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Objectives: The aim of the present study was to develop a machine learning
model to predict the risk of molar incisor hypomineralization (MIH) and to identify
factors associated with MIH in an endemic fluorosis region in central China.

Methods: A cross-sectional study was conducted with 1,568 schoolchildren from
selected regions. The clinical examination included an investigation of MIH based
on the European Academy of Paediatric Dentistry (EAPD) criteria. In this study,
supervised machine learning (e.g., logistic regression) and correlation analysis
(e.g., Spearman correlation analysis) were used for classification and prediction.

Results: The overall prevalence of MIH was 13.7%. The nomograph showed that
non-dental fluorosis (DF) had a considerable influence on the early occurrence of
MIH and that this influence becameweaker as DF severity increased.We examined
the association between MIH and DF and found that DF had a protective
correlation with MIH; the protective effect became stronger as DF severity
increased. Furthermore, children with defective enamel were more likely to
experience caries, and dental caries were positively correlated with MIH (OR =
1.843; 95% CI: 1.260–2.694). However, gender, oral hygiene, and exposure to
poor-quality shallow underground water did not increase the likelihood of
developing MIH.

Conclusions:DF should be considered a protective factor within themultifactorial
etiology of MIH.
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1 Introduction

The European Academy of Paediatric Dentistry (EAPD) defines molar incisor
hypomineralization (MIH) as enamel mineralization defects in one to four permanent
first molars, with or without the involvement of the permanent incisors (Weerheijm et al.,
2003). MIH-affected teeth clinically display demarcated opacity on the occlusal or buccal
surfaces of the crowns (da Costa-Silva et al., 2010; Jeremias et al., 2013). MIH may be
confused with dental fluorosis (DF), which shows diffuse opacity when the same teeth are
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affected. To date, researchers have performed many studies on the
prevalence of MIH, but the study of MIH in endemic fluorosis
regions is very limited.

The correlation between MIH and DF remains unclear. Studies
have indicated that the presence of naturally fluoridated waters does
not increase the incidence of MIH (Balmer et al., 2012; Schmalfuss
et al., 2016); however, the severity of MIH is likely to be associated
with DF (Fernandes et al., 2021). Significantly, the prevalence rate of
MIHwas lower in fluoridated areas of Northern England than in non-
fluoridated areas (Balmer et al., 2012). A similar situation existed in
Brazil, where a significant negative association between MIH and DF
at the tooth level has been observed (Duarte et al., 2021). Therefore, it
is important to study the relationship betweenMIH andDF, as well as
the severity of MIH and DF.

Recently, machine learning methods have been used to predict a
variety of diseases.Machine learningmethodsmay be used to overcome
some limitations of current analytical approaches and to find
associations by applying computer algorithms to large datasets with
numerous, multidimensional variables, capturing high-dimensional
relationships among clinical features to obtain data-driven outcomes
(Schwalbe and Wahl, 2020). Thus, we sought to develop a machine
learning-based risk stratificationmodel to explore the risk of MIH in an
endemic fluorosis region in central China.

The aim of this study was to determine the prevalence of MIH
and to predict its occurrence by utilizing machine learning and to
explore the association between MIH and dental fluorosis in
children living in an endemic fluorosis region in central China.

2 Material and methods

2.1 Ethical considerations and sample

The present study was performed with the approval of the
Medical Ethics Committee of The First Affiliated Hospital of
Henan University (2019LCSY-002). Signed informed consent was
obtained from the caregivers and children prior to their
participation in the study.

A cross-sectional study was conducted from April to June
2021 with a representative sample of schoolchildren aged 8 and

10 years in Lankao County, which is located on the eastern boundary
of Henan Province. This county has endemic fluorosis, with fluoride
concentrations ranging from 1.22 to 3.90 mg/L (Wang et al., 2008;
Wang and Cao, 2013), which exceed the standard for drinking water
quality in China (1.0 mg/L; GB5749-2006).

The formula for calculating a minimum number of randomly
selected children was as follows: sample size (n) = [Z2×P(1-P)]/d2,
where Z is the statistical level of confidence for a 95% confidence
interval (CI; Z = 1.96), P is the expected prevalence, and d is the
precision (Naing et al., 2006). Recent studies have revealed that the
global average prevalence of MIH is 12.9% (11.7%–14.3%)
(Schwendicke et al., 2018). According to the formula, this study
required 169 participants. Schools were selected randomly
according to the number of schools in each town, and a stratified
sample of pupils was selected from each school according to the total
number of pupils in the school. The inclusion criteria were as follows:
residents of both sexes, aged 8–10 years, born and raised locally, with
all four permanent first molars and incisors fully erupted. The
exclusion criteria were as follows: having no erupted permanent
first molar and incisor, undergoing fixed orthodontic treatment
with brackets or bands on permanent first molars, and defects less
than 1 mm in diameter.

2.2 Training and calibration of examiners

The European Academy of Paediatric Dentistry (EAPD)
(Weerheijm et al., 2003) criteria for MIH were used in this study.
Calibration exercises were conducted among three MIH investigators
using clinical photographs of 26 patients. The tooth defects of patients
covered all the degrees of MIH and other enamel defects, such as
dental fluorosis, hypoplasia, and amelogenesis. The validity of using
clinical photographs to study enamel defects was previously
confirmed by Sabieha and Rock (1998), Wong et al. (2006), and Yi
et al. (2021). After 1 month of training, three examiners were able to
correctly diagnose all cases independently. Cohen’s kappa coefficients
for inter- and intra-rater reliability were 0.92 and 0.89 for dental
fluorosis, 0.86 and 0.75 for dental caries, and 0.65 and 0.77 for MIH,
respectively. Furthermore, during this month, three investigators
examined 10 enamel defect patients who visited the Department of
Stomatology, which guaranteed that the three investigators were
familiar with the diagnosis and management of children with MIH.

2.3 Dental examination

Participants were advised to brush their teeth before the exam,
and the teeth stayed slightly wet during the process of inspection.
The items to be prepared included a simple dental chair with a dental
light source (DYNAMIC, China), disposable oral treatment plates,
disposable gloves, and cotton balls.

MIH: Clinical examinations were carried out by unified trained
specialist dentists and comprised examination for developmental
enamel defects and dental caries using the EAPD criteria
(Weerheijm et al., 2003). To guarantee between-examiner
reproducibility, the examinations were performed jointly by two
dentists. A specially designed chart was used to record sex, the year
of birth, the presence of MIH, the number of affected incisors and

FIGURE 1
Structure of the supervised machine learning algorithm, which
can describe this network working principle satisfactorily. The
derivation cohort was randomly split into two datasets: a training set
(70%) and an internal validation set (30%). After training and
validation, we successfully constructed a logistic regressionmodel (LR
model).
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molars, and the maximum degree of severity. Severity was quantified
according to clinical appearance (Ghanim et al., 2017) and was
classed as 1) mild, including white and yellow demarcated opacities;
or 2) severe, including posteruptive enamel breakdown (PEB),
atypical restoration, atypical carious lesions, and missing due
to MIH.

Dental fluorosis: The Thysltrup–Fejerskov (TF) criteria were
used to determine the occurrence of dental fluorosis with an ordinal
scale from 0 to 9 (Thylstrup and Fejerskov, 1978). Based on the loss
of structure, teeth with a TF of 0 were classified as normal, those with
a TF of 1-4 were classified as mild, and those with a TF greater than
5 were classified as severe.

Dental caries: Clinical dental caries (manifest caries) were
recorded as decayed, missing, or filled teeth (DMF). Decay was
defined as visible tooth substance loss without the characteristics of
developmental defects, pits, or fissures.

Oral hygiene status: Oral hygiene was recorded using the
simplified oral hygiene index (OHI-S) described by Greene and
Vermillion (1964). The level of oral hygiene was evaluated according
to the debris index and was classed as fair (0) or poor (1).

2.4 Databases and data preprocessing

To develop the machine learning models, we used a derivation
cohort of children who met the inclusion criteria. The raw dataset
contained the study subjects’ demographics and the results of the
comprehensive oral examination. Initially, the dataset used for
preprocessing and classification was collected. The main
characteristics of this dataset included MIH, MIH severity, DF,
DF severity, dental decay, oral hygiene, water quality, and sex.

2.5 Machine learning methods and statistical
validation strategies

The derivation cohort was randomly split into two datasets: a
training cohort (70%) used to train the machine learning model and
tune the parameters, and an internal validation cohort (30%) used to
test the developed model on unseen data and to fine-tune the
hyperparameters. For training, the original data space was
balanced by oversampling using SMOTE. It worked by adding

TABLE 1 Baseline features of the included cohorts.

Characteristic Total MIH group Normal group χ2 P

(n = 1,568), n (%) (n = 215), n (%) (n = 1,353), n (%)

Sex 0.648 0.421

Male 755 (48.15) 109 (50.7) 646 (47.75)

Female 813 (51.85) 106 (49.3) 707 (52.25)

Water quality 2.881 0.090

Normal quality 769 (49.04) 117 (54.42) 652 (48.19)

Lower quality 799 (50.96) 98 (45.58) 701 (51.81)

MIH degree

Mild 85 (39.53)

Severe 130 (60.47)

Dental fluorosis 58.267 <0.001

Normal 709 (45.22) 148 (68.84) 561 (41.46)

Mild 778 (49.62) 65 (30.23) 713 (52.7)

Severe 81 (5.16) 2 (0.93) 79 (5.84)

Dental decay 129.371 <0.001

normal 406 (25.89) 37 (17.21) 369 (27.27)

Only permanent teeth 88 (5.61) 32 (14.88) 56 (4.14)

Only deciduous teeth 852 (54.34) 74 (34.42) 778 (57.5)

Permanent teeth and deciduous teeth 222 (14.16) 72 (33.49) 150 (11.09)

Oral hygiene 0.106 0.745

Fair 133 (8.48) 17 (7.91) 116 (8.57)

Poor 1,435 (91.52) 198 (92.09) 1,237 (91.43)
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small samples from the data space to diminish the biased behavior of
imbalanced data, thus changing the size of the training data space. In
this study, supervised machine learning (e.g., logistic regression) and
correlation analysis (e.g., Spearman correlation analysis) were used
for classification and prediction. Once the number of models was
considered for this particular study, we used accuracy (ACC),
specificity (SPEC), and the ROC curve and area under the curve
(AUC) to validate the prediction performance for binary classes
(Figure 1).

2.6 Statistical analysis

The completed examination records were analyzed by the SPSS
Statistics 22.0 program (IBM SPSS, Chicago, IL, United States of
America), Python (version 3.9.7), and R (version 4.1.3). The
presence of MIH was considered a dependent variable. Dental
caries and dental fluorosis were considered independent variables.
Confidence intervals of 95% were calculated for prevalence. Chi-
squared tests and Fisher’s exact tests were used for comparisons and
correlations. Logistic regression was conducted to analyze factors
that could affect MIH. Significance was set at a p-value of < 0.05.

3 Results

3.1 Distribution characteristics of MIH in the
population

A total of 1,586 children were invited to participate. Of these,
18 were not in accordance with the inclusion criteria. The clinical
characteristics and demographics of the study population are shown
in Table 1. The dataset consisted of 1,568 samples with two types:
MIH (215, 13.7%) and non-MIH. This record included 755male and
813 female. Patients with MIH consisted of a greater proportion of
males—;109 (14.4%) were male and 106 (13.0%) were female,—but
the difference was not statistically significant. For permanent teeth,
caries activity in Lankao City was low, at 5.6% in only permanent
teeth and 14.2% in permanent and deciduous teeth. As expected, the

percentage of dental fluorosis was as high as 54.8% (Table 1). There
was a higher percentage of children with poor oral hygiene in this
region (91.5%).

A supervised machine learning algorithm (e.g., logistic
regression) was used to check for the occurrence of MIH. A total
of 1,568 samples were analyzed, and six variables were included.
During data preprocessing, the diagnosis of non-MIH or MIH was
encoded using a binary encoder as 0 and 1, respectively. The ROC
curve analysis was significant for this model, displaying an area
under the curve of 0.72 (Figure 2). This model showed an accuracy
of 70% and a specificity of 72%.

3.2 Distribution of MIH severity

The typical clinical phenotype of MIH is shown in Figure 3,
including mild and severe types. With respect to the distribution of
MIH severity among affected index teeth, demarcated opacities
comprised the predominant type of defects (Table 2).

3.3 Distribution of caries

The examined population presented a mixed dentition, and data
from primary and permanent dentitions were presented separately
(18,714 deciduous and 18,918 permanent teeth) (Table 3).

3.4 Nomogram development and validation

Based on a supervised machine learning algorithm, we
constructed nomograms for predicting the occurrence of MIH, as
shown in Figure 4. Non-DF had a great influence on the early
occurrence of MIH. Significantly, the more severe the DF, the lower
the occurrence.

FIGURE 2
ROC curve for MIH in participants. ROC, receiver operating
characteristic curve.

FIGURE 3
Phenotype of MIH. The majority of hypomineralized permanent
teeth exhibited white (A) and yellow (B) demarcated lesions. (C)
Atypical carious lesions associated with demarcated opacities in the
first permanent molar. (D) Typical caries in the first permanent
molars and atypical restorations in the primary molars.
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Dental decay of permanent teeth was related to the occurrence of
MIH. However, exposure to poor-quality shallow underground
water did not increase the likelihood of developing MIH. Gender
and oral hygiene had no influence on the occurrence.

3.5 Factors associated with MIH

A correlation heatmap of all parameters was generated using
Spearman correlation coefficients. Figure 5 illustrates the correlation
heatmaps of the core data features. MIH and MIH severity were
negatively correlated with DF and DF severity. As in the logistic
regression analysis, DF had a protective correlation with MIH, and
the protective effect became stronger as DF severity increased.

However, dental caries were positively correlated with MIH
(OR = 1.843; 95% CI: 1.260–2.694) (Table 4), which was
inconsistent with the heatmap. The heatmap showed a negligible
correlation between MIH and dental caries.

Both the correlation heatmap and logistic regression analysis
showed that the quality of underground water was not robustly

TABLE 2 Severity of MIH (number of teeth).

Mild type Severe type

Demarcated
opacity

Post-eruptive enamel
breakdown

Atypical
restoration

Atypical caries and missing duo
to MIH

Total

n % n % n % n % n %

Total 285 (59.1) 38 (7.9) 7 (1.5) 152 (31.5) 482
(100)

TABLE 3 Incidence of caries (number of teeth).

Decay Missing Filling Normal Total

n (%) n (%) n (%) n (%) n (%)

Permanent teeth 513 (2.71) 7 (0.04) 35 (0.19) 18,363 (97.06) 18,918 (100)

Deciduous teeth 3,773 (20.16) 21 (0.11) 52 (0.28) 14,868 (79.45) 18,714 (100)

FIGURE 4
Nomograms to predict the probability of MIH occurrence. Non-
DF had a significant influence on MIH occurrence, which decreased
with increasing DF severity. Dental decay had a certain effect on it.
However, exposure to low-quality shallow underground water
did not increase the likelihood of developing MIH.

FIGURE 5
Correlation heatmap of clinical characteristics using Spearman
correlations. Heatmap shows the positive (red) or negative (blue)
correlations of all parameters, with color intensity reflecting the
strength of the correlation (−0.4 to +1). MIH and MIH severity
were negatively correlated with DF and DF severity and also had
negligible associations with dental caries. *p < 0.05; **p < 0.01; ***p <
0.001.
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correlated with MIH or MIH severity. Not surprisingly, the quality
of underground water was correlated with DF and DF severity. A
similar correlation was found between dental decay and oral
hygiene.

To find the relationship between MIH and DF, we used a pair
plot. In Python, the pair plot showed that MIH (Figure 6A) was
strongly negatively correlated with DF and DF severity. The severity
of MIH was reduced, followed by the incidence of DF and the
strength of DF severity (Figure 6B).

4 Discussion

In this study, we used data from 1,568 children to develop
machine learning-based risk scores to predict the risk for MIH in
an endemic fluorosis region in central China. Lankao is a typical
quality-induced water shortage area, where there are various
underground waters of poor quality, such as saltwater, brackish
water, and high-hardness water. However, some regions have
normal-quality groundwater that can be drunk directly. All
participants were born and raised locally, and the natural
groundwater source was the only drinking water before 2015.
We have certitude that local shallow groundwater affected the
permanent tooth mineralization of the recruited children.

MIH prevalence values reported by different studies are
heterogeneous, varying from 2.4% to 44% in different areas
(Dietrich et al., 2003; Calderara et al., 2005; Jasulaityte et al.,
2007; Preusser et al., 2007; Ng et al., 2015) and from 2.8% to
25.5% in China (Cho et al., 2008; Sui et al., 2017; Li and Li,
2012; Zhang et al., 2020, Zhang et al.). The prevalence in this
study was 13.7%, similar to the estimated world average of 12.9%
(Schwendicke et al., 2018). Although there was a higher proportion
of female patients with MIH, which is in agreement with a previous
study (Mejare et al., 2005), the difference was not statistically
significant. Spearman correlation analysis also indicated that sex
does not seem to be a determining factor.

We qualified MIH as mild or severe to evaluate its severity,
according to the criteria described by Mathu-Muju and Wright

(2006). MIH is most often encountered in a mild form (Garcia-
Margarit et al., 2014; Mittal and Sharma, 2015), which is consistent
with the results of this study, in which 59.1% of the MIH cases were
mild and 40.9% were severe at the tooth level (Table 2).

Recent developments in MIH research have focused on prevalence,
and there are few prediction studies of early occurrence. In this study, a
supervised machine learning model was constructed by incorporating a
variety of factors that impact the occurrence of MIH in endemic
fluorosis regions. The nomograms showed that sex had no influence
on occurrence, which is consistent with previous studies (Yi et al., 2021;
Sosa-Soto et al., 2022). Exposure to low-quality shallow underground
water did not increase the likelihood of developing MIH. Significantly,
non-DF had a substantial influence on the early occurrence ofMIH, and
the more severe the DF, the lower the occurrence.

TABLE 4 Logistic regression analysis of the associations between the variable
of interest and MIH.

Variable p-value OR (95%CI)

Drinking water quality

Normal quality 1

Poor quality 0.396 0.880 (0.654–1.183)

Dental caries

Absent 1

Present 0.002 1.843 (1.260–2.694)

Dental fluorosis degree

Absent 1

Mild <0.001 0.349 (0.255–0.478)

Severe 0.001 0.091 (0.022–0.375)

FIGURE 6
Pair plot was used to show relations among MIH, MIH severity,
DF, and DF severity. During data preprocessing, the diagnoses of MIH
or non-MIH, as well as DF or non-DF, were encoded using a binary
encoder as 0 and 1. Thus, MIH or DF became 1, and non-MIH or
non-DF became 0. Depending on the severity of MIH or DF, the level
of MIH or DF was classed as normal (0), mild (1), or severe (2). (A) MIH
was strongly negatively correlated with DF and DF severity. (B) Severity
of MIH was reduced, followed by the incidence of DF and the strength
of DF severity.
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A definitive conclusion has not been reached regarding the
association between MIH prevalence and dental fluorosis. Thus,
we explored the relationship betweenMIH and DF in children living
in this endemic fluorosis region. As expected, the prevalence of
fluorosis was as high as 54.8%. Spearman correlation analysis
showed that MIH was negatively correlated with DF and DF
severity; logistic regression analysis showed that DF had a
protective correlation with MIH and that the effect of protection
became more obvious with increasing severity. This finding accords
with previous studies, showing that the prevalence ofMIHwas lower
in the fluoridated area (10.8%) than in all non-fluoridated areas
combined (17.35%) (Balmer et al., 2012). At the surface level, MIH
frequency was lower in the presence of DF (Restrepo et al., 2022).
Poisson regression analysis in a previous study showed that the
p-value of the association between dental fluorosis and MIH was
0.084 and the OR ratio 0.63 (95% CI: 0.37–1.06) (Fernandes et al.,
2021), which is similar to our findings. Enamel in patients diagnosed
with MIH and fluorosis may not have completed maturation during
amelogenesis (Malmberg et al., 2019; Fernandes et al., 2021). One
possible explanation is that the affected teeth that initially erupt are
hypomineralized; however, relatively long-term exposure to
optimum levels of fluoride encourages remineralization. Finally,
this continued remineralization could reduce or even change the
defective clinical appearance.

According to the Fourth National Oral Health Survey in 2005,
the caries prevalence in permanent teeth in China was 38.5% for the
12-year age group (Chen et al., 2018; Quan et al., 2018). The caries
activity in Lankao City was low (14.2% of all teeth and 5.6% of only
permanent teeth), which indicated that the high fluoride
concentration of local water endowments truly prevented dental
caries. In the nomograms, children with defective enamel were more
prone to experiencing caries; logistic regression analysis showed that
dental caries were positively correlated with MIH (OR = 1.843; 95%
CI: 1.260–2.694). Most studies have shown a relationship between
increased dental caries and children with MIH compared to those
without MIH (Heitmüller et al., 2013; Petrou et al., 2015; Kosma
et al., 2016). Furthermore, severe MIH cases had significantly higher
caries prevalence than those with mild MIH (91.7% and 68.7%,
respectively, p < 0.01; data not shown), suggesting that severe MIH
increases the likelihood of caries in hypomineralized teeth. Teeth
affected by MIH present a porous enamel surface due to poor
mineral quality, which increases the likelihood of developing
dental caries.

Unexpectedly, the prevalence of poor oral hygiene reached
91.5% in this region (Table 1), which increased the incidence of
caries and worsened the severity of lesions. The nomogram showed
that oral hygiene status did not affect the occurrence of MIH, and
Spearman correlation analysis also found no relationship between
oral hygiene status and MIH or MIH severity.

Altogether, the present study constructed a supervised machine
learning algorithm to predict the occurrence of MIH in an endemic
fluorosis region in central China, and the nomograph showed that
MIH occurrence decreased with increasing DF severity. Then, we
examined the association between MIH and DF and found a
negative relationship, suggesting that DF should be considered a
protective factor within the multifactorial etiology of MIH Zang
et al., 2019.
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