alleviate the
fibrogenesis in an animal model with liver fibrosis (Mannaerts
et al., 2015). Omega-3 polyunsaturated fatty acids (ω-3 PUFAs),
such as docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA), demonstrate effectiveness in preventing liver fibrosis by
targeting YAP to decrease the levels of pro-fibrogenic genes in
HSCs and fibrotic liver (Zhang et al., 2016). These findings reveal
that targeting the nuclear transcription of YAP/TAZ in cells represents
a potential strategy for the treatments of fibrotic liver diseases.

8 Conclusion and future perspectives

The mechanical property of the ECM affects the phenotype and
function of various liver cell types and is associated with hepatic
disease including cirrhosis and carcinoma. Currently, the knowledge
of mechanosensing and intercellular mechanotransduction
mechanisms remains limited. A better understanding of how
hepatic cells sense matrix stiffness and translate matrix mechanical
cues into the cellular responses can provide us with more
opportunities to develop accurate drugs or inhibitors targeting
altered ECM mechanics in liver diseases. Though some
intervention of matrix stiffness has achieved initial effects in vitro
or animal models, there is still a lot of work to do to further verify their
efficacy.
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