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After lactation, many children consume fructose-rich processed foods. However,
overconsumption of these foods can predispose individuals to non-
communicable chronic diseases, which can have different repercussions
depending on the sex. Thus, we evaluated the effects of fructose overload
introduced after weaning on the renal function of young rats of both sexes.

Methods: After weaning, male and female offspring ofWistar rats were assigned to
drink water (themale/water and female/water groups) or 20% D-fructose solution
(male/fructose and female/fructose groups). Food and water or fructose solution
was offered ad libitum. Rats were evaluated at 4 months. Parameters analyzed:
blood pressure, body weight, triglyceride levels, glomerular filtration rate, sodium,
potassium, calcium, and magnesium excretion, macrophage infiltration, and
eNOS and 8OHdG expression in renal tissue. CEUA-UNIFESP: 2757270117.

Results: Fructose intake affected the blood pressure, body weight, and plasma
triglyceride in all rats. Glomerular filtration rate was significantly reduced in males
that received fructose when compared to that of the control group. Sodium and
potassium excretion decreased in all fructose-treated rats; however, the excreted
load of these ions was significantly higher in females than in males. In the female
control group, calcium excretion was higher than that of the male control
group. Fructose overload increased magnesium excretion in females, and also
increased macrophage infiltration and reduced eNOS expression in both males
and females.

Conclusion: Fructose overload introduced after weaning caused metabolic and
renal changes in rats. Renal function wasmore affected inmales; however, several
significant alterations were also observed in the female-fructose group.
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Introduction

Nutrition in the early stages of child development is a
determining factor of an individual’s health, with proper
introduction of food after weaning being a crucial component
(Hawkes et al., 2015). The consumption of inadequate food at
this stage is a risk factor for the development of non-
communicable diseases in the future (WHO, 2016; Porter et al.,
2018). In recent decades, we have experienced significant changes in
lifestyle, which has resulted in a steep increase in the consumption of
ultra-processed food (UPF). Due to their formulations and
presentations, UPFs tend to be consumed in excess and replace
traditional, healthier foods (Blake-Lamb et al., 2016; Mameli et al.,
2016; WHO, 2016; Pietrobelli et al., 2017). In addition, this new diet,
consisting of UPFs, has also been offered to children less than 2 years
of age in several countries (Cirino et al., 2014; Pries et al., 2016;
Cediel et al., 2018; Cornwell et al., 2018). UPF contains dyes,
emulsifiers, and additives such as high-fructose corn syrup
(HFCS), a product with a large percentage of fructose (Martínez
Steele et al., 2016). Studies have demonstrated that increased
fructose consumption, which has steadily risen in recent decades,
is associated with glucose intolerance and cardiovascular and renal
changes (Cunha et al., 2007; Brito et al., 2008; Abdulla et al., 2011;
Cabral et al., 2014; Bernardes et al., 2018). Thus, it is important to
investigate the effects of this sugar intake when introduced at an
early age.

Recent studies have shown that sexual dimorphism is related to
the morphology and function of renal tubules (Veiras et al., 2017;
Kalucki et al., 2020). Male rats appear to have a higher proportion of
proximal tubules, which under the action of androgenic hormones,
could lead to sodium and volume retention (Quigley, 2008).
Contrastingly, the female sex has a more significant proportion
of distal nephron segments, which could provide better regulation of
saline excretion (Veiras et al., 2020). In addition, recent studies have
shown differences in the development and progression of chronic
kidney disease, depending on gender (Carrero et al., 2018; Ricardo
et al., 2019).

Considering the lack of data on the long-term effects of fructose
overload on renal alterations in both sexes, especially when this
sugar intake is started soon after weaning, the objective of the
present study was to evaluate the effect of excess-fructose diets
introduced after weaning on the morphology and renal function of
male and female rats in adulthood. Blood pressure was measured at
the end of the experimental period.

Materials and methods

This study was approved by the Ethical Research Committee of
the Universidade Federal de Sao Paulo (protocol 2757270117) and
adhered to the international guidelines for the care of animals.
Wistar rats were obtained from the “Centro de Desenvolvimento de
Modelos Experimentais Para Biologia e Medicina (CEDEME)”
Animal Breeding Center at our university. Female rats were
divided into pairs and caged overnight with a male mate. Vaginal
smears were collected the following morning, and the presence of
sperm was considered a positive result. After birth, litter size was
standardized to eight pups per litter and the offspring remained with

the dams for 21 days. After weaning, pups were separated and
randomly divided into the following experimental groups:

MW, male rats that received water and food ad libitum;
MF, male rats that received fructose solution (20%) and food ad

libitum;
FW, female rats that received water and food ad libitum;
FF, female rats that received fructose solution (20%) and food ad

libitum.
During the experimental period, the fructose groups received a

drinking solution containing 20% d-fructose (D-Fructose, Labsynth,
Diadema-S.P, Brazil). The offer of fructose started at weaning (at
3 weeks of age) and continued until 4 months of age, totaling
13–14 weeks of treatment. The amount of fructose offered by
different protocols varied widely (10%–60%) (Abdulla et al.,
2011). The concentration used in the present study was 20%
because it was relatively low while still shown to affect blood
pressure (Bernardes et al., 2018).

The rats were kept in a temperature-controlled room (22°C) with
lights on from 7 a.m. to 7 PM. At 4 months of age, their systolic
blood pressure (BP) and weight was measured, and their renal
function was evaluated. The body mass index (BMI) was
calculated by the formula: BMI = body weight (g)/length2 (cm2).

Measurement of systolic blood pressure

BP was evaluated by tail plethysmography. Rats were
habituated to the procedure for 2–3 weeks before the
measurements by placing them in the heated chamber (34°C)
for up to 10 min and simulating the process. For measurement
the sphygmomanometer with a sensor connected to a recording
system (Monitor Ratpalp. b, IITC, United States) was coupled to
the proximal portion of the rat tail (caudal artery). The cuff was
inflated to 220 mmHg and slowly deflated, and the systolic BP was
recorded. For each rat, three to five measurements were taken in a
row, and the BP value was considered the average of these
measurements.

Evaluation of renal function

The rats were placed in metabolic cages for 24 h. Urine and
blood samples were collected to measure creatinine, urea, and
triglyceride levels, as well as sodium, potassium, chloride,
calcium, and phosphate concentrations.

Plasma and urine creatinine levels were measured using the
Jaffe method (Creatinine K vet, Labtest, MG, Brazil), and the
glomerular filtration rate (GFR) was determined based on
creatinine clearance. Plasma and urine urea levels were
measured using a urea detection kit (Ureia-CE, Labtest, MG,
Brazil). The concentrations of sodium, potassium, chloride,
calcium, and phosphate were obtained using a Hitachi Cobas
c702 analyzer (Roche Diagnostics, Indianapolis, IN,
United States). The sodium and potassium fractional excretion
(FE%) was calculated by the formula: FE% = (EL x 100)/FL, where
EL is excreted load and FL is filtered load. The protein
concentration in urine was quantified using the Bio-Rad Protein
Assay (Bio-Rad Laboratories Inc, United States).
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Renal morphology

The kidney samples were fixed in Bouin’s solution (ethanol
saturated with picric acid 75%, formaldehyde 20%, and acetic acid
5%) and embedded in paraffin. Five-micrometer histological
sections were cut and stained with hematoxylin and eosin.
Glomerular area was evaluated using a light microscope (Nikon
H550L, Japan) and a camera. Images were analyzed using an image
analysis software (Nikon, NISElements 3.2, Japan) and the encircled
areas were determined using computerized morphometry. Twenty
cortical fields were analyzed on each slide (magnification ×200). For
immunohistochemical analysis, sections were incubated overnight
at 4 °C with anti-CD68 for macrophage identification (anti ED1, 1:
500; Serotec, Sigma-Aldrich, MO, United States), anti-endothelial
nitric oxide synthase (eNOS), 1:250 (Gene-tex, CA, United States),
and anti-8OHdG, 1:150 (Gene-tex, CA, United States). The reaction
products were determined using a universal immuno-peroxidase
polymer (Histofine-Nichirei Biosciences). For quantitative analysis,
the percentage of area was assessed in 20 consecutive cortical fields
for each sample (×200 magnification). Images were taken using a
microscope (Eclipse 80i, Nikon, Tokyo, Japan) equipped with a
digital camera (DSRi1, Nikon) and analyzed using the NIS-Elements
(Nikon) software.

Statistical analysis

Results are presented as mean ± standard error and were analyzed
by two-way ANOVA. Additionally, Tukey’s post hoc test was used for
multiple comparisons between groups (Prism 6.0, GraphPad). Values
of p ≤ 0.05 were considered significant changes.

Results

Fructose intake had a positive effect on blood pressure in both
male and female rats (p = 0.0003), however the increase in female
was more prominent. Fructose also influenced the body weight (p =
0.0134) and body mass index (p = 0.0039); as expected, females
presented lower body weight than males. The triglycerides plasma
concentration was increased under fructose consumption (p =
0.0004); in females, the increase in this parameter was around 100%.

Fructose consumption induced an increase in liquid (p = 0.0014)
and caloric intake (p = 0.0013). These results are shown in Table 1.

Table 2 presents the parameters of renal function. Fructose
intake significantly reduced the glomerular filtration rate (creatinine
clearance) (p = 0.0348), particularly in male rats. The blood urea
concentration was equally reduced in males and females (p <
0.0001). Urinary volume was increased in fructose-treated groups
(p = 0.0065). Serum concentrations of sodium, potassium, chloride,
calcium, and magnesium remained normal.

Figure 1 shows the fractional excretion (FE%) of the minerals in
the experimental groups. Fructose intake reduced the FE% of
sodium (p < 0.0001) and potassium (p < 0.0001) but increased
that of magnesium (p = 0.0273). In the female control group,
sodium, potassium, and calcium excretion levels were higher than
those in the male control group. Fructose significantly increased
magnesium excretion in female group.TA
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Figure 2 shows the morphological parameters of the kidneys,
with Figure 2A showing the glomerular area distribution according
to the size (%). Female groups presented a Gaussian distribution
while male groups presented a higher frequency of larger glomeruli,
thus altering the profile of glomerular area distribution and resulting

in an increase in the mean value of glomerular area in male
group. The mean value of glomerular area for each group was:
MW: 8397.6 ± 355 [n = 6]; MF: 8725.7 ± 384 [n = 6]; FW: 7599.8 ±
317 [n = 6]; FF: 6676.4 ± 195 [n = 6] µm2 (Psex = 0.0003; Pfructose =
0.3695; Pinteraction = 0.069).

TABLE 2 Summary of urinary and blood parameters observed in rats submitted to fructose overload.

Parameter Male Female Two-way-ANOVA

Water
(N = 6)

Fructose
(N = 9)

Water
(N = 8)

Fructose
(N = 10)

Sex
effect

Fructose
effect

Interaction
effect

Glomerular filtration rate
(mL/min/kg)

8.9 ± 1.2 6.0 ± 0.7* 7.5 ± 0.4 6.6 ± 0.5 p = 0.5926 p = 0.0109 p = 0.1690

Urinary volume (mL/24 h) 13.8 ± 0.7 25.3 ± 4.6 13.3 ± 1.2 19.6 ± 2.3 p = 0.3158 p = 0.0065 p = 0.3985

Albuminuria (mg/24 h) 26.3 ± 2.2 30.2 ± 5.5 15.8 ± 3.5 20.9 ± 3.3 p = 0.0255 p = 0.2847 p = 0.8861

Blood

Creatinine (mg/dL) 0.28 ± 0.03 0.37 ± 0.03 0.34 ± 0.03 0.38 ± 0.03 p = 0.2565 p = 0.0348 p = 0.3825

Urea (mg/dL) 45.6 ± 2.3 30.8 ± 2.6* 42.2 ± 1.7 28.3 ± 1.3* p = 0.1617 p < 0.0001 p = 0.8463

[Na+]p (mEq/L) 142.2 ± 0.75 141.7 ± 0.73 142.0 ± 1.50 140.3 ± 0.80 p = 0.4554 p = 0.2867 p = 0.5584

[K+]p (mEq/L) 4.5 ± 0.11 4.2 ± 0.13 4.6 ± 0.37 4.4 ± 0.34 p = 0.5234 p = 0.3634 p = 0.7670

[Cl−]p (mEq/L) 101.0 ± 1.0 99.1 ± 1.0 102.1 ± 1.5 99.7 ± 1.0 p = 0.4704 p = 0.0771 p = 0.8178

[Ca+2]p (mg/dL) 9.8 ± 0.11 10.0 ± 0.09 9.7 ± 0.14 9.9 ± 0.04 p = 0.2876 p = 0.0232 p = 0.8851

[Mg+2]p (mg/dL) 2.3 ± 0.06 2.1 ± 0.05 2.2 ± 0.06 2.1 ± 0.03 p = 0.6547 p = 0.0252 p = 0.3095

[pO4
-]p (mg/dL) 7.3 ± 0.26 6.7 ± 0.28 6.2 ± 0.32 5.9 ± 0.23 p = 0.0030 p = 0.1563 p = 0.6922

Differences statistically significant when p < 0.05 (bold); vs respectively water control* or male# using Tukey post test after two-way-ANOVA. Values are means ± standard error.

FIGURE 1
Fractional Excretion (FE) of sodium (A), potassium (B), calcium (C) andmagnesium (D) in male and female rats that received or not fructose drinking
solution. Values are mean ± standard error. Two-way ANOVA followed by Tukey’s post hoc test, *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.001, 6-10 animals per
group.
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Fructose intake increased macrophage infiltration (p < 0.0001)
and the expression of 8-OHdG (p = 0.0213). In contrast, the
expression of eNOS was downregulated by fructose (p < 0.0001).
Female rats exhibited increased eNOS expression when compared
with male rats even with fructose ingestion (Figure 2B).

Discussion

The present study evaluated the impact of high-fructose
consumption introduced after weaning on the morphology and
renal function of rats of both sexes. Male rats that received

FIGURE 2
Glomerular area distribution according to the size (A) and expression of markers of renal dysfunction: representative photomicrographs and
quantitative analysis by immunohistochemistry of the macrophages (B–C) (ED1 positive cells–arrows; original magnification ×400); 8-OHdG (D–E); and
eNOS (F–G) (original magnification ×200). Values are mean ± standard error. Two-way ANOVA followed by Tukey’s post hoc test, *p ≤ 0.05; **p ≤ 0.01;
****p ≤ 0.001, six animals per group.
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fructose had a significant reduction in the glomerular filtration rate
when compared to that of the male control group. In both sexes, the
FE of sodium and potassium were reduced by fructose, although this
excretion was significantly higher in female rats than in male rats.
Fructose intake augmented magnesium excretion only in the female
group. The treatment increased macrophage infiltration and
downregulated eNOS expression in rats of both sexes.
Additionally, fructose intake affected the body weight, body mass
index, and serum triglyceride concentration, confirming the
metabolic consequences of fructose overconsumption (Elliott
et al., 2002; Basciano et al., 2005).

This study also confirmed the effect of excessive fructose
consumption on BP. Activation of the sympathetic nervous system
(SNS) has been identified as being responsible for this result (De
Angelis et al., 2012; Tran et al., 2014; Soncrant et al., 2018); however,
the factors that trigger SNS activation are still not well defined. High
insulin levels have been suggested as a possible trigger (Klein and Kiat,
2015) as well as the direct impact of this sugar on the central nervous
system, increasing local oxidative stress (Spagnuolo et al., 2020).

As fructose overload can cause autonomic imbalance, increased
renal sympathetic nerve activity (RSNA) may have occurred, which in
turn modifies vascular tone and renal hemodynamics, reducing GFR
(DiBona, 2000, 2001; Sata et al., 2018). However, increased activation
of the intrarenal renin-angiotensin system (RAS) can also lead to a
reduction in GFR. This activation can occur either because of fructose
overload (Yokota et al., 2018) or as a consequence of RSNA activation
(DiBona, 2000, 2001; Sata et al., 2018). Additionally, increased reactive
oxygen species (ROS) production may alter renal hemodynamics (Xu
et al., 2020), which may be associated with the production of uric acid
(Choi et al., 2010). In the plasma, uric acid is considered an
antioxidant. However, inside the cell, it becomes a pro-oxidant
(Sautin et al., 2007), contributing to an increase in ROS
concentration by activating NADPH oxidase and reducing the
activity of the eNOS enzyme and the production of nitric oxide
(NO) (Ejaz et al., 2007). Further experiments are necessary to confirm
the role of these mechanisms in this experimental model.

Studies indicate that a high-fructose diet can increase renal
sodium reabsorption, contributing to an elevated blood pressure.
The activity of NHE3 (Na+/H+ exchanger) in the proximal tubules
of fructose-treated rats has been evaluated by Cabral et al. (2014).
These authors observed that in the presence of fructose, the activity of
NHE3 increased, and in the presence of angiotensin II, this increase
was even more significant, suggesting that fructose increased the
sensitivity of the proximal convoluted tubule (PCT) to angiotensin II
(Ejaz et al., 2007). Xu et al. (2017) found that a high-fructose diet
increases renal prorenin receptor expression, stimulating the
expression of NHE3, NKCC2, and intrarenal RAS components. An
increased expression of RAS components in the kidney tissue of
fructose-treated animals was also observed by Yokota et al. (2018).

Additionally, exposure to oxidative stress may result in increased
expression of the AT1 receptor for angiotensin, and consequently,
increased activity of NHE3 (Johns et al., 2011). In the present study,
fructose intake reduced the FE of sodium, an effect that is possibly
related to renal RAS activation, as explained above. Moreover, the FE of
sodium in the control groupswas higher in female rats than inmale rats,
confirming sex differences. In rodents, there are morphofunctional
differences in the kidneys with respect to sex. The PCT is longer and
contains more sodium transporters in males than in females, providing

more significant fractional sodium reabsorption (Veiras et al., 2017).
The greater sodium reabsorption in males may also be related to the
stimulatory effect of androgens on NHE3 of PCT (Quigley, 2008). In
contrast, females have a greater abundance of the sodium-chloride
cotransporters (NCC) and epithelial sodium channels in distal
nephrons, providing more significant saline excretion in females
(Veiras et al., 2020). Studies with Sprague-Dawley rats have shown
that sodium excretion inmales is significantly lower than that in females
for the same renal perfusion pressure (Khraibi et al., 2001); similar
results were observed in SHR (Khraibi et al., 2001; Kalucki et al., 2020).

Regarding potassium excretion, we observed that females in the
control group had higher potassium excretion than the control males;
and fructose intake significantly reduced potassium excretion in both
sex. Given that an increased urinary flow induces urinary potassium
loss, it is possible that there was greater potassium excretion at the
beginning of the experimental period; however, physiological
mechanisms may have been activated throughout the treatment
period to reduce potassium loss. The activation of NCC in the
distal tubule, resulting in a lower sodium load to the collecting
duct and, thus, reducing sodium reabsorption/potassium secretion
in this nephron segment is a possible mechanism (McDonough and
Youn, 2017). However, further experiments are needed to confirm the
participation of this mechanism in the reduction of potassium
excretion in this experimental model.

The renal excretion of other essential electrolytes transported in the
renal tubules, such as calcium and magnesium, was also evaluated. The
FE of calcium in females groups was higher than that in males. Most of
the filtered calcium is reabsorbed in the PCT that is relatively shorter in
females (Veiras et al., 2017) which may in greater excretion. This
difference can also be attributed to the effects of sex hormones on ion-
transport (Khalil et al., 2018). The role of androgens in the renal control
of calcium homeostasis is controversial. Androgens were suggested to
increase urinary calcium excretion, in view that decreased calcium
excretion was observed 2 weeks after orchidectomy (Hsu et al., 2010). In
contrast, other studies demonstrated that orchidectomy of male rats
induced hypercalciuria at two (Lin et al., 2016) and 8 weeks (Gaumet-
Meunier et al., 2000) after surgery. However, these results should be
interpreted with caution, as serum calcium levels and calciuria are also
influenced by other physiological mechanisms involving intestinal and
bone exchange (Khalil et al., 2018).

Estrogen has been discussed to either directly affect the renal
calcium reabsorption or indirectly influence it by altering calcium
metabolism by other mechanisms. However, there is evidence that
estrogen influences calcium metabolism via the upregulation of
TRPV5 in the distal nephron (Van Abel et al., 2002). Thus, the
effects of sex hormones on renal calcium transport are complex, and
further studies are required to clarify this issue (Khalil et al., 2018).

Urinarymagnesium excretionwas higher in female fructose-treated
rats. Magnesium is mainly reabsorbed in the thick segment of the loop
of Henle depending on the lumen’s positive electrical potential
established by the secretion of potassium through the ROMK
channel, which in turn depends on potassium transport by the
NKCC (de Baaij et al., 2012). In FF rats, the higher fluid intake may
have decreased the release of antidiuretic hormone (ADH) that also
increases NKCC transporter activity on Henle’s loop (Ecelbarger et al.,
2001); and in this way, may have indirectly reduced magnesium
reabsorption. Furthermore, it seems that ADH also exerts a
stimulatory effect on magnesium reabsorption in the distal nephron
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(Dai et al., 2001). Estrogen has as well been shown to increase
magnesium reabsorption in the distal nephron by activating the
transient receptor potential cation channel 6 (TRPM6) (Groenestege
et al., 2006). However, there are no reports on the possible influence of
androgen hormones on tubular magnesium reabsorption.

The high-fructose diet altered the blood urea concentration. In
the fructose-treated groups, a larger fluid intake inhibited the release
of ADH in the pituitary glands. In addition to promoting water
reabsorption in the distal nephron, ADH increases urea
reabsorption in the medullary collecting duct (Sautin et al.,
2007); therefore, the reduction of plasma ADH favors the
excretion of urea, reducing the concentration of urea in the
blood of the rats in the fructose groups. Moreover, fructose also
modulates hepatic urea synthesis, contributing to reduced blood
urea levels in the treated groups (Shortliffe et al., 2015).

Regarding the renal morphological assessment, higher glomerular
area values were found in the male groups. However, the literature on
sexual dimorphism in this parameter is controversial. There are reports
that men have a larger glomerular area (McLachlan et al., 1977;
Nyengaard and Bendtsen, 1992; Kalucki et al., 2020), while other do
not show differences between sexes (Baylis, 1994). In contrast,
experimental studies indicate a greater glomerular area in males
(Gafter et al., 1990; Sakemi and Baba, 1993; Alberti et al., 2016).
Baylis (1994) evaluated glomerular volume in male and female rats
of different ages and verified that females have a smaller glomerular
volume at all ages. They also showed that the development of kidney
disease is associated with the presence of androgens, but not necessarily
with glomerular enlargement (Baylis, 1994). This association may be
linked to alterations in the renin-angiotensin-aldosterone system, as
plasma renin levels and activity are higher in male than in female
rodents (Chen et al., 1992). Furthermore, the renal vasculature of male
rats appears to be more sensitive to ANG II (Wangensteen et al., 2004).
Factors that reduce NO production may further accentuate the
vasoconstrictor effect of ANG II, thus accelerating the progression of
kidney disease (Wangensteen et al., 2004).

Analysis of renal tissue revealed an increase in macrophage
infiltration in the high-fructose group and the expression of the
oxidative stress marker 8-OHdG, as well as reduced expression of
the eNOS enzyme. Ingested fructose is absorbed by enterocytes and
reaches the bloodstream. In hepatocytes, the ketoexokinase enzyme
catalyzes fructose phosphorylation; this molecule undergoes the
action of several enzymes, giving rise to uric acid (Choi et al.,
2010). In kidney tissues, fructose triggers pro-inflammatory
pathways that induce the production of monocyte
chemoattractant protein-1 (MCP-1), the latter of which can also
be increased by uric acid and ROS. This ROS production may
originate from NADPH oxidase and/or xanthine oxidoreductase
(Cirillo et al., 2009). Uric acid can cause eNOS uncoupling and
reduce NO availability (Nakagawa and Kang, 2021). Our results
confirmed that high fructose levels promoted macrophagemigration
to the kidneys, increased ROS production (estimated by an indirect
measurement), and decreased eNOS enzyme expression. These
alterations, possibly associated with uric acid production, may
also be related to the upregulation of RAS components. Further
experiments are required to confirm this hypothesis.

Furthermore, the expression of eNOS in the control groups was
higher in female rats than in male rats, confirming sex differences.
This result was expected because estradiol increases the activity of

eNOS, and consequently the production of NO (Wyckoff et al., 2001).
Several studies have indicated that the cardiovascular and renal
benefits of female sex (before menopause) are mainly related to
NO production. Under physiological conditions, the interaction
between the NO and RAA systems results in the downregulation
of Ang II type 1 receptor expression and the associated antagonism of
Ang II generation (Yan et al., 2003; McGuire et al., 2007; Sharma et al.,
2012), which may result in the protection of female kidney function.

Conclusion

The introduction of fructose overload, starting from weaning,
had important repercussions on the kidneys of rats of both sexes.
Male rats that received this sugar had a significant reduction in the
GFR. In females, the alterations were more tenuous; however,
notable changes were observed in the electrolyte excretion. Both
male and female rats showed increased macrophage infiltration and
reduced eNOS expression, confirming the consequences of fructose
metabolism in the kidneys.
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