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Acute kidney injury (AKI) is a common condition with highmorbidity andmortality,
and is associated with the development and progression of chronic kidney disease
(CKD). The beta-galactoside binding protein galectin-3 (Gal3), with its
proinflammatory and profibrotic properties, has been implicated in the
development of both AKI and CKD. Serum Gal3 levels are elevated in patients
with AKI and CKD, and elevated Gal3 is associated with progression of CKD. In
addition, Gal3 is associated with the incidence of AKI among critically ill patients,
and blocking Gal3 in murine models of sepsis and ischemia-reperfusion injury
results in significantly lower AKI incidence and mortality. Here we review the role
of Gal3 in the pathophysiology of AKI and CKD, as well as the therapeutic potential
of targeting Gal3.
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Introduction

Acute kidney injury (AKI) is a prevalent condition with high morbidity and mortality
across geographic settings and economic conditions (Hoste et al., 2018). With the rising
incidence of AKI, as well as the resultant increase in incidence and progression of chronic
kidney disease (CKD), the impact of AKI on long-term health and medical costs likely
extends far beyond current estimates.

Galectin-3 (Gal3) is a lectin widely expressed in a variety of organs and tissues, which
regulates cell growth, proliferation, differentiation, inflammation, phagocytosis, exocytosis, and
fibrosis (Chen and Kuo, 2016; Dong et al., 2018). In addition to the carbohydrate recognition
domain (CRD) shared across the galectin family, the chimera-type Gal3 also contains an
N-terminal domain that allows the molecule to oligomerize and form pentamers (Rabinovich
et al., 2007). Among its many functions, Gal3 recognizes pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs) in the cytosol and extracellular
space, and can regulate gene transcription in the nucleus (Rabinovich et al., 2007; Dong et al.,
2018). Extracellular Gal3 can also bind to cell-surface receptors, modulate cell-cell interactions,
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and recruit additional lectin molecules to form lattice structures
surrounding cells, promoting inflammation and fibrosis (Rabinovich
et al., 2007; Dong et al., 2018).

Gal3 has been implicated in both the activation and amplification of
inflammation and fibrosis. It has been shown to mediate endocytosis
and exocytosis, likely playing a role in antigen presentation
(Lakshminarayan et al., 2014). Cell experiments have demonstrated
that Gal3 binds toll-like receptor 4 (TLR4) directly in response to
lipopolysaccharide (LPS), promoting and amplifying inflammation
(Burguillos et al., 2015). In addition, Gal3 was recently reported to
amplify cytosolic caspase-4/11 oligomerization and activation through
LPS glycan binding, leading to more intense pyroptosis (Lo et al., 2021).
Thus, the interaction between Gal3 and these pattern recognition
receptors (PRRs) demonstrates mechanisms by which
Gal3 promotes inflammation through cell-surface and intracellular
pathways (Burguillos et al., 2015; Lo et al., 2021). Potential
mechanisms of Gal3-mediated inflammation are exhibited in Figure 1.

Recent studies have demonstrated that Gal3 may serve as a potential
biomarker for various renal and cardiovascular conditions, infections,
autoimmune diseases, neurodegenerative disorders, and malignancies
(Dong et al., 2018; Hara et al., 2020). In addition, both clinical and
basic research have demonstrated the role of Gal3 in the development of
AKI (Sun et al., 2021a; Sun et al., 2021b; Boutin et al., 2022). Multiple
studies of critically ill patients have shown associations between serum
Gal3 concentrations and both AKI and mortality (Sun et al., 2021a; Sun
et al., 2021b; Boutin et al., 2022). Further research in animal models has
shown that inhibiting Gal3 leads to a significant decrease in the incidence
of AKI and mortality in murine models of sepsis and ischemia-
reperfusion injury (Sun et al., 2021a; Sun et al., 2021b). These findings
suggest that Gal3 may play a critical role in the development and
progression of AKI and CKD, and that Gal3 may serve as a potential

biomarker in AKI. Here we review recent studies elucidating the role of
Gal3 in AKI and CKD, as well as its potential role as a biomarker and
therapeutic target.

Section I: Gal3 and AKI

Roles in renal ischemia-reperfusion injury
(IRI) AKI

Gal3 appears to play an important role in the pathophysiology of
renal ischemia-reperfusion injury (IRI) AKI. The mechanism likely
involves the production of pro-inflammatory cytokines and the
induction of reactive oxygen species (Fernandes Bertocchi et al.,
2008). In 2000, Nishiyama et al. found that Gal3 mRNA began to
increase 2 h after IRI and was augmented by 6.2-fold after 48 h in a rat
IRI AKI model utilizing bilateral renal pedicle clamping (Nishiyama
et al., 2000). In addition, at 48 h post injury, there was a significant
correlation between Gal3 mRNA expression and kidney injury as
measured by serum creatinine concentrations (Nishiyama et al.,
2000). In a mouse model of IRI utilizing bilateral renal pedicle
occlusion, Gal3 knockout mice were found to have less severe acute
tubular necrosis (ATN) and enhanced tubular regeneration (Fernandes
Bertocchi et al., 2008). Similarly, in a rat IRI AKI model utilizing
unilateral renal pedicle clamping, inhibition of Gal3 by modified citrus
pectin (MCP) significantly attenuated the rise in creatinine and blood
urea nitrogen (BUN), as well as the degree of tubular injury compared
to controls (Sun et al., 2021a). Additionally, in a murine model, the
overexpression of renal Gal3 correlated with renal inflammation and
fibrosis, whereas Gal3 inhibition by MCP attenuated these effects
(Martinez-Martinez et al., 2016).

FIGURE 1
Potential roles of Gal3 in the inflammatory process. 1. Gal3 directly binds cell surface PRRs, such as TLR4, and PAMPs/DAMPs, which form a ternary
complex and activate transcription factors such as NFkB, amplifying inflammation. 2. PAMPs/DAMPs in the cytosol are recognized by Gal3, which
amplifies caspase-4/11 oligomerization and activates noncanonical inflammasomes, facilitating the secretion of cytokines. 3. Recycling of Gal3 mediates
phagocytosis and exocytosis, facilitating antigen presentation and promoting inflammation. Abbreviations: DAMPs; damage-associated molecular
patterns, Gal3; galectin-3, PAMPs; pathogen-associated molecular patterns, PRRs; pattern recognition receptors, TLR4; toll-like receptor 4.
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In a study by Dorai et al. (2011) using a warm renal ischemiamodel,
rats treated with a reno-protective cocktail—a mixture of growth factors,
mitochondria-protecting biochemicals, and manganese-
porphyrin—demonstrated a significant reversal of histopathological
changes compared to controls, as well as significantly decreased
serum lipocalin-2, mucin-1, and Gal3 concentrations. Cohen et al.
(2013) also demonstrated the downregulation of Gal3 by a similar
reno-protective cocktail, which was associated with reduced oxidative
stress and improved protection of renal parenchymal function following
IRI AKI in a rat model. By transplantation of Gal3 wild-type (WT) bone
marrow toGal3 deficientmice and vice versa, Prud’homme et al. showed
that cardiac damage resulting from IRI AKI was Gal3-dependent and
was prevented usingMCP as a Gal3 inhibitor (Prud’homme et al., 2019).
In addition to specific Gal3 inhibitors, the antiplatelet ticagrelor was also
shown to exert a reno-protective effect by inhibiting Gal3 and caspase-3
activity in a mouse IRI model (Mansour et al., 2022).

Roles in cisplatin-induced AKI

A study by Li et al. (2018) revealed that overexpression of
Gal3 induced cell cycle arrest and apoptosis in renal cells, decreasing
their viability, whereas inhibition of Gal3 by MCP significantly
attenuated the toxic proapoptotic effects of cisplatin. In addition,
MCP-treated mice exhibited improved kidney function and decreased
renal fibrosis compared to controls after cisplatin-induced AKI (Li et al.,
2018). In contrast, a study by Volarevic et al. (2019) reported that
cisplatin-induced apoptosis was exacerbated in Gal3 knockout mice and
WTmice that received aGal3 inhibitor, while recombinant Gal3 blunted
apoptosis in Gal3 deficient mice with cisplatin-induced AKI.
Additionally, in a recent study by Al-Salam et al. (2021), cisplatin
treatment in Gal3 knock-out mice was associated with a greater
burden of ATN, as well as increased levels of plasma urea, creatinine,
cathepsin B, and cathepsin D compared toWTmice. Due to the limited
evidence and variable results specific to cisplatin-induced AKI, the
specific role of Gal3 in the pathophysiology of cisplatin-induced AKI
requires further investigation. However, the selective effects of
Gal3 depletion or inhibition versus Gal3 knockout, as well as the
types of inhibitors used, may contribute to these paradoxical findings.

Roles in folic-acid-induced AKI

In a rat model of folic-acid-induced AKI, Gal3 mRNA was
upregulated in kidney tissue at 2 h after injury, and increased levels
were maintained for at least 7 days post-injury (Nishiyama et al.,
2000). In another study of folic-acid-induced AKI, Gal3 expression
was elevated in injured tubules after folic acid administration, and
Gal3 inhibition reduced proinflammatory cytokines, renal fibrosis,
and apoptosis at 2 weeks post-injury (Kolatsi-Joannou et al., 2011).
These findings suggest that inhibition or depletion of Gal3 may be
protective in folic acid-induced AKI (Kolatsi-Joannou et al., 2011).

Roles in infection-associated AKI

Evidence from multiple studies demonstrates that myeloid cell-
derived Gal3 drives acute and chronic inflammation, including

infection-mediated inflammation, and warrants further evaluation of
Gal3 as a therapeutic target (Ferreira et al., 2018;Wang et al., 2019; Chiu
et al., 2020; Guo et al., 2021; Humphries et al., 2021). In a clinical cohort
study, median Gal3 concentrations were elevated 1.4-fold in
pneumonia and 2.7-fold in sepsis (Mueller et al., 2015). Additionally,
in our previous work, we demonstrated that serum Gal3 concentrations
predicted AKI in patients with sepsis (Sun et al., 2021b). In a study by
Ferrer et al., macrophage depletion and Gal3 knockout were associated
with greater bacterial burden and worsened subacute nephritis compared
to WT mice in a mouse model of leptospirosis (Ferrer et al., 2018). In
addition, in a murine model of sepsis using cecal ligation and puncture,
inhibition ofGal3 significantly reducedAKI incidence andmortality (Sun
et al., 2021b). Thus, Gal3 depletion or inhibition may serve as a
therapeutic approach in sepsis and sepsis-associated AKI.

Section II: Gal3 and CKD

CKD progression

Multiple studies have demonstrated an association between elevated
serumGal3 concentrations and accelerated progression of CKD following
AKI. Among 352 patients with CKD, serum Gal3 concentration directly
correlated with serum creatinine (Cr) level and the urine protein-to-Cr
ratio (Kim et al., 2021). Additionally, in a combined analysis of two clinical
studies, elevated serum Gal3 concentration was associated with poor
clinical outcomes in participantswith impaired kidney function, but not in
participants with normal or near-normal kidney function (Drechsler et al.,
2015). Mean Gal3 concentrations were higher with poorer kidney
function—12.8 ± 4.0 ng/ml for estimated glomerular filtration rate
(eGFR)≥90ml/min, 15.6 ± 5.4 ng/ml for eGFR 60–89ml/min, 23.1 ±
9.9 ng/ml for eGFR<60ml/min, and 54.1 ± 19.6 ng/ml for patients
requiring dialysis—and higher serum Gal3 concentrations were
associated with cardiovascular events, infection, and all-cause mortality
in patients with impaired kidney function (Drechsler et al., 2015). Among
a cohort of 2,450 participants in the Framingham Offspring Study,
elevated plasma concentrations of Gal3 were associated with increased
odds of decline in eGFR and of incident CKD (O’Seaghdha et al., 2013).
Additionally, in a study evaluating a community-based population of
9,148 patients without previous CKD or heart failure, higher plasma
Gal3 concentrations were associated with an increased risk of incident
CKD,most notably among those with hypertension (Rebholz et al., 2018).

Mortality in CKD

Several studies suggest that Gal3 concentrations are associated with
mortality in patients with CKD (Drechsler et al., 2015; Alam et al., 2019).
In a study evaluating 150 patients with CKD, the discrimination of serum
Gal3 concentrations for mortality based on the area under the receiver
operating characteristic curve (AUC-ROC)was higher than that of serum
cystatin C and serum creatinine (AUC-ROC: Gal3 = 0.89, cystatin C =
0.83; creatinine = 0.85) (Ji et al., 2017). The 6-year kidney survival rates of
the low Gal3 group and high Gal3 group were 47.3% and 22.8%
respectively (p < 0.01) (Ji et al., 2017). In addition, an observational
cohort of 883 patients with CKD showed that higher serum Gal3, GDF-
15, and sST2 concentrations were associated with a greater likelihood of
death (Tuegel et al., 2018). Another study using an immunohistochemical
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technique demonstrated that higher glomerular and extraglomerular
Gal3 immunoreactivity was associated with a lack of response to
steroids in children with diffuse mesangial proliferation and focal
segmental glomerulosclerosis (Ostalska-Nowicka et al., 2009).

Cardiovascular events in CKD and ESRD

Multiple studies have exhibited an association between Gal3 and
cardiovascular events in patients living with CKD and end-stage renal
disease (ESRD). A study of 163 patients with CKD and 105 controls
demonstrated an association between serum Gal3 and both brain
natriuretic protein (BNP) and high sensitivity troponin in patients
with CKD (Chan et al., 2020). In another study, measures of Gal3,
pentraxin-3, MMP-9, and eGFR in combination predicted higher or
lower risks of cardiovascular events (Miljkovic et al., 2017). Similarly, in
patients receiving hemodialysis, elevated Gal3 concentration was
associated with higher rates of cardiovascular death (Salib et al.,
2021). An additional study of patients receiving hemodialysis found
that arteriovenous fistula stenosis was associated with the expression of
Gal3 (Ruan et al., 2021). Furthermore, there was a positive correlation of
serum Gal3 with neointima development (Ruan et al., 2021). In a
prospective cohort study, higher serum Gal3 concentration was
associated with a higher risk of cardiovascular mortality in patients
receiving maintenance hemodialysis (hazard ratio (HR) = 2.13, 95% CI
1.07–4.26) (Liu et al., 2022). In addition, a cohort study of
2,477 participants showed that greater longitudinal increase in
plasma Gal3 concentration was associated with increased incidence
of heart failure and all-causemortality (Ghorbani et al., 2018). In a study
of 130 patients with CKD, serum Gal3 concentrations were directly
correlated with C-reactive protein (CRP) concentrations and inversely
correlated with eGFR, while higher serum Gal3 and CRP
concentrations were associated with vascular reactivity index, a
measure of endothelial dysfunction (Hsu et al., 2021).

Section III: Gal3 and other kidney
diseases

Kidney transplant (KT)

Recent human and animal studies have found an association
between Gal3 concentrations and kidney transplant outcomes. An
analysis of 561 kidney transplant recipients found that serum
Gal3 concentrations were elevated and were independently
associated with the risk of late graft failure (Henderson et al.,
2008). Additionally, in a murine model of chronic allograft
injury, Dang et al. (2012) found that Gal3 null mice had
significantly improved preservation of renal tubules and reduced
interstitial fibrosis following kidney transplant compared to controls
(Dang et al., 2012). Interestingly, a study comparing patients
receiving hemodialysis or transplantation, found that patients
who underwent kidney transplant had significantly lower Gal-3
concentrations at 3 months post-operatively, while patients that
continued hemodialysis did not have significantly different Gal-3
concentrations (Tan et al., 2014). Given these findings, Gal3-
targeted therapies warrant further investigation in the prevention
of tubulointerstitial fibrosis following transplant.

Autoimmune nephropathy

Given its critical role in modulation of the immune response,
inflammation, and fibrosis, Gal3 has been implicated in the
pathophysiology of autoimmune nephropathies (Saccon et al.,
2017). In an analysis of kidney tissue from patients with lupus
nephritis, LGALS3—the interferon-regulated gene that encodes
Gal3—was directly correlated with disease activity (Almaani
et al., 2019). Furthermore, patients that achieved complete
response demonstrated a lower abundance of LGALS3 (Almaani
et al., 2019). Another study found that both glomerular
Gal3 expression and serum Gal3 concentrations were elevated in
patients with systemic lupus erythematosus (SLE) compared to
controls (Kang et al., 2009). In addition, Gal-3 expression was
found to correlate directly with anti-dsDNA and inversely with
complement 3 and 4 levels (Kang et al., 2009).

Diabetic nephropathy

Gal3 has been implicated in the progression of diabetic
nephropathy. In addition to its role in inflammation and fibrosis,
Gal3 can bind directly to the insulin receptor and inhibit
downstream signaling, thus decreasing insulin sensitivity (Li
et al., 2016). In a murine experimental model of diabetes,
Gal3 knockout, Gal3 heterozygous depletion, and Gal3 inhibition
resulted in increased insulin sensitivity and glucose tolerance
compared to controls [72]. In a prospective study of patients
with diabetic nephropathy, mean serum concentrations of
Gal3 were significantly higher in patients with macroalbuminuria
compared to patients with microalbuminuria or without
albuminuria (Hodeib et al., 2019). In another study of
1,320 patients with type 2 diabetes and an eGFR of 30 mL/min/
1.73 m2 or higher, elevated serum Gal3 concentrations were
associated with progressive kidney disease (Tan et al., 2018).
Similarly, in a study of patients with type 1 diabetes, serum
Gal3 was elevated and associated with lower eGFR, as well as
higher urine albumin to creatinine ratio (de Boer et al., 2017).

Hypertensive nephropathy

In patients with hypertension, higher serum Gal3 concentrations
were inversely correlated with eGFR (Lau et al., 2021). In a study of
107 patients with hypertension, serum Gal3 was associated with
increased odds of left ventricular remodeling before and after
adjusting for body mass index (BMI) and systolic blood pressure
(SBP) (OR: 14.76; 95% CI, 5.39–27.76, p < 0.001) (Yao et al., 2016).
A preclinical study of spontaneously hypertensive rats found thatMCP-
mediated Gal3 inhibition attenuated early kidney damage independent
of blood pressure levels, as evidenced by reduced albuminuria and
improved kidney function, as well as decreased interstitial fibrosis,
epithelial-mesenchymal transition, and inflammation on kidney biopsy
(Martinez-Martinez et al., 2018). Frenay et al. (2015) also demonstrated
that inhibition of Gal3 attenuated hypertensive nephropathy in rats, as
evident by improved kidney function, reduced proteinuria, and
decreased structural kidney damage (Frenay et al., 2015). In another
murine hypertension model, Gal3 inhibition was observed to attenuate
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renal inflammation and fibrosis in experimental hyperaldosteronism,
independent of blood pressure (Martinez-Martinez et al., 2015).

Renal fibrosis

Recent studies have demonstrated critical roles for Gal3 in
fibrogenesis affecting multiple organ systems, including the liver,
kidney, lung, and myocardium (Li et al., 2014). In a study of
249 patients with CKD who underwent kidney biopsy, plasma
Gal3 concentrations were directly correlated with interstitial fibrosis
and tubular atrophy, and were inversely correlated with eGFR (p =
0.005) (Ou et al., 2021). Similarly, in a prospective study of 280 patients
who underwent kidney biopsies, higher urinary Gal3 concentrations
were associated with more severe interstitial fibrosis (Ou et al., 2022).

Murine models have also demonstrated associations between
Gal3 and renal fibrosis. In a murine model of unilateral ureteral
obstruction (UUO), Gal3 expression in the renal interstitium and
tubular epithelium was significantly higher than Gal3 expression in
controls (Henderson et al., 2008). Additionally, Gal3 knockout mice,
as well as macrophage ablation, resulted in significantly reduced
renal fibrosis, and the adoptive transfer of WT Gal3-positive
macrophages restored the fibrotic phenotype in Gal3 knockout
mice (Henderson et al., 2008). The authors concluded that
Gal3 secretion by macrophages plays a critical role in the
mechanism linking macrophages to renal fibrosis (Henderson
et al., 2008). Similarly, in experimental hyperaldosteronism,
cardiac and renal fibrosis was associated with the expression of
Gal3, which was prevented by Gal3 inhibitor MCP or genetic
deletion of Gal3 (Calvier et al., 2015). In another UUO mouse
model, Twist1 deficient macrophages demonstrated significantly
decreased renal interstitial fibrosis 14 days after UUO, and
Gal3 expression was significantly reduced in Twist1 deficient
macrophages compared to controls (Wu et al., 2022).
Additionally, Twist1 was shown to directly activate
Gal3 transcription, and Gal3 upregulation recovered Twist1-
mediated M2 macrophage polarization in Twist1 deficient
macrophages, suggesting that Twist1/Gal3 signaling modulates
macrophage plasticity and promotes renal fibrosis (Wu et al.,
2022). In rat models of obesity and aortic stenosis,
Gal3 expression paralleled the degree of interstitial fibrosis, and
inhibition of Gal-3 with MCP normalized Gal3 levels and prevented
the progression of renal fibrosis (Martinez-Martinez et al., 2016).

Section IV: The therapeutic potential of
targeting Gal3

Gal3 is a carbohydrate-binding lectin implicated in the
pathophysiology of a wide array of inflammatory and fibrotic
conditions, including AKI and CKD. Gal3 concentrations are
elevated in AKI and CKD, and Gal3 inhibitors have been shown
to downregulate inflammation and fibrosis in a variety of diseases
(Supplementary Table S1) (Drechsler et al., 2015; Ji et al., 2017; Alam
et al., 2019; Sun et al., 2021b; Kim et al., 2021; Boutin et al., 2022). In
murine models, Gal3 inhibitors have been shown to significantly
decrease kidney injury in a variety of conditions, including sepsis-
associated AKI, renal fibrosis in experimental hyperaldosteronism,

hypertensive nephropathy, interstitial fibrosis following transplant,
and renal fibrosis in IRI AKI. Given these findings, Gal3 inhibition
or depletion may serve as a potential therapeutic target in AKI and
CKD and warrants further investigation.

Conclusion

As demonstrated in the current literature, Gal3 appears to play a
key role in the pathophysiology of AKI and CKD. Gal3 is associated
with the development and progression of various etiologies of AKI,
and inhibition of Gal3 results in improved kidney function, as well as
decreased inflammation and fibrosis. Current evidence suggests that
Gal3 may serve as a potential biomarker and therapeutic target in
AKI and CKD, and warrants further investigation.
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SUPPLEMENTARY TABLE S1
Serum and plasma Gal3 levels in AKI and CKD by severity. Mean and median
Gal3 concentrations in patients with lower severity of disease and controls

compared to higher severity of disease. Abbreviations: AKI, acute kidney
injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration
rate; Gal3, galectin-3.
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