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Cerebral blood flow (CBF) supports brain metabolism. Diseases impair CBF, and
pharmacological agents modulate CBF. Many techniques measure CBF, but phase
contrast (PC) MR imaging through the four arteries supplying the brain is rapid and
robust. However, technician error, patient motion, or tortuous vessels degrade
quality of the measurements of the internal carotid (ICA) or vertebral (VA) arteries.
We hypothesized that total CBF could be imputed from measurements in subsets of
these 4 feeding vessels without excessive penalties in accuracy. We analyzed PC MR
imaging from 129 patients, artificially excluded 1 or more vessels to simulate
degraded imaging quality, and developed models of imputation for the missing
data. Our models performed well when at least one ICA was measured, and resulted
in R2 values of 0.998–0.990, normalized root mean squared error values of
0.044–0.105, and intra-class correlation coefficient of 0.982–0.935. Thus, these
models were comparable or superior to the test-retest variability in CBFmeasured by
PCMR imaging. Our imputationmodels allow retrospective correction for corrupted
blood vessel measurements when measuring CBF and guide prospective CBF
acquisitions.
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Introduction

The brain requires a significant fraction of the metabolic support of the body, and it lacks
the capacity to buffer disruptions in blood supply. Thus, adequate cerebral blood flow (CBF) is
vital to brain health (Lassen, 1959) and CBF measurements span many areas of brain research.
CBF varies markedly with brain development throughout infancy, childhood, and senescence.
(Oshima et al., 2002; Liu et al., 2019; Paniukov et al., 2020). Altered CBF is associated with
cardiovascular risk, (Jennings et al., 2013; King et al., 2018), small vessel disease, (Yu et al.,
2020), Alzheimer’s dementia, (Leijenaar et al., 2017), white matter lesions, (Hanaoka et al.,
2016), anemia, (Borzage et al., 2016), stroke risk in sickle cell disease, (Vernooij et al., 2008;
Prohovnik et al., 2009), and higher risk of non-cardiovascular mortality in the elderly. (Sabayan
et al., 2013). CBF is a predictive biomarker for patients with severe depression, (Leaver et al.,
2019), and CBF is modulated by pharmacological agents including substances of abuse, (Chen
et al., 2016), alcohol, (Christie et al., 2008), and anesthetics. (Oshima et al., 2002).

The gold standard for CBF measurements are Kety-Schmidt tracer methods for whole
brain measurements and Positron Emitting Tomography (PET) for spatially resolved
measurements. However, both are invasive, making them poor candidates for
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neurovascular screening or research applications. A non-invasive
alternative CBF measurement is arterial spin labeling (ASL)
magnetic resonance imaging (MRI), which uses magnetically
labeled water protons in the blood as endogenous tracers to
estimate brain perfusion. However, quantitation of ASL is
limited by the measurement or assumption of multiple
parameters, including blood-brain partition coefficient, T1 of
blood, T1 of brain tissue, labeling efficiency, and arterial transit
time. (Alsop et al., 2010). Estimates of each of these key parameters
are provided in the literature, however experimental methods
demonstrate variability for each: the blood-brain partition
coefficient varies with age, underlying pathology and brain
region; (Thalman et al., 2019) T1 of blood varies with red cell
characteristics and hematocrit; (Lu et al., 2004) labeling efficiency is
a confounding variable that depends on the blood velocity and
labelling schema; (Robertson et al., 2017) and arterial transit time
varies with the health, age (MacIntosh et al., 2015; Dai et al., 2017)
and brain region. (Thomas et al., 2006). The reproducibility of ASL
is moderate (ICC 0.74–0.78); (Yang et al., 2019) and ASL
acquisitions are lengthy, with typical scan times of 5–7 min. As a
result, ASL is excellent at determining relative brain perfusion in
specific regions, but less suitable for measuring absolute blood flow.

Alternatively, phase contrast (PC) MRI of the internal carotid
(ICA) or vertebral (VA) arteries provides rapid and robust
quantification of global CBF (ml/min). The measurement yielded
by PC MRI can be normalized to brain volume from brain mass
estimates derived from anatomic imaging to estimate global brain
perfusion in ml/100 g/min. PC MRI is reproduceable between users
(ICC 0.97–0.99) and has a low coefficient of variation (4%–9%) for
serial measurements. (Koerte et al., 2013; Liu et al., 2014; Sakhare
et al., 2019). If phasic variation is unimportant, then accurate CBF
can be collected without cardiac gating thereby greatly accelerating
the acquisition. Most importantly, PC-MRI does not require
modeling or parameter estimation, making it robust across
pathological states.

One barrier to deploying PCMRI in clinical practice is the need to
minimize contributions from partial-voluming or off-axis flow. The
MR operator prevents these issues by carefully localizing the imaging
plane orthonormal to the vessel being measured. The four head vessels
are not parallel, thus optimal measurement of one of vessel
compromises measurements from the others. To overcome this
problem, the MR operator can use four PC MR images at the cost
of a four-fold increase in time. However, manual optimization of each
image remains dependent on operator skill. Automated methods for
analyzing the anatomy of patients and planning ideal locations of four
PC MR imaging slices have been proposed, but not implemented by
MR scanner vendors. (Liu et al., 2014). Alternatively, placing a “best-
guess” single PC MR imaging slice to measure CBF is
methodologically simple and fast, but is inherently suboptimal and
occasionally results in one or more vessels being too oblique for
acceptable quantitation.

We postulated that flows in each vessel were sufficiently correlated
with one another so that imputation could compensate for
measurements corrupted by motion or obliquity, provided that one
or more vessels remain measurable. To test this hypothesis, we
calculated the internal correlations among the head vessels,
developed a table of mathematical models to impute the flow from
corrupted arterial flow measurements, and assessed the resulting error
introduced by our imputations.

Materials and methods

Patient demographics

This study is a secondary analysis of existing data, which was
originally approved by the Children’s Hospital Los Angeles
Committee on Clinical Investigations (CCI 11–00083). Informed
consent was obtained from N = 129 patients recruited between
2012 and 2017. This cohort included patients with sickle cell
disease (N = 55), healthy control patients (N = 42), and patients
suffering from various hemoglobinopathies (N = 32). These patients
were 23.5 ± 9.7 years (range 9–61 years) old (59M, 70F). Their
hematocrits were 32.9% ± 7.2% and 33% (N = 42) were on chronic
transfusion. (Borzage et al., 2016).

Image acquisition

The imaging methods are reported elsewhere in detail and
summarized here. (Borzage et al., 2016). We obtained all images
with a 3T Philips Achieva and eight-element head coil. A magnetic
resonance angiogram localized the vessels in the neck, and a PC MR
imaging plane was placed approximately 1 cm above the carotid
bifurcation. The angiogram was collected in the axial plane with
inline reformatting into sagittal and coronal planes to facilitate
orthogonal placement of the PC imaging plane. Image parameters
for the PC MR examination were as follows: repetition time, 12.3 ms;
echo time, 7.5 ms; field of view, 260 mm; thickness, 5 mm; signal
averages, 10; acquisition matrix, 204 × 201; reconstruction matrix,
448 × 448; bandwidth, 244 Hz/pixel; and velocity encoding gradient,
200 cm/s. For this retrospective data analysis, we retained only one PC
MR image per patient. Figure 1 demonstrates the coronal angiogram
showing the carotid and vertebral arteries together with the magnitude
and phase images.

Image processing

We performed all phase-contrast image analysis using MATLAB
(The MathWorks, Natick, MA). We thresholded the complex
difference image to identify moving voxels (defined as greater than
the mean plus two standard deviations of stationary voxels sampled
from a non-vascular region). We fit the phase differences of stationary
voxels using a two-dimensional second-order polynomial to remove
the background phase. We identified vessel boundaries using a Canny
edge-detector of the complex difference image, dilating the edge by a
single voxel, and excluding any stationary voxels. We calculated the
blood flow in each artery by summing the blood velocities (cm/s)
within the vessel multiplied by the voxel area (cm2). When the
automatic edge detection failed (<5% of the time), the carotid or
vertebral artery boundaries were identified manually by an MR
researcher (JCW) with 22 years of experience analyzing PC MR
images.

Modeling cerebral blood flow

We identified all 16 possible scenarios wherein combinations of
two, one, or zero ICAs or VAs might be able to be analyzed from an
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image (Table 1). We synthesized each of these 16 scenarios from each
PC MR image to simulate the effects of a sub-optimal image which
failed to assess the four vessels to be analyzed. We applied a standard
least-squares model to model the total cerebral blood flow (CBF) as a
function of the vessels able to be analyzed. In scenarios where two
ICAs or two VAs were analyzed, we simplified and reduced the
degrees of freedom in the models by calculating the total anterior
(sum of ICAs) or posterior (sum of VAs) flow. We evaluated the
quality of each model using root mean squared error, intra-class
correlation coefficients (ICC), R2 statistic. The ICC (Lassen, 1959;
Liu et al., 2019) is a two-way random, single measures absolute
agreement between model 0 (gold standard) and models 1-8,
calculated using MATLAB. We also performed Bland-Altman
analyses of all imputed models compared to total CBF. We
calculated the biases as the mean difference between model 0 and
each other model, and the 95% limits of agreement as twice the

standard deviation of the differences of individual measurements
between model 0 and each other model.

Results

We report the total cerebral blood flow (933.7 ± 297.9), anterior
circulation (sum of ICAs, 652.6 ± 209.2), and posterior circulation
(sum of VAs, 281.0 ± 106.2). We also report the flow in the individual
arteries: left ICA (328.1 ± 110.5), right ICA (324.9 ± 105.7), left VA
(145.9 ± 76.8), and right VA (134.9 ± 53.1), all values are reported in
units of ml/min as mean ± standard deviation. (Figure 1, Left). We also
report the ratio of flow in individual arteries versus total cerebral blood
flow, which are: left ICA (0.352 ± 0.039), right ICA (0.348 ± 0.039), left
VA (0.154 ± 0.049), and right VA (0.147 ± 0.044), all values are
unitless, and reported as mean ± standard deviation. (Figure 1, Right).

FIGURE 1
Left panel: Coronal Angiogram showing the carotid and vertebral arteries. The solid-colored portion of the vessels are above the bifurcation of the
common carotid arteries, and below the level of the basilar artery. The green horizontal plane shows the location of the phase contrast slice. Center panel: a
magnitude image; and right panel: a phase image, both acquired at the level indicated in the left panel.

TABLE 1 Models for computing cerebral blood flow.

Number of
usable vessels

Model Cerebral blood flow equation RMSE Normalized RMSE R-Squared ICC(2,1)

ICAs VAs

2

2 0 CBF = Anterior + Posterior 00.00 0.000 1.000 1.000

1 1 CBF = 1.226 × Anterior + 0.933 × VA 41.00 0.044 0.998 0.982

0 2 CBF = 1.426 × Anterior 69.89 0.075 0.995 0.973

1

2 3 CBF = 1.866 × ICA + 1.145 × Posterior 57.19 0.061 0.997 0.983

1 4 CBF = 2.419 × ICA + 0.983 × VA 78.75 0.084 0.994 0.948

0 5 CBF = 2.841 × ICA 98.20 0.105 0.990 0.935

0

2 6 CBF = 3.219 × Posterior 159.46 0.171 0.974 0.877

1 7 CBF = 5.816 × VA 323.45 0.346 0.885 0.662

0 8 CBF = 933.656 297.88 0.319 NA 0.000

Models for computing cerebral blood flow when vessels are missing. The models are independent of the lateral location of the vessel(s) that are imputed thereby allowing us to omit models for the

combinations of different left versus right vessels (See Figure 3, Results). Models 1-7 are computed with an intercept of zero; model eight is the mean CBF in this study. The models followed the

anticipated pattern whereinmissing ICAs versusVAs contributed more error (e.g. model 3 versus 1). Abbreviations: cerebral blood flow (CBF), internal carotid artery (ICA), vertebral artery (VA), root

mean square error (RMSE), intra-class correlation coefficient (ICC). An online calculator for these models is provided: https://brainflow.science/impute-cbf.

Frontiers in Physiology frontiersin.org03

Shah et al. 10.3389/fphys.2023.1096297

https://brainflow.science/impute-cbf
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1096297


We evaluated all four ratios (left ICA-CBF, right ICA-CBF, left
VA-CBF, right VA-CBF) with an ANOVA, and tested all six pairwise
comparisons with Tukey-Kramer HSD. Only two pairs of ratios were
not different: the left ICA-CBF versus right ICA-CBF ratios (p =
0.549), and the left VA-CBF versus right VA-CBF ratios (p = 0.549).
Thus, we simplified from 16 models to eight using symmetry of the left
and right CBF ratios. All other pairs of ratios were different (p <
0.0001).

We created eight statistical models of CBF using standard least
squares simple linear regression. We computed the performance
statistics for the models, including R2value, root mean square error
(RMSE), normalized RMSE and ICC to evaluate the performance
and the reliability of the models (Table 1). These models are
numbered from the case with all arteries present (model 0), in
ascending order of increasing expected error to the model with
the most error because there are no arteries present (model 8). As
anticipated from model 1 to model 8, the error in imputation
(RMSE) increased and the R2 decreased. All these models were
statistically significant (p < 0.0001), except when there were no
usable blood vessels (model 8).

We performed Bland-Altman analyses of models 1-
8 compared to total CBF (model 0), demonstrated in Figure 2.
Models 1-3 and 5 are all statistically unbiased (p > 0.05), models
4 and 6 had small biases (1.71% and 3.33%, respectively). Models
1-4 had narrow limits of agreement, with standard deviations of
5.43%–8.78%. Models 5-6 and had wider limits of agreement, with
standard deviations of 12.31%–15.12%. Model 7, which was
derived from a measurement in one VA, and it performed

exceptionally poorly (Bias −9.57%, standard deviation 28.53%).
Thus, model 7 had similar performance to model 8 (Bias −9.57%
standard deviation 33.69%) wherein flow is assumed equal to the
population mean.

Discussion

Our models were suitable to impute CBF for all scenarios wherein
at least one ICA was usable (Model 1–5). We do not recommend
attempting to impute CBF without any ICA measurements (models
6–8) because of their poor performance. We included models 6 and
7 because they were valid correlates of total cerebral blood flow, and
model 8 (mean CBF) for completeness. We recommend the reader
interpret our model performances in context of the accuracy and
precision needed for each specific use case for measuring CBF. In any
situation in which these models are used they add error versus the ideal
situation wherein all four vessels are perfectly measured in one PCMR
image. Thus, if any of the models are used, the error they introduce
should be considered and the modeled results should be held with
appropriate uncertainty.

The best comparisons of our model performance would be
versus the performance of other CBF imputation models that use
PC MR data. However, because our motivation for these models
was the lack of any extant model we cannot ascertain how our
models perform versus other approaches. As an imperfect
alternative, we provide the reader with examples of alternative
studies of CBF correlations using different measurement and

FIGURE 2
Bland-Altman analysis of total CBF quantified by PC in four vessels (model 0) versus various models of one or more missing vessels. Blue line
demonstrates bias, dashed blue line demonstrates insignificant (p > 0.05) bias, and red dash lines demonstrate 95% confidence intervals. These results suggest
that it is important to successfully capture at least one ICA or both VAs to impute CBF measurements.
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validation approaches as context for our model performance. The
correlation of arterial spin labeling versus 15O positron emission
tomography (R2 0.47 total CBF and R2 0.48 voxelwise blood flow);
(Heijtel et al., 2014) and the intraclass correlation of test-retest
measurements with PC MR with no repositioning of slice or
patient (ICC 0.79). (Sakhare et al., 2019). provide context to
judge our imputation performance versus other methods and
errors commonly encountered by those who measure CBF.

Imputation error increased more when an ICAwas corrupted than
a VA. This was anticipated because the ICA makes a greater
contribution to CBF than a VA. Thus, a single PC MR slice
placement that optimizes the measurement of the two ICAs may
be preferable to a single PC MR slice placement that attempts to
optimize both the ICAs and VAs. The ability to accurately estimate
total CBF based only on carotid measurements (one or both) is
perhaps not surprising based on prior work using transcranial
Doppler. While losing one carotid compromised CBF accuracy,
knowledge of the posterior flow adequately compensated for this
loss, reflecting the strong conservation of flow balance between the
anterior and posterior circulations.

We suggest that in time-limited scanning scenarios, that the
following PC MR localization be used. (A1) Acquire a low
resolution, highly accelerated MR angiography scout image with
sagittal and coronal maximum intensity projection (MIP) images;
this can typically be performed in approximately 30 s (A2) Use the
sagittal MRA image to optimize the anterior-posterior pitch of the
PC MR plane for the ICAs. (A3) Use the coronal image to optimize
the left-right roll of the PC MR plane for the ICAs, (A4) ensure the
PC MR slice is above the external carotid artery bifurcation, and
(A5) below the junction of the VAs into the basilar artery.
Alternatively, if there is not adequate time to acquire the MR
angiography image, it is also quite possible to use the ubiquitous
initial anatomical survey image; (B1) place the PC MR imaging
plane at the level of the C2 cervical vertebra, and (B2) angle it to be
perpendicular to the spinal cord. Either approach will intersect all
the great vessels of the neck and therefore create the images suitable
for our imputation models.

Limitations

Our models are only exploiting image-based information, however
we know that CBF is associated with hematocrit, sex and age. (Borzage
et al., 2016; Bush et al., 2016). Thus, excluding this data limits our
modeling but it also allows our approach to be suitable for scenarios in
which this information is either never collected, or removed to
anonymize the datasets. We assumed fixed ratios between vessel flow
and total CBF. This assumption is implicit on the understanding that the
flow would be proportional to the volume of tissue perfused by these
vessels, and that those tissues would be present in a fixed volumetric
ratio. However, the ratio of these structures may change in development
or senescence which limits our model application to the developing
brain and provides an opportunity for further development. (Bethlehem
et al., 2021). Ourmodel assumed the PCMR slice contains the ICAs and
VAs, however with an exceptionally poor localization the image might
include the common carotid arteries or basilar artery. If these are
incorrectly identified as ICA or VA arteries, then it would cause
overestimation of the total CBF. One opportunity for future research
is developing models to impute cerebral blood flow from images of
common carotid or basilar arteries. Our results demonstrate flow in the
two ICAs and two VAs are statistically equivalent. However, we did not
include patients with systemic or cerebrovascular disease, nor patients
with profound variance in the anatomy of their arteries (e.g. patients
who actually lack an ICA or VA), thus our data demonstrating lateral
symmetry might not generalize to populations with vascular disease.
However, patients with known vascular disease or profoundly abnormal
vessels may benefit from the more time-insensitive option of ASL MR.
In contrast the PC MR approach is suitable for large studies and
population-based screening. Moreover, our observed inter-vessel
relationships could potentially be useful in recognizing deranged
blood flow distribution in conditions such as steno-occlusive disease.

We did not explore other approaches to acquisition or analysis of
the PC MR image data. Our secondary analysis was unable to change
the prior approach to acquisition and exploring image processing
approaches is beyond the scope of this project. Moreover, our
imputation results are based on vascular physiology, not imaging

FIGURE 3
Left panel: measurements of flow in units ofml perminute. From left to right the figures shows total, anterior circulation, left internal carotid, right internal
carotid, posterior circulation, left vertebral, right vertebra. Right panel: ratios of flow in individual arteries versus total cerebral blood flow. From left to right the
figure shows left internal carotid, right internal carotid, left vertebral, right vertebra. The figures demonstrate visually (1) the range of total cerebral blood flow,
(2) the contribution from individual arteries is predominantly from the anterior circulation, that flow through (3) carotid and (4) vertebral arteries are
symmetric on the left and right sides.
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technology. Thus, our results remain valid even with improved PCMR
data acquisitions or image analyses. Our dimensionless approach
means that even if our imaging methods are biased compared to
approaches taken by others, they can use our imputation models. If
our image acquisition methods have higher variance compared to
approaches by others, our modeling error will be conservative and
overestimate the variance compared to those their improved methods.

Conclusion

Phase contrast MR is an efficient and effective way to assess total
cerebral blood flow. Our results indicate that using our imputation
models based on at least one ICA flow measurement provides lower
variance in results than ASL, and higher intraclass correlation than test-
retest PCMR. Therefore, our methods are an important set of equations
describing vascular physiology. Our equations enable a new approach
for dealing with real-world data and make it easier to use PC MR to
obtain measurements of CBF in large numbers of patients or volunteers.
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