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Pain affects every fifth adult worldwide and is a significant health problem. From
a physiological perspective, pain is a protective reaction that restricts physical
functions and causes responses in physiological systems. These responses are
accessible for evaluation via recorded biosignals and can be favorably used as
feedback in active pain therapy via auricular vagus nerve stimulation (aVNS). The
aim of this study is to assess the significance of diverse parameters of biosignals
with respect to their deflection from cold stressor to deep breathing and their
suitability for use as biofeedback in aVNS stimulator. Seventy-eight volunteers
participated in two cold pressors and one deep breathing test. Three targeted
physiological parameters (RR interval of electrocardiogram, cardiac deflection
magnitude ZAC of ear impedance signal, and cardiac deflectionmagnitude PPGAC of
finger photoplethysmogram) and two reference parameters (systolic and diastolic
blood pressures BPS and BPD) were derived and monitored. The results show that
the cold water decreases the medians of targeted parameters (by 5.6, 9.3%, and
8.0% of RR, ZAC, and PPGAC, respectively) and increases the medians of reference
parameters (by 7.1% and 6.1% of BPS and BPD, respectively), with opposite changes
in deep breathing. Increasing pain level from relatively mild to moderate/strong
with cold stressor varies the medians of targeted and reference parameters in the
range from 0.5% to 6.0% (e.g., 2.9% for RR, ZAC and 6.0% for BPD). The physiological
footprints of painful cold stressor and relaxing deep breathing were shown for
auricular and non-auricular biosignals. The investigated targeted parameters can
be used as biofeedback to close the loop in aVNS to personalize the pain therapy
and increase its compliance.

KEYWORDS

auricular bioimpedance, auricular vagus nerve stimulation, blood pressure, cold pressor
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1 Introduction

Acute or chronic pain is one of the main complaints for seeking medical care. According to
the International Association for the Study of Pain, pain is defined as “unpleasant sensory and
emotional experience associated with, or resembling that associated with, actual or potential
tissue damage” Raja et al. (2020). Pain is a protective reaction restricting physical functions
with various physiological parameters, such as heart rate, respiratory rate, and arterial blood
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pressure, which are potential indicators of pain intensity Arbour et al.
(2014); Cowen et al. (2015); Peters and Schmidt (1991). The specific
changes can be observed by the reactivity and reflexivity of the
autonomic nervous, cardiovascular, and respirator systems Kyle and
McNeil (2014).

Adults and children suffer the pain associated with different
medical conditions, undergo different painful procedures, or
are referred with acute pain to the emergency department
Dahlhamer et al. (2018); Keating and Smith (2011);Mura et al. (2017);
Othow et al. (2022). Data suggest that 7 out of 10 patients come to the
emergency department due to pain Todd et al. (2007). Meanwhile,
chronic pain affects about 20.5% of adults in the United States
Yong et al. (2022) and about 10%–30% in Europe Breivik et al. (2006);
Reid et al. (2011). The meta-analysis showed that the prevalence of
chronic pain ranges between 0% and 24% globally Mansfield et al.
(2016).

Different medications, such as non-steroidal anti-inflammatory
drugs, opioids, or others, are used daily against pain. Despite various
painmedications and strategies, pain treatment faces many adversities
Fishman (2007), such as severe side effects, the use of illicit drugs,
opioid crisis St. Marie and Broglio (2020), peptic ulcers Tai and
McAlindon (2021), and others. All the more, pain management is
a fundamental human right Enright and Goucke (2016); Fishman
(2007).

Vagal nerve stimulation (VNS)—as a pain neuromodulation
technique, as reviewed in Kaniusas et al. (2019a)—has been
investigated in humans and animals. VNS can affect the autonomic
nervous system and is an approved treatment for pharmacoresistant
depression and drug-resistant epilepsy Nemeroff et al. (2006);
O’Reardon et al. (2006). Non-invasive transcutaneous modalities of
VNS emerge Busch et al. (2013); Nesbitt et al. (2015), such as the
electrical stimulation of the external surface of the ear innervated by
the afferent auricular branch of the vagus nerve, known as auricular
vagus nerve stimulation (aVNS). aVNS is performed using miniature
electrodes tightly fixed inside the auricular concha. The current
intensity is individually adjusted at the beginning of the aVNS session
to a level without evoking pain. However, the initial personalization
of the intensity of current alone does not ensure adequate vagus nerve
stimulation for the relatively long treatment duration (from days to
weeks).Here habituation effects, varying physiology, and deterioration
of the electrode-tissue interface contribute to this uncertainty in the
treatment Bouton (2017); Kaniusas (2019); Kaniusas et al. (2019b).
Therefore, aVNS can be hypothesized to avoid under- or over-
stimulation, reduce side effects, and save stimulation energy when
based on individual physiological biofeedback.

Biofeedback can be assessed using data from internal (in-the-
ear) and external (outside-the-ear) sensors, i.e., auricular and non-
auricular biosignals. However, it is not known which biosignals and
extracted parameters help estimate the balance between the stimulated
parasympathetic system and the complementary sympathetic system,
which is generally predominant in chronic ailments such as pain. In
the ideal case, this balance should be provided to the aVNS stimulator
to avoid the disadvantages of the non-personalized aVNS. Thus, easy-
to-access biosignals are of high interest which could estimate this
balance in favor of the efficiency of aVNS therapy.

The present study proposes a cold stressor as a sympathetically
driven stimulus (usually accompanied by acute pain) and deep
breathing as a mainly parasympathetically driven stimulus (with
relaxing effects) to manipulate the sympathovagal balance from

sympathetic to parasympathetic dominance while recording a set of
auricular and non-auricular biosignals. The aim of this study is to
assess the significance of diverse parameters of biosignals with respect
to their deflection from cold stressor to deep breathing and their
suitability for use as biofeedback in aVNS stimulator.

2 Materials and methods

2.1 Study population and data acquisition

Seventy-eight healthy volunteers (36women), 32.6± 10.7 years old
(range 20–64 years, with 23 men and 19 women <30 years), with a
height of 1.76 ± 0.1 m, a weight of 75.0 ± 13.6 kg, and a body mass
index of 24.1 ± 3.7 kg/m2 participated in the study. All participants
met the following criteria: 1) age ≥18 years; 2) no chronic pain; 3)
no documented cardiovascular, respiratory, diabetes, and depression
diseases; 4) no medication with b-blockers or calcium channel
antagonists; and 5) no pregnancy or breastfeeding. Participants were
instructed to avoid taking painkillers or anti-inflammatory drugs for
at least 24 h and activities that could affect the cardiovascular system
(smoking, coffee, alcohol, physical activity,medication, etc.) for at least
4 h before the study.

Data collection took place indoors at the Biomedical Engineering
Institute (Kaunas, Lithuania) in a quiet and temperature-controlled
(24.0°C ± 1.0°C) laboratory at the same time of the day (08:00–13:00)
tominimize the circadian influence. Four synchronous biosignalswere
recorded in the study, as illustrated in Figure 1: 1) a modified bipolar
three-lead electrocardiogram (ECG) signal (sampling rate 2 kHz); 2)
a red wavelength finger photoplethysmogram (PPG) signal (sampling
rate 1 kHz) using a proprietary multimodal signals recording system
Nautilus II (Biomedical Engineering Institute, Kaunas, Lithuania);
3) an ear impedance signal (at the frequency of 12.5 kHz, sampling
rate 1 kHz) using the data acquisition system Biopac MP150 (Biopac
Systems Inc., Aero Camino, Goleta, CA, United States); and 4)
arterial blood pressure signal (sampling rate 100 Hz) using the non-
invasive arterial blood pressure monitoring system CNAP Monitor
500 (CNSystems, Graz, Austria). The subjective/perceived pain was
recorded by a volunteer self-report (announced verbally and aloud to
an experimenter) using the numerical rating scale NRS (range 0–100,
with 0 for no pain and 100 for unbearable pain) at least every 30 s (or
even more often based on a volunteer’s initiative).

Well-known and effective pain-causing (the cold pressor test) and
relaxation (deep breathing) tests were used in the study. Namely, the
study protocol consisted of eight phases, as depicted in Figure 2A:
1) the first rest phase (Rest #1) lasting 10 min in the sitting position;
2) the warm water for 1 min (equalization phase), in which the
participant immersed his left hand into warm water (32.0°C ± 0.1°C);
3) the first cold water phase (CPT #1), in which the participant
immersed his left hand into cold water (7.0°C ± 0.1°C) for 2 min or
even shorter if the volunteer felt very uncomfortable and voluntarily
resumed; 4) the second rest phase (Rest #2) for 5 min where the
participant took his left hand out from cold water and rested in the
sitting position; 5) the second cold water phase (CPT #2), in which
the participant immersed his left hand into a little less cold water
(10.0°C ± 0.1°C) for 2 min or even shorter if the volunteer felt very
uncomfortable and voluntarily resumed; 6) the third rest phase (Rest
#3) for 10 min in analogy with Rest #2; 7) the deep breathing phase
(DB) for 1 min with the paced breathing rate 6 1/min (paced via a
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FIGURE 1
Placement of all sensors and electrodes for the recording of electrocardiogram ECG(t), pulse plethysmogram PPG(t), auricular impedance Z(t), and blood
pressure BP(t) signals.

monitor and a bar rising/falling periodically every 10 s); 8) the fourth
rest phase (Rest #4) for 5 min in analogy with Rest #2. Participants
were verbally instructed to immerse their left hand (up to the middle
of the forearm) in warm or cold water, indicate their subjective pain
level (in cold water), and take out their hand after 1 min in warm and
2 min in cold water.

The study was conducted following the ethical principles of
the Declaration of Helsinki and with ethics approval from the
Kaunas Region Biomedical Research Ethics Committee (No. BE-
2-24), including informed consent and voluntary participation.
Personal information was removed from the collected data to ensure
participants’ anonymity.

2.2 Signal processing and parameters
extraction

ECG was filtered using zero-phase Butterworth high-pass and
low-pass filters (cut-off frequencies 0.5 and 35 Hz, respectively),
R waves were detected using the modified Tompkins algorithm
Hamilton and Tompkins (1986), and RR was estimated as the time
interval between the successive R peaks. The ear impedance signal
reflects local changes in the blood perfusion and blood vessel size,
accounting for the local changes in capacitance and resistance. The
impedance signal is morphologically similar to PPG so that both
PPG and Z were filtered using high-pass and low-pass zero-phase
Butterworth filters (cut-off frequencies 0.5 and 10 Hz, respectively).
The associated peak and valley fiducial points in PPG, Z, and BP
signals were detected in line with the detected R waves of ECG.
Five parameters were extracted out of the four recorded biosignals
(Figure 3): 1) time interval RR between R peaks of ECG; 2) cardiac
deflection magnitude PPGAC of PPG; 3) cardiac deflection magnitude
ZAC of ear impedance signal; 4) systolic blood pressure BPS; and 5)
diastolic blood pressure BPD. Please note that the analyzed PPGAC

is mainly related to the pulsatile arterial blood, proportional to the
local systolic-diastolic deflection of the blood pressure and the arterial
compliance of the vascular wall Kaniusas (2015).

The entire periods of stimulation phases CPT #1, CPT #2,
and DB were included in the analysis, only the last 4 min of rest
phases Rest #1, Rest #2, and Rest #3 were included to avoid the
transient influence of the preceding phase (Figure 2B). The medians
of evaluated parameters from CPT #1, CPT #2, and DB phases
were compared with the medians of the respective Rest #1, Rest #2,
and Rest #3 phases, without any averaging. The analysis was
performed using different pain levels, ages, and gender. The pain
level threshold was chosen at 40 points, corresponding to mild pain
Karcioglu et al. (2018). The age threshold was selected at 30 years
in order to end up with comparably populated groups of men and
women.

2.3 Statistical analysis

The Shapiro-Wilk test was used to assess data normality. Because
of the non-normal distribution, the results are summarized using
boxplots with medians and quartiles. The Wilcoxon signed-rank
test with the Bonferroni’s adjustment for dependent samples was
used to compute the p-value, and statistical significance was set at
p <0.05.

3 Results

Out of 78 recorded data sets, two ECG, thirteen PPG, twenty-
four Z, and six BP traces were eliminated from the analysis due to
poor quality. Eight participants retreated earlier and did not finish the
CPT #1 phase, i.e., two women (age ≤30 years), two women (age
>30 years), one man (age ≤30 years), and one man (age >30 years).
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FIGURE 2
(A) The protocol of the study and (B) analyzed intervals.

FIGURE 3
Instructive qualitative changes of the interbeat period RR, the pulse plethysmography PPG, bioimpedance Z, and blood pressure BP from the first rest phase
(Rest #1), the first cold water phase (CPT #1), and the deep breathing phase (DB) of a single participant. The maximum reported NRS value of the CPT #1
was 80.

Two other participants did not finish CPT #2, i.e., one woman and one
man, both aged >30 years.

3.1 General tendencies

Figure 3 illustrates the temporal courses of RR, PPG, Z, and BP
during phases Rest #1, CPT #1, and DB. Compared to Rest #1, the
cold stimulus CPT #1 shows reduced bothRR and its variability, as well
as reduced cardiac deflection magnitude PPGAC of PPG and reduced
cardiac deflection ZAC of Z. The associated mean BP is larger during
CPT #1 than during Rest #1. The subsequent DB phase contrasts
CPT #1 in that PPGAC and ZAC increase in DB.The respiration-related
variability of all four RR, PPGAC, ZAC, and BP dominates in DB, with
the indicated respiration rate fR (Figure 3).

3.2 Cold water versus deep breathing

As shown in Figure 4, the first cold water stimulation CPT #1
decreases themedian ofRR (−5.5%) andZAC (−9.8%) while increasing
that of BPS (+12.6%) and BPD (+13.4%) of BP, as compared with the
first rest phase Rest #1. Here the associated PPGAC remains almost
constant (+0.9%).The second coldwater stimulationCPT#2 decreases
the median of RR (−5.6%), PPGAC (−8.0%), and ZAC (−9.3%) while
increasing that of BPS (+7.1%) and BPD (+6.1%), as compared with
the second rest phase Rest #2. The subsequent deep breathing DB
produces opposite effects: the median of RR (+1.8%), PPGAC (+5.1%),
and ZAC (+5.4%) increase, while that of BPS (−0.9%) and BPD (−5.6%)
decrease, as compared with the third rest phase Rest #3. The observed
changes inDB are significantly different compared to CPT #2 in all five
parameters.
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FIGURE 4
Relative changes (A) ΔRR of RR, (B) ΔPPGAC of PPGAC, (C) ΔZAC of ZAC, (D) ΔBPS of systolic BP values, and (E) ΔBPD of diastolic BP values from CPT #1,
CPT #2, and DB as related to the respective Rest #1, Rest #2, and Rest #3. The asterisk ”*” indicates significant changes (p <0.05) between CPT #2 and DB.

FIGURE 5
Medians and interquartile ranges of ΔRR, ΔPPGAC, ΔZAC, ΔBPS, and ΔBPD (compare Figure 4) during (A) CPT #2 and (B) DB.

Figure 5 summarizes and contrasts the observed changes for all
parameters in CPT #2 (Figure 5A) versus DB (Figure 5B), with the
indicated interquartile range from 25% to 75%. In line with Figure 4,
CPT #2 reduces RR, PPGAC, and ZAC and increases BPS and BPD,
whereas DB causes physiological processes with reversed tendencies,
i.e., RR, PPGAC, and ZAC increase while BPS and BPD decrease.

3.3 Pain level differences

Figure 6 illustrates the relative changes in the parameters in
CPT #2 for relatively mild pain with the associated NRS ≤40
(Figure 6A) in comparison with moderate to strong pain with NRS
>40 (Figure 6B). It can be observed that the physiological changes for
NRS ≤40 are more closely located to the 100% reference line, i.e., to
the values in Rest #2, than for NRS >40. Namely, the median ΔRR
decreases by −3.8% and−6.7% forNRS≤40 andNRS>40, respectively;
the associatedΔPPGAC decreases by−7.5%and−8.0%,ΔZAC decreases
by −6.5% and −9.4%, ΔBPS increases by +6.1% and +8.1%, and
ΔBPD increases by +3.4% and +9.4%. When comparing NRS ≤40

and NRS >40, statistically significant changes are observed in BPD
only.

3.4 Gender and age tendencies

Theinfluence of gender and age is depicted inFigure 7 considering
CPT #2 and DB (compare Figure 5). In CPT #2, the relative values
of ΔRR decrease by 1.5%–8.4%, with a minor decrease for young
men (<30 years) and the largest decrease for adult men (≥30 years).
Here ΔPPGAC decreases by 8.4%–12.3%, with almost no changes for
adult women (≥30 years). ΔZAC decreases by 3.9%–19.7%, with little
changes for adult women and maximum changes for young women
(<30 years). ΔBPS increases by 5.3%–8.2% with minor changes for
youngwomen, whereas ΔBPD increases by 5.1%–9.7%, with the largest
changes for adult women.

During DB, in line with Figure 5, the observed changes in all
gender and age groups mainly follow the opposite behavior. ΔRR
increases by 2.1%–4.5% except for adult men (≥30 years); ΔPPGAC
increases by 4.5%–12.1%but also except for adultmen; ΔZAC increases
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FIGURE 6
Median and interquartile ranges of ΔRR, ΔPPGAC, ΔZAC, ΔBPS, and ΔBPD (compare Figure 4) during CPT #2 for (A)mild pain with NRS ≤40 and (B)moderate
to severe pain with NRS >40. The distribution of maximum self-report NRS of the CPT #2 phase is presented in a bar diagram.

FIGURE 7
Medians of ΔRR, ΔPPGAC, ΔZAC, ΔBPS, and ΔBPD (compare Figure 4) differentiated by age and gender during (A) CPT #2 and (B) DB.

by 2.5%–9.6% with a minor increase for young men (<30 years);
ΔBPS increases very slightly for men (0.5%–1.1%) but decreases more
strongly for women (2.1%–2.8%); ΔBPD decreases in all cases by
1.0%–8.5% with a minor decrease for adult men (≥30 years) and the
largest decrease for young women (<30 years).

4 Discussion

The present study investigates the physiological footprints of
auricular and non-auricular biosignals in response to a cold stressor
and deep breathing. While a cold stressor is a sympathetically driven
stimulus (accompanied by acute pain), deep breathing is a mainly
parasympathetically driven stimulus (with relaxing effects). Thus, it
was investigated how the opposing sympathetic and parasympathetic
stimuli are reflected by the auricular biosignals, namely, its parameter
ZAC, and by parameters accessible from the auricular biosignals such as
RR and PPGAC. All these three parameters can be used as biofeedback
to close the loop in aVNS, i.e., in a targeted stimulation of the

parasympathetic system. The closed-loop set-up personalizes aVNS
with an expected tendency to avoid over and under-stimulation of
the vagus nerve/parasympathetic system. Thus, the closed-loop aVNS
may minimize both the energy consumption of the aVNS stimulator
and potential side effects (no over-stimulation) while optimizing and
personalizing the aVNS therapy (no recruitment of pain fibers), e.g., in
chronic pain. Here, the non-auricular biosignals with their parameters
BPS and BPD serve as a necessary reference to monitor stimuli-
related vital functions of the body and as an instructive substrate
for their comparison with stimuli-related changes in auricular
biosignals.

The auricular biosignal Z, namely its parameter ZAC (Figure 1),
decreases significantly during the sympathetic stimulus (CPT #2) as
comparedwith the parasympathetic one (DB) (Figures 3–5), as well as
decreases tendentiallywith increasing pain perception (Figure 6).This
behavior indicates the potential suitability of ZAC in assessing changes
in the balance of the parasympathetic and sympathetic stimuli, or,
more generally, in the balance of the parasympathetic and sympathetic
systems of the human body (sympathovagal balance). On the other
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hand, this balance, especially its normalization from a derailed state, is
usually a therapeutic target in aVNS when applied to different chronic
ailments Kaniusas et al. (2019a). Thus ZAC can be hypothesized to be
reasonable auricular biofeedback for the closed-loop aVNS without
using any sensors external to the ear, which may obstruct the
patient.

The parameters RR and PPGAC also reflect sympathovagal
balance. RR and PPGAC decrease significantly during the sympathetic
CPT #2 compared to the parasympathetic DB (Figures 3–5). While
RR tends to decrease with increasing pain, the level of PPGAC does not
(Figure 6). Therefore, RR and PPGAC, the former to a larger extent,
can also be hypothesized to be reasonable auricular biofeedback for
the closed-loop aVNS targeting a derailed sympathovagal balance.
Please note that RR could be estimated from the period of the cardiac
oscillation of the auricular Z (Figure 3), whereas PPGAC from the
cardiac deflection of PPG from the earlobe Allen (2007). However,
limitations in the precision of the estimated RR may apply in the
former case due to a rather smooth waveform of Z in contrast
to the spiky R peak of ECG. Likewise, limitations in PPGAC may
apply in the latter case due to a rather central connection of the
ear perfusion in contrast to the peripheral perfusion of the finger
(Figure 1).

The non-auricular parameters BPS and BPD reflect the
sympathovagal balance as well. Both increase significantly during
the sympathetic CPT #2 as compared with the parasympathetic
DB (Figures 3–5), while this increase in CPT #2 tends to be larger
for stronger pain (Figure 6). The level of BPD appears to depend
even stronger on the stimuli-induced sympathovagal balance with
the observed changes of 11.7% (from CPT #2 to DB) in contrast
to the associated changes in BPS of 8.0% (Figure 4). Likewise, the
sympathetically-governed vasoconstriction (governing BPD) may be
more dominant than stroke volume changes (governingBPS) Kaniusas
(2012). This leads to a hypothesis that BPS and BPD could be used as
non-auricular biofeedback for the closed-loop aVNS when external
sensors are used outside the ear.

In terms of gender and age, the largest changes from CPT #2
to DB were shown in RR for adult women (≥30 years), PPGAC for
young women (<30 years), ZAC for young women (<30 years), BPS
for adult women (≥30 years), BPD for young women (<30 years). In
contrast, the minor changes from CPT #2 to DB were shown in RR
for young men (<30 years), PPGAC for adult men (≥30 years), ZAC
for young men (<30 years), BPS for adult men (≥30 years), BPD for
adult men (≥30 years). Overall, men seem to show fewer changes
from CPT #2 to DB than women. This conclusion is in line with
previous studies, which conclude that women are more sensitive
to pain Fillingim et al. (2009); Mogil (2012); Popescu et al. (2010),
but it depends on the method of pain induction and assessment.
In most cases, the study also supports the still controversial claims
that older individuals are more tolerant of pain and show fewer
physiological effects than younger individuals Edwards et al. (2003);
Riley et al. (2010); Rittger et al. (2011). However, these statements
are very limited in their validity due to the small sample in this
study.

A limitation of the present study is the relatively small database
of recordings representing the elder part of the population which
has tendentially a larger prevalence of suffering pain. Collecting
and analyzing a more representative database is planned as a future

research direction in the research of the aVNS stimulator. Since the
warmwater phase immediately precedingCPT #1 strongly affected the
results in CPT #1, we focused our investigations on the comparison
of CPR #2 and DB, both preceded by rest phases. Another limitation
is that the order of the different phases of the protocol were not
randomized, especially the order of CPT and DB. Therefore, the
results may have been influenced by other factors such as expectation,
adaptation, prolonged exposure.

Lastly, it should be noted that the recorded pain level, in
contrast to nociception with its physiological encoding and processing
of nociceptive stimuli, is a subjective feeling connected with the
emotional experience to impeding or actual harm Loeser and
Treede (2008) but also altering autonomic nervous system Woo et al.
(2017); Adamczyk et al. (2020); Abdallah and Geha (2017). Thus, the
investigated objective characteristics of the autonomic system may
be useful for a continuous and objective personalization of aVNS in
chronic ailments such as pain.

5 Conclusion

The three parameters RR, PPGAC, and ZAC accessible
from auricular biosignals reflect the artificially-induced stimuli
with sympathetic or parasympathetic dominance and thus the
sympathovagal balance derailed in pain and other chronic conditions.
Therefore, auricular biosignals can be used as biofeedback to close the
loop in auricular vagus nerve stimulation to personalize the strength
and timing of the stimulation in favor of therapy, patient compliance,
and resourceful energy use.
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