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Fetal distress is a symptom of fetal intrauterine hypoxia, which is seriously harmful
to both the fetus and the pregnant woman. The current primary clinical tool for the
assessment of fetal distress is Cardiotocography (CTG). Due to subjective
variability, physicians often interpret CTG results inconsistently, hence the need
to develop an auxiliary diagnostic system for fetal distress. Although the deep
learning-based fetal distress-assisted diagnosis model has a high classification
accuracy, themodel not only has a large number of parameters but also requires a
large number of computational resources, which is difficult to deploy to practical
end-use scenarios. Therefore, this paper proposes a lightweight fetal distress-
assisted diagnosis network, LW-FHRNet, based on a cross-channel interactive
attention mechanism. The wavelet packet decomposition technique is used to
convert the one-dimensional fetal heart rate (FHR) signal into a two-dimensional
wavelet packet coefficientmatrixmap as the network input layer to fully obtain the
feature information of the FHR signal. With ShuffleNet-v2 as the core, a local
cross-channel interactive attention mechanism is introduced to enhance the
model’s ability to extract features and achieve effective fusion of multichannel
features without dimensionality reduction. In this paper, the publicly available
database CTU-UHB is used for the network performance evaluation. LW-FHRNet
achieves 95.24% accuracy, which meets or exceeds the classification results of
deep learning-based models. Additionally, the number of model parameters is
reduced many times compared with the deep learning model, and the size of the
model parameters is only 0.33 M. The results show that the lightweight model
proposed in this paper can effectively aid in fetal distress diagnosis.
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1 Introduction

Fetal distress is a syndrome of respiratory and circulatory insufficiency caused by
intrauterine fetal hypoxia during labor and is closely associated with changes in fetal heart
rate signals (Blickstein and Green, 2007; Spairani et al., 2022). Fetal distress may cause
hypoxic-ischemic encephalopathy and eventually leading to cerebral palsy or perinatal death
(Bobrow and Soothill, 1999). Early detection and diagnosis of fetal distress can help prevent
damage to the vital organs of the fetus prior to delivery. Therefore, it is important to enhance
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intrauterine fetal status monitoring during pregnancy to ensure the
safety of the fetus and the pregnant woman. The most common
method for monitoring fetal status in clinical practice is CTG
monitoring (Grivell et al., 2015). The CTG signal consists of the
FHR curve and uterine contraction (UC) curve. Through CTG
monitoring, doctors can detect fetal distress in time so that they
can take effective treatment measures to protect the health of the
fetus. However, the diagnosis is too dependent on physician
experience and interobserver disagreement when interpreted by
the physician’s naked eye alone (Bernardes et al., 1997; Palomaki
et al., 2006). Therefore, there is an increased incidence of
unnecessary cesarean section due to subjective physician error
(Abdulhay et al., 2014; Marques et al., 2019).

With the development of artificial intelligence technology,
scholars worldwide are committed to developing fetal health-
assisted diagnosis systems based on machine learning and deep
learning to help healthcare professionals analyze CTG signals
objectively and correctly. Barquero-Perez et al. (2017); Spilka
et al. (2014); Georgoulas et al. (2017); Yilmaz. (2016) used
normalized compression distance, random forest (RF), support
vector machine (SVM), and artificial neural network (ANN)
classification algorithms, respectively, to classify CTG signals for
fetal distress problems and achieved good results. Zhao et al. (2018)
extracted 47 features from different domains (morphological, time
domain, frequency domain and non-linear domain) and selected
Decision Tree, SVM and adaptive boosting, respectively, for fetal
acidosis classification. Comert et al. (2018) used short-time Fourier
transform (STFT) to obtain 2-D images and combined it with
transfer learning and convolutional neural networks to predict
fetal distress (Liu et al., 2021). proposed an attention-based
CNN-BiLSTM hybrid neural network enhanced with features of
discrete wavelet transformation, obtaining an average sensitivity,
specificity and quality index of 75.23%, 70.82%, and 72.93%,
respectively. Zhao et al. (2019) used recurrence plot to convert
one-dimensional FHR to two-dimensional and fed into
convolutional neural network to obtain 98.69% accuracy in fetal
distress classification. Baghel et al. (2022) obtained 99.09%
classification accuracy by performing direct 1-D convolutional
operations on the FHR signal after Butterworth filtering.
Although the abovementioned classification models based on
machine learning and deep learning achieve better results, the
complexity of the model and the large number of parameters
take up large computational resources, which leads to the model
being highly dependent on the performance of the device hardware
and difficult to deploy to the terminal for generalized application.

Lightweight models and miniaturization have become a trend in
many application scenarios, so an increasing number of academics
are focusing on lightweight network models that can be deployed
and run directly on mobile devices. The MobileNet series (Howard
et al., 2017; Sandler et al., 2018; Howard et al., 2019) and ShuffleNet
series (Ma et al., 2018; Zhang et al., 2018) of lightweight networks
currently have good performance in the target detection and image
classification field. MobileNet model is a lightweight deep neural
network proposed by Google for embedded devices, using the core
idea of depthwise separable convolution. ShuffleNet model is a
neural network structure designed for devices with limited
computational resources, mainly using pointwise group
convolution and channel shuffle. Lightweight models are also

beginning to make their mark in the medical signaling field. Cao
et al. (2021) proposed a multichannel lightweight model with each
channel integrating multiple heterogeneous convolutional layers to
obtain multilevel features for classifying myocardial infarction with
an accuracy rate of 96.65%. Zheng et al. (2021) trained
MobileNetV1 and MobileNetV2 models by migration learning
for pterygium diagnosis in the eye and compared them with the
classical model and found that MobileNetV2 obtained better results
with a model size of only 13.5 M. Chen et al. (2022) used the
lightweight networks MobileNetV1, MobileNetV2, and Xception to
classify cervical cancer cells and used knowledge distillation for
accuracy improvement. Among them, Xception matched the
accuracy of the large network Inception-ResNetV2, while the
model size was only 40%. The lightweight network model
effectively reduces the number of model parameters and opens
up a method for promoting a low-cost operating model.
However, the feature extraction ability and the network
classification accuracy still need to be further improved.

Aiming at the complexity and considerable computation in
existing deep learning-based fetal distress algorithm models, this
paper introduces a lightweight network architecture to design a
lightweight fetal distress-assisted diagnosis network based on FHR.
Additionally, to further improve the feature extraction ability and
classification effect of the network, the attention mechanism is
incorporated into the lightweight network to build a lightweight
network unit (ECA-Shuffle) based on the cross-channel interactive
attention mechanism. The main contributions of this paper are as
follows.

(1) The matrix feature map based on wavelet packet coefficients is
constructed to refine the FHR signal in multiple frequency
bands and used as input to the model. Different wavelet
basis functions are selected to generate multiple feature maps
to vote on the sample classification results.

(2) The cross-channel interactive attention module is embedded in
the tail of the ShuffleNet-V2 base unit to generate an ECA-
Shuffle unit to achieve effective multichannel feature fusion
without dimensionality reduction.

(3) A lightweight fetal distress-assisted diagnosis network based on
the FHR signal, LW-FHRNet, is proposed. Conventional
convolution with ECA-Shuffle units ensures effective channel
feature fusion while reducing model complexity and enhances
the model’s ability to classify fetal distress.

The rest of the paper is presented below. Section 2 describes the
overall scheme in detail. Section 3 describes the database,
experimental setup and results in detail. Section 4 discusses and
analyzes the performance of the proposed model. The final section
contains conclusions and future work.

2 Materials and methods

The architecture of the lightweight fetal distress-assisted diagnosis
model based on the cross-channel interactive attention mechanism
designed in this paper is shown in Figure 1, including a
preprocessing module, a feature map construction module, and a
feature extraction and classification module. First, the missing values
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and spikes in the FHR signal are removed by signal preprocessing, and
the signal is segmented into 20-min lengths. Second, the wavelet packet
decomposition technique is used to construct wavelet coefficient matrix
featuremaps of FHR signals based on db1 to db5wavelet basis functions.
Finally, LW-FHRNet is constructed by using deep separable
convolution, channel shuffle and other techniques and incorporating
a local cross-channel interactive attention mechanism without
dimensionality reduction, which effectively reduces the number of
model parameters and improves the classification accuracy of themodel.

2.1 Signal preprocessing

Clinically, the FHR signal is acquired mainly by an ultrasound
Doppler probe placed in the abdomen of the pregnant woman.
During the acquisition process, the signal is inevitably subject to a
variety of noise interferences, such as the movement of the fetus and
the pregnant woman, improper placement of the sensor and other
external factors. The noise of the FHR is represented by spikes (FHR
values greater than 200 or less than 50 bpm) and missing values
(FHR values equal to 0) (Cesarelli et al., 2007). Accordingly, the
purpose of preprocessing is to remove these two types of noise. In
this study, the interpolation method is used to remove noise
(Chudaek et al., 2009), and the specific process is as follows.

(1) If the FHR value is equal to 0 and the duration is greater than
15 s, the segment is removed directly; otherwise, it is linearly
interpolated.

(2) If the FHR value is unstable, i.e., the absolute value of two adjacent
points is greater than 25 bpm, and interpolation is performed
between the starting sampling point and the first point of the next
stabilization segment. A stable segment is defined as five
consecutive FHR values where the difference is less than 10 bpm.

(3) If the FHR value is greater than 200 bpm or less than 50 bpm, it
is filled in with Hermite spline interpolation.

Noise and missing value segments in the FHR signal can be
effectively filtered out by the above interpolation method. In
conjunction with the time requirement of clinical prenatal
examination, this paper uses 20-min data segments for analysis.
The preprocessed data are segmented into 20-min time segments to
obtain multicomponent segment data. The waveform obtained
using the above preprocessing method is shown in Figure 2,
where (a) is the raw data of the FHR signal, (b) is the waveform
after preprocessing using the above method, and (c) is the segment
after splitting the data into multiple segments with a 20-min data
length.

2.2 Construction of feature maps based on
wavelet packet coefficients

As a non-stationary and non-linear time series, FHR
contains complex physiological and pathological
information. Wavelet packet decomposition is a discrete
analysis method of non-stationary signals that can select the
appropriate spectral band according to the signal
characteristics and improve the time-frequency analysis
resolution (Behera and Jahan, 2012). In this paper, wavelet
packet decomposition is introduced to construct the wavelet
packet coefficient matrix using different subspace coefficients
to convert the 1D FHR signal into a 2D wavelet packet
coefficient feature map. The feature map is used as the input
layer data for the deep network model.

Figure 3A shows the wavelet packet coefficient matrix
construction process. The signal is decomposed into

FIGURE 1
Description of the architecture for the proposed lightweight network-based fetal distress assisted-diagnosis model.
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corresponding frequency bands through different layers, and each
frequency band has a series of wavelet packet coefficients. For the
nth layer decomposition, the wavelet packet transform provides 2n

different subspaces, and each subspace corresponds to a
frequency band.

Wavelet packet decomposition can be implemented using a
series of convolutions with high-pass filters and low-pass filters.
The high-pass filter h(·) and low-pass filter g(·) can be defined as
Eqs 1, 2.

h k( ) � 1�
2

√ 〈φ t( ),φ 2t − k( )〉 (1)

g k( ) � 1�
2

√ 〈ψ t( ),ψ 2t − k( )〉 (2)

where ϕ(t) is the scale function, ψ(t) is the wavelet function, 〈·, ·〉
represents the inner product, and t and k are variables. h(·) and g(·)
satisfy Eq. 3.

g k( ) � −1( )kh 1 − k( ) (3)

FIGURE 2
FHR signal preprocessing process. Remove spikes and missing values of the original signal, then divide into segments of 20-min length. (A) The
original signal, (B) processed signal, (C) segmented signal.

FIGURE 3
Construction of feature maps based on wavelet packet coefficient matrix. (A)Construction of wavelet packet coefficient matrix; (B)Construction of
db1~db5 feature map.
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The wavelet coefficients at different frequency bands and
decomposition layers can be calculated iteratively by the
following equation.

Si+1,2j τ( ) � ∑
k

h k − 2τ( )Si,j k( ) (4)

Si+1,2j+1 τ( ) � ∑
k

g k − 2τ( )Si,j k( ) (5)

where S0,0 is the original signal of length N,
Si,j(k), k � 1, 2, ..., N/2i{ } are the wavelet coefficients in the jth
subfrequency band at the ith layer decomposition,
Si+1,2j(τ), τ � 1, 2, ..., N/2i+1{ } and Si+1,2j+1(τ), τ � 1, 2, ..., N/2i+1{ }
are the wavelet coefficients in the (2j)-th and (2j+1)-th subfrequency
bands at the (i+1)-th layer decomposition, and for the ith layer
decomposition j ∈ 0, 1, ..., 2i − 1{ }.

To increase the number of datasets to obtain better model
effects, db1~db5 wavelet basis functions are selected for wavelet
packet coefficient decomposition in this paper. Therefore, five
wavelet packet coefficient matrix maps can be obtained for each
data segment to enhance the dataset. Meanwhile, each wavelet
packet matrix coefficient map is resized to 224*224*3 pixels as
the input layer of the neural network model. The feature map
construction based on wavelet packet coefficients is shown in
Figure 3B. Each FHR signal segment is converted into a total of
5 feature maps based on db1~db5 wavelet bases.

2.3 LW-FHRNet network structure

To meet the application of deep neural networks on embedded
and mobile terminals and maintain excellent performance,
lightweight network models have emerged. In particular, the
lightweight models of the MobileNet series and the ShuffleNet
series are the most widely used. Depthwise separable convolution,
pointwise convolution, group convolution, channel shuffle and
channel separation are used to reduce the number of model
parameters and speed up the model computation time.

Recently, the channel attention mechanism has been shown to
have great potential in improving the performance of deep

convolutional neural networks. By assigning different weights to
each part of the input, more important information can be extracted
to help the model make more accurate judgments without imposing
greater overhead on the model’s computation and storage.

Inspired by the above work, a lightweight network based on a
cross-channel attention mechanism, LW-FHRNet, is proposed in
this work to assist in the diagnosis of fetal distress symptoms, as
shown in Figure 4. The main structure of the network contains two
stages and a total of four ECA-Shuffle units. First, the feature maps
based on wavelet packet coefficients are used as the input layer of the
model. Subsequently, the image is conventionally convolved and the
size of the output feature matrix is reduced to 1/4 of the input image
using the maximum pooling operation. Then, feature extraction is
performed by 4 ECA-Shuffle units to fully learn the feature unit
information. Finally, regular convolution and average pooling are
performed, and the output features are sent to the fully connected
layer for classification.

Based on the ShuffleNet-V2 units, this study constructs two
types of ECA-Shuffle units by integrating the cross-channel
attention module without dimensionality reduction, as shown
in Figure 5. Figure 5A (Unit A) shows the first unit of each stage.
The stride of the depthwise separable convolution in both the
residual branch and the identity branch of the bottleneck
structure is 2, and the two output feature matrices are
concatenated to 2 times their depth. The ECA strategy is used
at the tail of the structure. Figure 5B (Unit B) shows the second
unit of each stage. The input feature matrix is divided equally into
two groups. The main branch performs a depthwise separable
convolution with a stride of 1, while the other branch is left
unprocessed and connected to the main branch via concat, and
the feature matrix depth is kept constant. The ECA strategy is
also used at the end of the structure.

The lower half of the ECA-Shuffle unit is the cross-channel
interactive attention module without dimensionality reduction. The
detailed structure is shown in Figure 6. Given the aggregated feature
y ∈ RC without dimensionality reduction, channel attention can be
learned by Eq. 6.

ω � σ(Wy) (6)

FIGURE 4
The structure of LW-FHRNet. Notes: Conv2D: Convolution2D; BN: Batch Normalization; Maxpool: Max pooling; Avgpool: Average pooling.
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FIGURE 5
Detailed description of the ECA-Shuffle unit. (A) Unit A: the basic unit for spatial down sampling; (B) Unit B: the basic unit for channel split. Notes:
DWConv: Depthwise separable convolution; Conv: convolution; BN: Batch Normalization; GAP: Global Average Pooling.

FIGURE 6
The cross-channel interactive attention module. Notes: GAP: Global Average Pooling; C: Channel dimension; H: Height; W: Width.
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If the weight of yi is calculated by only considering the interaction
between yi and its k neighbors and all channels share the same
learning parameters, Eq. 6 can be written as Eq. 7.

ωi � σ ∑k
j�1
wjyj

i
⎛⎝ ⎞⎠, yj

i ∈ Ωk
i (7)

whereΩk
i indicates the set of k adjacent channels of yi. This strategy

can be easily implemented by a fast 1D convolution with kernel size
k, i.e.,

ω � σ C1Dk y( )( ) (8)
where C1D denotes 1D convolution.

Considering each channel and its k nearest neighbors, computing
local cross-channel interaction information instead of all channels
effectively improves computational efficiency. This efficient channel
attention calculation can be quickly implemented by 1D convolution.
Thus, k is the key parameter and the size of the convolution kernel of
the 1D convolution, which determines the range and convergence of
the local cross-channel interaction.

To avoid resource-consuming cross-validation adjustment, an
adaptive method is used to select the appropriate k value. According
to the properties of group convolution, the high-dimensional (low-
dimensional) channels are proportional to the long-distance (short-
distance) convolution for a fixed number of groups. Similarly, the
coverage of the interaction (i.e., the size k of the 1D convolution
kernel) is proportional to the channel dimension C. The mapping
relationship between k and C is shown in Eq. 9.

C � ϕ k( ) (9)
Since the channel dimension is generally an exponential multiple of
2, the non-linear mapping relationship is represented by an
exponential function with a base of 2. Thus, Eq. 9 can be
rewritten as Eq. 10.

C � ϕ k( ) � 2 γ*k−b( ) (10)
Consequently, the size k of the convolution kernel can be calculated
automatically based on the number of channels C, which is given by
Eq. 11.

k � ψ C( ) � log2 C( )
γ

+ b

γ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
odd

(11)

where |t|odd represents the nearest odd number of t. To reduce the
computational cost and training time, γ and b are empirically set to
2 and 1, respectively.

The details of the lightweight network: LW-FHRNet structure
designed in this work are shown in Table 1. The first operation of
each stage is the ECA-Shuffle unit A, which realizes the doubling of
feature dimensions, followed by the ECA-Shuffle unit B, which
realizes the subsequent operations.

The process of the fetal distress classification algorithm based on
a lightweight network is described in Table 2. After preprocessing
and 20-min length segmentation, the dataset is randomly divided
into a training set and a testing set in proportion. Each segment is
subjected to wavelet packet decomposition based on db1 to
db5 wavelet basis functions to obtain five feature maps. Iterative
testing of model tuning is performed with the training set data to
obtain the optimal model. The testing set is subjected to category
prediction under the optimal model, and the final category
attribution is decided by voting on the five feature maps of each
data segment.

3 Results

3.1 Dataset

The database in this paper uses the publicly available dataset
CTU-UHB, which comes from the Czech Technical University in
Prague (CTU) and the University Hospital in Brno (UHB)
(Chudacek et al., 2014). A total of 552 CTG records were
collected in the database. These records were carefully selected
from 9,164 records collected by UHB from 2010 to 2012. The
sampling rate of CTG data is 4 Hz, and each CTG record
contains FHR sequences and UC sequences. The records in the
database were all singleton gestations, all gestational ages greater
than 36 weeks and no known congenital developmental defects. The
quality of the FHR signal was greater than 50% in every 30-min

TABLE 1 The structure parameter information of LW-FHRNet.

Layer Output size Kernel size Output channel

Input 224 × 224 - 3

Conv 112 × 112 3 × 3
24

MaxPool 56 × 56 3 × 3

Stage1 28 × 28 - 116

Stage2 14 × 14 - 232

Conv 14 × 14 1 × 1
1024

AvgPool 1 × 1 14 × 14

FC - - 1

The normalization and ReLU, layers that follow each convolutional layer are not shown above because they do not change the output feature shape. Conv: convolutional layer; MaxPool: max

pooling layer; AvgPool: average pooling layer; FC: fully connect layer; stage: ECA-Shuffle uint A+ ECA-Shuffle uint B.
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window. Available biochemical parameters of the umbilical artery
blood sample (pH) were recorded for each sample.

The pH value is a marker of blood acid-base balance and can
provide information on possible fetal acidosis caused by intrauterine
hypoxia. A lower pH value represents a more severe degree of fetal
acidosis (Vayssiere et al., 2007). showed moderate ability to detect
mild acidosis at pH ≤ 7.15 and better ability to detect more severe
acidosis at pH ≤ 7.05. Therefore, in this paper, pH = 7.05 was chosen
as the criterion to classify the data into two categories. Data with a
pH value greater than 7.05 are considered normal, and data with a
pH value less than or equal to 7.05 are considered abnormal. Based
on this discriminant, 44 abnormal samples and 508 normal samples

are obtained (Ito et al., 2022). predicted fetal acidemia by calculating
iPREFACE (10), iPREFACE (30) and iPREFACE (60) at 10, 30, and
60 min before delivery. The results showed that iPREFACE (30) was
slightly better than iPREFACE (60) but significantly better than
iPREFACE (10). To enhance the sample size, a 20-min segmentation
is performed after preprocessing the 60-min data before delivery.
After splitting the samples into 20-min data segments, 106 abnormal
sample segments are obtained. To avoid the effect of overfitting or
underfitting caused by category imbalance on the classification
results, 106 samples from 512 normal samples are randomly
selected. The second 20-min segment is selected to construct
106 normal sample segments for the experiment. Eighty percent
of the dataset is randomly selected as the training set (85P and 85N),
and the remaining 20% as the test set (21P and 21N). The wavelet
packet decomposition from the db1 to db5 wavelet basis is
performed separately for each FHR data segment, which
constitutes 5 wavelet packet coefficient matrix feature maps.
Therefore, there are 850 images in the training set and
210 images in the test set.

In this paper, each 20-min segment of FHR data is subjected to
wavelet packet decomposition based on db1 to db5 wavelet basis
functions to obtain five wavelet coefficient matrix feature maps.
Category attribution is determined by voting on the 5 feature maps.
The category voting process is shown in Figure 7. First, each feature
map of the segment is classified. Subsequently, the frequency of each
category label is calculated for the segment. Finally, the class with
higher frequency is selected as the category of this FHR segment.

3.2 Experimental setup

3.2.1 Environment
The network structure proposed in this paper is trained and

tested on the CTU-UHB dataset. The experimental platform is a
computer equipped with an Intel Xeon(R) CPU E3-1535M v6 @

TABLE 2 Details of LW-FHRNet classification algorithm.

Input: Strain training sample sets; Ltrain training label sets, Stest

testing sample sets; Ltest testing label sets
Output: Prediction label ~L

test
of the Stest

1: for dbi in [db1, db2, db3, db4, db5] do
2: Ftrain

dbi � PWTdbi(Strain) # PWTdbi(·) is the wavelet packet decomposition based
on the dbi wavelet basis functions
3: Ltraindbi � Ltrain

4: Ftest
dbi � PWTdbi(Stest)

5: Ltestdbi � Ltest

6: end for

7: # training procedure
8: Initialize parameters and weights
9: for i in [1, 2, 3, 4, 5] do
10: metrics = LW − FHRNet(Ftrain

dbi , Ltraindbi )
11: Train the LW-FHRNet model by optimizing the loss function

12: end for
13: return model LW-FHRNet-best

14: # testing procedure
15: for i in [1, 2, 3, 4, 5] do
16: Ltestdbi ←������predict

LW-FHRNet-best (Ftest
dbi )

17: end for
16: ~L

test � vote(Ltestdb1 , L
test
db2 , L

test
db3 , L

test
db4 , L

test
db5) #Vote () s a voting function

17: return ~L
test

FIGURE 7
An example of the category voting process. Notes: P: Positive; N: Negative.
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3.10 GHz x 8, Quadro P5000 GPU and 32 G RAM. The system is
Ubuntu 18.04.6LTS, the development environment is TensorFlow
2.6.2, and the language used is Python.

3.2.2 Metrics
To evaluate the classification performance of the model,

accuracy, precision, recall and F1-Score metrics are used in this
paper. Additionally, model parameters and model size are
introduced to evaluate the complexity of lightweight models.
Finally, sensitivity (Se) and specificity (Sp) are used to observe
the discriminatory ability of the model between abnormal and
normal samples.

3.2.3 Baselines
The commonly used lightweight networks MobileNetV3-

Small, MobileNetV3-Large and ShuffleNet-V2 are introduced
as the baselines of this research. MobileNetV3 introduces the
channel attention module based on MobileNetV2 to enhance the
adaptive capability of the model by assigning different weights to
different channels. MobileNetV3 has two versions: small and
large. ShuffleNet-V2 proposes the concept of channel separation

to replace group convolution to further improve the inference
speed.

3.3 Experiment 1: Selection of wavelet
packet decomposition layers

Wavelet packet decomposition with different numbers of layers
can obtain different detailed information. The sampling frequency
of the raw data is 4 Hz. The ith layer is decomposed to obtain 2i

frequency bands. The 2D image is constructed according to the
frequency from the highest to the lowest. The frequency range of the
jth frequency band is ( 4

2i (j − 1) ~ 4
2i j)Hz, j ∈ [1, 2i]。 To select the

best wavelet coefficient matrix feature map, this paper performs
wavelet packet 1-layer to 5-layer decomposition to obtain the
wavelet packet coefficient matrix maps of corresponding layers to
test the classification performance. The experimental results are
shown in Table 3. The accuracy of the 2-layer and 3-layer
decomposition is higher, and the accuracy of the 4-layer and 5-
layer decomposition gradually decreases. The 2-layer decomposition
achieves optimal performance with 95.24% accuracy, 100%
precision, 90.48% recall and a 95.00% F1-score. Therefore, the
feature map based on 2-layer wavelet packet decomposition is
chosen as the input of the model in this paper. That is, the signal
is decomposed into four frequency bands:0–1 Hz, 1–2 Hz, 2–3 Hz
and 3–4 Hz. And the wavelet packet coefficients in the
corresponding frequency bands are used to jointly construct the
feature maps.

3.4 Experiment 2: The effective role of local
cross-channel interactive attention
mechanisms

The channel attention mechanism has great potential to
improve the performance of deep convolutional neural networks.
In this paper, we introduce a cross-channel local interaction

TABLE 3 Performance comparison of feature maps constructed by different
layers of wavelet packet decomposition.

Decomposition
Level

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

layer 1 83.33 85.00 80.95 82.93

layer 2 95.24 100 90.48 95.00

layer 3 90.48 94.74 85.71 90.00

layer 4 80.95 84.21 76.19 80.00

layer 5 76.19 76.19 76.19 76.19

The bold values means the best performance.

FIGURE 8
Confusion matrix. (A) The proposed LW-FHRNet, (B) the proposed LW-FHRNet without the ECA module.
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attention strategy without dimensionality reduction to improve the
performance of lightweight models. Experiments are conducted on
the dataset of this paper using a lightweight network with and
without an ECA module. The confusion matrix of whether the
proposed lightweight model contains ECA modules is shown in
Figure 8. Table 4 shows the model performance comparison with
and without the ECA module. The lightweight model accuracy with
the ECA module is as high as 95.24%, and the accuracy of the
lightweight model without the ECA module is 92.86%. The
experimental results show that the lightweight model with the
ECA module improves performance in fetal distress classification.

3.5 Experiment 3: Lightweight model
comparison experiment

To clarify the performance of the network, this paper performs a
comparative test with different lightweight networks. The classification
performance of fetal distress under different lightweight networks is
measured using accuracy, precision, recall, F1-score and model size
metrics. The test performance comparison of the LW-FHRNet network
with other commonly used lightweight networks is shown in Table 5.
MobileNetV3 improves MobileNetV2 by using a deep separable
convolution +SE channel attention mechanism + residual structure
connection to further reduce the computational effort. The overall
structure of small and large is the same, and the difference is the number
of bnecks and channels. MobileNetV3-Small achieves 85.71% accuracy,
proving that the network has a strong feature learning capability.
MobileNetV3-Large has better accuracy than MobileNetV3-Small,
but the number of network parameters has increased significantly
due to the increase in the number of bnecks and channels. The
ShuffleNet-V2 network improves the ShuffleNet-V1 network
architecture in terms of optimizing memory access cost (MAC),
reducing network fragmentation, and decreasing element operations.
Due to the small number of parameters in the ShuffleNet-V2 model, it

performs poorly in terms of accuracy, with only 83.33%. Due to the low
number of parameters in the ShuffleNet-V2 model, its performance is
relatively poor, with an accuracy of 83.33%.

LW-FHRNet incorporates an efficient cross-channel attention
mechanism without downscaling on the base unit of ShuffleNet-V2.
The channel interaction strategy effectively improves the
performance of channel attention and enables LW-FHRNet to
have a more accurate recognition performance. The ROC curves
of LW-FHRNet and other commonly used lightweight network
models are shown in Figure 9A. The proposed network in this
paper has the best performance with 97.96% AUC. A comparison of
the accuracy and model size of LW-FHRNet with other commonly
used lightweight networks for fetal distress classification is shown in
Figure 9B. LW-FHRNet achieves 95.24% accuracy for fetal distress
classification, which is higher than other commonly used lightweight
networks. Additionally, it has the lowest computational cost, and the
number of network parameters is only 0.33 M, which is much lower
than other commonly used lightweight networks.

4 Discussion

In this paper, a lightweight network based on cross-channel
interactive attention mechanism is proposed to effectively fuse
channel features and reduce model complexity to help
obstetricians to objectively assess fetal distress. In the
experiments, the classification effects of wavelet packet
decomposition with different layers as feature maps were first
compared. And the optimal number of wavelet packet
decomposition layers was chosen as 2-layer. Then two different
network architectures (LW-FHRNet and LW-FHRNet-without-eca)
were used. The results showed that the attention machine module
effectively improves the classification performance of fetal distress.
Finally, a comparison with other lightweight models was made to
show that the lightweight network proposed in this paper
outperforms other common lightweight networks.

To analyze the significance of the results, the algorithm in this
paper is compared with recent related work in the diagnosis of fetal
distress using the CTU-UHB database. The results are shown in
Table 6, which measures the performance of this research work in
terms of accuracy (Acc), sensitivity (Se) and specificity (Sp).
Compared with (Zarmehri et al., 2019), the method of this paper
has higher Se and Sp under the same fetal distress division criteria,
which further highlights the advantages of our model. Compared
with (Alsaggaf et al., 2020), they also have good classification
accuracy, but they use the traditional machine learning

TABLE 4 Lightweight model performance comparison with and without the
ECA module.

Model (%) Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

LW-FHRNet 95.24 100 90.48 95.00

LW-FHRNet-
without-eca

92.86 100 85.71 92.31

The bold values means the best performance.

TABLE 5 Performance comparison of different lightweight models for fetal distress classification.

Network Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

Parameter
(M)

Model size
(M)

MobileNetV3-Small 85.71 82.61 90.48 86.36 1.53 5.84

MobileNetV3-Large 90.48 94.74 85.71 90.00 4.23 16.13

ShuffleNet-V2 83.33 85.00 80.95 82.93 1.27 4.85

LW-FHRNet(ours) 95.24 100 90.48 95.00 0.33 1.27

The bold values means the best performance.
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classification method, which requires manual design to extract a
large number of features. The feature extraction process is complex
and computationally intensive. Compared with (Baghel et al., 2022),
they have higher accuracy than the model in this paper, but they use
regular CNN convolution for feature extraction. The parameter
number and computational time still need to be improved and
optimized for end-application deployment.

In conclusion, the lightweight network model based on the
cross-channel interactive attention mechanism proposed in this
paper achieves better classification results in fetal distress
diagnosis. The ShuffleNet-V2 unit combined with the local cross-
channel interactive attention mechanism is used to build a
lightweight network, which ensures a low number of parameters
and achieves effective network performance improvement.

However, one limitation of the study in this paper is the criteria
for discriminating between normal and distressed samples. The
current work generally endorses the use of umbilical artery blood

pH as a criterion for classification, since pH is an objective response
to the fetal oxygen cell supply (Zarmehri et al., 2019) and also to the
severity of fetal acidosis (Vayssiere et al., 2007). However, as shown
in Table 6, a variety of pH values were used in different research
works. There is not yet a universally accepted pH value. In future
research work, the study will focus on exploring the pH value of
pathological samples. Meanwhile, the BDecf index can reflect the
degree of fetal acidosis (Liu et al., 2021). Therefore, a more precise
classification of fetal distress can be performed by combining
pH and BDecf in subsequent studies.

5 Conclusion

In this work, a lightweight network (LW-FHRNet) based on
ECA-Shuffle units is proposed for fetal distress classification of FHR
signals. After preprocessing, the FHR signal is segmented into 20-

FIGURE 9
Classification performance of different lightweight models. (A) ROC curves of different lightweight models; (B) Acc and parameters of different
lightweight models, where green, blue, purple, and red refer to MobileNetV3-Small, MobileNetV3-Lagre, ShuffleNetV2, and LW-FHRNet (Ours).

TABLE 6 Comparison of recent studies on the prediction of fetal distress using the CTU-UHB database.

Author Division criteria Method Performance (%)

Acc Se Sp

Comert and Kocamaz. (2018) pH ≤ 7.15 BFS, DWT + SVM 67.00 57.42 70.11

Fuentealba et al. (2019) PH<7.05; BDecf≥12pH>7.20; BDecf≥12 CEEMDAN, TV-AR + SVM 81.7 79.5 86.45

Zarmehri et al. (2019) pH ≤ 7.05 FFT — 63.60 80.10

Alsaggaf et al. (2020) pH < 7.15 Morphological, linear, non-linear, CSP + SVM 94.75 74.29 99.55

Zeng et al. (2021) pH ≤ 7.05; BE ≤ −10 CWT, WTC, XWT + ECSVM 67.2 85.2 66.1

Liu et al. (2021) pH ≤ 7.15 CNN-BiLSTM + Attention, DWT 71.71 75.23 70.82

Baghel et al. (2022) pH ≤ 7.15 1D CNN 99.09 — —

Ours pH ≤ 7.05 WPT + LW-FHRNet 95.24 90.48 100

BFS: basic feature set; DWT: discrete wavelet transform; CEEMDAN: complete ensemble empirical mode decomposition with adaptive noise; TV-AR: time-varying autoregressive; CSP:

common spatial pattern; CWT: continuous wavelet transform; WTC: wavelet coherence; XWT: Cross-wavelet Transform; ECSVM: ensemble cost sensitive SVM; WPT: wavelet packet

transform; Acc: Accuracy; Se: Sensitivity; Sp: Specificity.

The bold values means the best performance.
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min segments, and the wavelet packet decomposition operation
based on db1 to db5 wavelet basis functions is performed on each
segment. Each segment obtains five wavelet packet coefficient matrix
feature maps, which are used as input to the model and vote on the
classification result. The ECA-Shuffle unit performs feature
extraction on the feature map to fully learn the feature
information. We integrate an efficient local cross-channel
interactive attention mechanism without dimensionality
reduction to reduce model complexity and ensure performance
improvement. In this paper, the CTU-UHB open source database
is used to test the classification performance of the proposed
network. A pH value of 7.05 was used as the gold standard for
classification. The proposed algorithmic model achieves excellent
results of 95.24%, 90.48%, and 100% for Acc, Se and Sp, respectively.

Although the proposed lightweight network achieved good results
in classifying fetal distress, there is still a gap to reach the clinical
diagnosis level of physicians. In order to achieve better auxiliary
diagnosis, we will do further exploration in future work. On the one
hand, the data from clinical fetal heart monitoring contain
simultaneous UC signals and FHR signals, but only FHR signals
are used to assess fetal distress because of the poor quality of UC
signals in publicly available datasets. In the clinic, the UC signal is also
an important basis for physicians to diagnose fetal distress. Therefore,
the combination of FHR signals and UC signals needs to be
considered in further studies. On the other hand, we are
considering more time-frequency transform features to improve
the classification performance for fetal distress, including Empirical
Wavelet Transform, Hilbert-Huang Transform, Singular Spectrum
Analysis, etc.
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