
Sleep benefits different stages of
memory in Drosophila

Katie Marquand1, Camilla Roselli2, Isaac Cervantes-Sandoval3,4 and
Tamara Boto1*
1Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College
Dublin, Dublin, Ireland, 2Trinity College Institute of Neuroscience, School of Genetics and Microbiology,
Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland,
3Department of Biology, Georgetown University, Washington, DC, United States, 4Interdisciplinary Program
in Neuroscience, Georgetown University, Washington, DC, United States

Understanding the physiological mechanisms that modulate memory acquisition
and consolidation remains among the most ambitious questions in neuroscience.
Massive efforts have been dedicated to deciphering how experience affects
behavior, and how different physiological and sensory phenomena modulate
memory. Our ability to encode, consolidate and retrieve memories depends on
internal drives, and sleep stands out among the physiological processes that affect
memory: one of the most relatable benefits of sleep is the aiding of memory that
occurs in order to both prepare the brain to learn new information, and after a
learning task, to consolidate those new memories. Drosophila lends itself to the
study of the interactions between memory and sleep. The fruit fly provides
incomparable genetic resources, a mapped connectome, and an existing
framework of knowledge on the molecular, cellular, and circuit mechanisms of
memory and sleep, making the fruit fly a remarkable model to decipher the
sophisticated regulation of learning and memory by the quantity and quality of
sleep. Research in Drosophila has stablished not only that sleep facilitates learning in
wild-type and memory-impaired animals, but that sleep deprivation interferes with
the acquisition of new memories. In addition, it is well-accepted that sleep is
paramount in memory consolidation processes. Finally, studies in Drosophila
have shown that that learning itself can promote sleep drive. Nevertheless, the
molecular and network mechanisms underlying this intertwined relationship are still
evasive. Recent remarkable work has shed light on the neural substrates that mediate
sleep-dependent memory consolidation. In a similar way, themechanistic insights of
the neural switch control between sleep-dependent and sleep-independent
consolidation strategies were recently described. This review will discuss the
regulation of memory by sleep in Drosophila, focusing on the most recent
advances in the field and pointing out questions awaiting to be investigated.
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1 Introduction

Memory is essential for survival. Animals need to be able to learn from and remember past
experiences to inform future decisions and guide behavior. In the laboratory, Drosophila
melanogaster can learn to approach odors that have been previously paired with a reward, such
as food, or to avoid odors that have been paired with an aversive stimulus such as an electric
shock (Tully and Quinn, 1985; Busto et al., 2010). The circuits and neural mechanisms involved
in creating these behavioral responses are complex. One key region of the Drosophila brain
involved in olfactory, taste, visual and courtship memory, is the mushroom body (MB)
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(Heisenberg et al., 1985; McBride et al., 1999; Vogt et al., 2014; Masek
and Keene, 2016; Boto et al., 2020). In the case of associative olfactory
memory, odorant molecules bind to receptors in the antennae and
activate neurons in the antennal lobe, which then send olfactory
information to the MB via projection neurons (PN) (Davis, 2005;
Fiala, 2007; Su et al., 2009; Martin et al., 2013). These PNs relay
olfactory information to a small subset of the ~2,200 Kenyon cells
(KCs) in the MB calyx, creating sparse representations of numerous
different odors (Jefferis et al., 2007; Turner et al., 2008; Aso et al.,
2014a; Lin et al., 2014). In the case of taste memory, contact with
appetitive taste induces the proboscis extension reflex (PER) (Dethier,
1976). When the attractive taste (such as sucrose) is paired with a
punishing stimulus such as bitter taste or heat, flies exhibit an
avoidance response that inhibits PER. Taste information is also
relayed to the MB by neurons projecting from the subesophageal
zone (SEZ), and conditioned taste responses depend on KC and MB
circuitry (Kirkhart and Scott, 2015; Masek et al., 2015; Masek and
Keene, 2016). KCs are classified into three main subtypes: α/β, α’/β’,
and γ (Crittenden et al., 1998; Tanaka et al., 2008; Aso et al., 2014a;
Guven-Ozkan and Davis, 2014). The axons of these KCs form the MB
lobes, innervated bymushroom body output neurons (MBONs) which
then project to different areas in the protocerebrum and mediate the
behavioral output (Tanaka et al., 2008; Aso et al., 2014a).
Dopaminergic neurons (DANs) act as modulators of synaptic
weight and innervate discrete compartments of the MB (Tanaka
et al., 2008). These compartments receive input from different
types of DANs and contain dendrites of corresponding MBON
types (Tanaka et al., 2008; Mao and Davis, 2009; Aso et al., 2014a;
Aso et al., 2014b). There are two clusters of DANs which innervate the
MB lobes: PPL1 which innervates the vertical lobes (α, α’), responds
strongly to aversive stimuli and is necessary for aversive conditioning
(Riemensperger et al., 2005; Mao and Davis, 2009; Galili et al., 2014;
Cervantes-Sandoval et al., 2017), and PAM which innervates the
horizontal lobes (β, β’, γ), responds to rewarding stimuli and is
necessary for appetitive conditioning (Liu C. et al., 2012; Yamagata
et al., 2015; Yamagata et al., 2016). The input from these modulatory
DANs alters the synaptic weights between KCs and MBONs to induce
the appropriate behavioral response to a presented odor (Séjourné
et al., 2011; Aso et al., 2014b; Hige et al., 2015; Owald et al., 2015;
Perisse et al., 2016; Felsenberg et al., 2018). A third group of
dopaminergic neurons, PPL2, innervates the MB calyx and has
been shown to shape olfactory responses in the KCs and modulate
memory strength (Mao and Davis, 2009; Boto et al., 2019). In addition
to this complex circuitry, MB activity is modulated by other extrinsic
neurons, some of which innervate widely the MB neuropile and whose
activity is necessary for efficient memory acquisition, consolidation,
and retrieval (Yu et al., 2005; Liu and Davis, 2009; Cervantes-Sandoval
and Davis, 2012; Lin et al., 2014; Amin et al., 2020; Baltruschat et al.,
2021; Prisco et al., 2021).

In the brain of Drosophila we can find structures other than the
MB mediating different types of memory. The central complex
encompasses the ellipsoid body (EB) and the fan shaped body
(FB). The EB has been involved in long-term memory
consolidation, visual recognition, and spatial orientation memory
(Wu et al., 2007; Neuser et al., 2008; Pan et al., 2009; Zhang et al.,
2013; Guo et al., 2015). Interestingly, a subset of EB neurons are also
involved in generating sleep drive (Liu et al., 2016; Donlea et al., 2018;
Shafer and Keene, 2021; Andreani et al., 2022). The FB has been
implicated in visual learning tasks and conditioned nociceptive

avoidance (Liu et al., 2006; Wang et al., 2008; Pan et al., 2009; Hu
et al., 2018). The FB is a layered structure in the central brain with
critical behavioral functions like locomotion (Strauss, 2002) and,
importantly, sleep. For example, the FB has been shown to play a
role in regulating quiescence (Donlea et al., 2011) and sleep promoting
neurons projecting to the FB convey the output of sleep homeostasis
(Donlea et al., 2014).

However, the aforementioned central complexes are not the only
circuits involved in sleep. As such, peripheral neurons are becoming
more relevant in the study of sleep regulation (Seidner et al., 2015;
Jones et al., 2022) Additionally, it was shown that some drivers
traditionally used to implicate central neurons in sleep homeostasis
affect peripheral neurons, arguing that sleep could be indeed regulated
by those and not only by central complexes (Satterfield et al., 2022).
Glia has also been implicated in sleep regulation (Artiushin et al., 2018;
Blum et al., 2021). The inhibition of Appl, the Drosophila homolog of
amyloid precursor protein, in astrocyte-like and cortex glia resulted in
increased sleep and longer sleep bouts, whereas overexpression ofAppl
lead to the opposite effect (Farca Luna et al., 2017). The sleep
phenotype induced by Appl inhibition could be rescued by
increasing the expression of the glutamate transporter dEaat1
(Farca Luna et al., 2017) and, interestingly, Eaat1 is required for
the consolidation of long-term memories (Matsuno et al., 2019). Glia
has an established role in neural metabolism, providing neurons with
energy during times of high energy demand, such as long-term
memory formation (de Tredern et al., 2021; De Backer and
Grunwald Kadow, 2022; Silva et al., 2022). Although it is likely
that the roles of glia in sleep and memory are intertwined, this
relationship is currently largely unexplored.

Sleep is conserved across species, and it is considered
indispensable for health. As in other animals, in Drosophila there
are two main processes involved in regulating sleep: a circadian
component which regulates the sleep-wake cycles, and a
homeostatic component which reacts to internal changes that alter
the “need for sleep”, for example, increasing sleep duration after sleep
deprivation (Borbély, 1982). In Drosophila, the definition of sleep is
based on behavioral criteria: quiescence, increased arousal threshold,
change in posture, and inactivity of at least 5 min (Hendricks et al.,
2000; Shaw et al., 2000). Previous work has phenomenally reflected on
the literature related to sleep in Drosophila, its neural substrates, and
novel approaches and research in the field (Dubowy and Sehgal, 2017;
Dissel, 2020; Dissel et al., 2020; Weiss and Donlea, 2021a; Gilestro,
2021; Shafer and Keene, 2021) while the present work will aim to
describe recent findings on the specific modulation of memory by
sleep.

Perhaps attesting the complexity of memory systems, sleep is one
of the most relevant biological processes that gates and stabilises
memory; a relationship that can be easily demonstrated by the
relatable detrimental effects that sleep deprivation has in cognitive
abilities. Nonetheless, the precise mechanisms by which sleep affects
memory remain largely elusive. The two, however, rely on some
overlapping circuitry in the brain, which provides some clues as to
how this relationship is mechanistically modulated. Considering the
importance of sleep in cognitive functions, it is undeniable that the
aforementioned FB plays a key role in enabling and improving
memories in Drosophila. Similarly, the MBs have been implicated
in sleep regulation (Joiner et al., 2006; Sitaraman et al., 2015a;
Sitaraman et al., 2015b) as, at least in part, the arousal effects of
dopamine rely on the innervation of dopaminergic neurons in the MB
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(Sitaraman et al., 2015b; Driscoll et al., 2020; Driscoll et al., 2021).
These dopaminergic neurons can be the same neurons that enable
memory and seem to have a dual role in regulating sleep and arousal
(Andretic et al., 2005; Kume et al., 2005; Lebestky et al., 2009).
Administration of a tyrosine hydroxylase inhibitor increases sleep
duration, and, conversely, administering psychostimulants to increase
dopamine signalling decreases sleep (Ueno et al., 2012). The D1-like
dopamine receptor DA1 (Dop1R1) is essential for memory formation
(Kim et al., 2007), whereas it has also been reported to mediate
wakefulness through caffeine (Andretic et al., 2008) or startle-
induced arousal (Lebestky et al., 2009), and DA1 in the dorsal FB
mediates the arousal effect of dopamine (Ueno et al., 2012). Moreover,
the specific dopamine neurons innervating the dorsal FB to promote
wakefulness include the aforementioned PPL1 cluster (Liu Q. et al.,
2012). This data together highlight that the circuits and molecular
mechanisms for bothmemory and sleep are closely intertwined. In this
article we will review findings on the relationship between memory
and sleep, looking at cognitive effects of sleep deprivation and induced
sleep, and detailing what we know about the molecular and circuit
level structures that modulate this relationship.

2 Memory acquisition is impaired by
sleep deprivation

A common method to investigate the role that sleep plays in the
formation of memories is to evaluate the performance of short-
sleeping animals in memory assays. One such assay is the heat-box
paradigm, in which half of a chamber is heated to 39°C and over a
training period flies exposed to this environment learn to avoid the
heated area (Wustmann et al., 1996). The memory persists in wild-
type flies, and they continue to avoid the previously heated area even
after it has returned to a preferable temperature. However, loss-of-
function mutations in Hyperkinetic, a gene encoding a modulatory
element of the Shaker channel, translate into decreased sleep, possibly
due to changes in neural excitability. Although these flies display
learning, they quickly lose their bias towards the unheated side,
showing a detriment of short-term memory (Bushey et al., 2007).

There are also numerous lines of evidence of the supportive role of
sleep in memory based on sleep deprivation experiments. Sleep
deprivation can be achieved through mechanical stimulation using
different apparatus: the SNAP, or Sleep Nullifying Apparatus which
involves tilting tubes housing flies such that the sleeping flies are
displaced (Melnattur et al., 2020), the SLIDE, Sleep Interrupting
Device, which utilises a treadmill-like floor to force the flies to
continuously walk (Seugnet et al., 2008), a system which rotates the
vials along their major axis before dropping it a short distance (Li et al.,
2009), or the DART, Drosophila ARousal Tracking system, which
video tracks the flies behaviour and utilises a motor to inflict a gentle
but unpredictable vibrating stimulus which disrupts the sleep pattern
(Faville et al., 2015). More recently, a system was developed where flies
were monitored, and upon 20 s of immobility, the housing tube would
rotate gently, waking the fly up (Geissmann et al., 2017). This system
implies a much gentler stimulation, and surprisingly reported milder
effects of sleep deprivation in overall health.

Sleep deprivation using the mechanical approaches described
above has proven to be detrimental for memory in different
memory and learning assays, like aversive olfactory conditioning
(Li et al., 2009). During this task flies are exposed sequentially to

two odours, one being paired with an aversive stimulus such as an
electric shock. To measure memory retention, flies are typically
transferred after training to the choice point in a T-maze and
forced to choose between the two odours they were previously
exposed to (Busto et al., 2010). Memory scores will represent the
proportion of flies that avoid the arm with the odour previously paired
with the shock (Tully and Quinn, 1985). Depending on the protocol of
training trials and the time between training and testing phases, short-
term memory (STM) or long-term memory (LTM) can be evaluated
(Margulies et al., 2005). One day of sleep deprivation before training
leads to deficits in short-term olfactory memory (Li et al., 2009).
Although the authors did not find differences in memory acquisition
between sleep deprived and control flies, 1-h after training the
memory scores were significantly decreased in flies that had been
sleep deprived. Sleep deprivation also impairs memory in the Aversive
Phototaxic Suppression (APS) assay (Seugnet et al., 2008). During this
task, flies are placed in a T-maze and given a choice between a
darkened or light tube. Under naïve circumstances, flies exhibit an
innate attraction towards the light, but when the light tube is
reinforced with an aversive stimulus, such as quinine, they learn to
avoid it (Le Bourg and Buecher, 2002). When wild-type flies were
forced to stay awake for 6 h before testing, there was a significant
decrease in performance on this task (Seugnet et al., 2008). Learning
could be restored quickly following only 2 h of recovery sleep,
suggesting that one bout of sleep deprivation does not cause long-
term detrimental effects (Seugnet et al., 2008). However, during early
life in Drosophila there is a higher sleep demand. Sleep is necessary for
development, highlighted by the fact that sleep deprivation on the first
day of adulthood leads to long-term learning deficits in the APS task
even after 3 days of recovery (Seugnet et al., 2011). It is suggested that
these deficits are caused by reduced dopamine signalling as a
consequence of increased transcript levels of DA1 (Seugnet et al.,
2011). This day one sleep deprivation also causes deficits in other
learning paradigms, including courtship conditioning, even after
3 days of recovery (Seugnet et al., 2011).

More recently, a similar performance detriment following sleep
deprivation was observed in a spatial learning assay modelled after the
classic Morris Water Maze (Melnattur et al., 2021). Here, wild-type
flies were tasked with locating a ‘cold tile’ in a thermal maze by
learning the association with a visual cue. Under regular sleep
conditions, wild-type flies became increasingly fast at locating the
tile, reducing their time by 80% over 10 trials. This indicates that they
have learnt the relevant association between the visual cue and the
location of the tile. However, following a night of sleep deprivation
using the SNAP, wild-type flies became significantly impaired
performing in this task, with practically abolished learning
(Melnattur et al., 2021). Old age is associated with a decrease in
dopamine, a decrease in sleep, and general memory impairments and
this age-dependent cognitive decline is also seen in flies (Iliadi and
Boulianne, 2010). 21–24 day old flies show a decrease in total sleep
compared to 4–5 day old flies and also display impairments in spatial
learning (Melnattur et al., 2021). However, age-dependent cognitive
decline in spatial learning can be restored by increasing dopaminergic
signalling through DA1 receptors, specifically in EB, or restored by
enhancing sleep (Melnattur et al., 2021).

Sleep deprivation can also be achieved by thermogenic activation
of selected neuronal subsets. Driving sleep deprivation by thermogenic
activation of a subset of peripheral pickpocket (ppk)-expressing
neurons and octopaminergic neurons causes impairment of
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short-term aversive taste memory (Seidner et al., 2015). This
impairment can be rescued if the animals, after thermogenic
activation of the neurons, are allowed to recover for 3 h prior
training and testing, suggesting that the recovery period allows the
formation of STM previously disrupted (Seidner et al., 2015).

In a novel appetitive operant conditioning task flies were rewarded
with sucrose when they turned in the desired direction on a Y-shaped
track (Wiggin et al., 2021). It was reported that only flies who rested
during training (with rest defined as 1 min or more of continuous
inactivity) were able to learn and perform well in this task.
Interestingly, and perhaps counter-intuitively, optogenetically
inducing sleep via activation of the dorsal FB did not enhance
learning (Wiggin et al., 2021). This suggests that spontaneous rest
is required to perform well but not sufficient to induce learning in this
task, or that the specific restorative rest that gates learning in this
operant task is driven by a different neural population. In this operant
task, the individual flies who tended to rest during training and
therefore performed well at the task also spent more time adjacent
to the sucrose reward, indicating an increased intake of food (Wiggin
et al., 2021). When the sucrose reward was removed, the proportion of
flies that showed spontaneous rest behaviour decreased (Wiggin et al.,
2021), consistent with reports on increased sucrose intake being
associated with increased rest (Murphy et al., 2016) and a sleep
suppressing effect of food deprivation (Keene et al., 2010).
Therefore, it seems that in this specific task sucrose consumption
promotes rest which, in turn, promotes learning.

In terms of the mechanistic process by which sleep facilitates
memory acquisition, an attractive hypothesis is that during sleep
synapses that have been created during activity in the day are
pruned in a process called synaptic homeostasis (Tononi and
Cirelli, 2003; Bushey et al., 2011). The idea is that large increases
in synaptic strength include the growth of synapses in number and size
which is unsustainable because they consume more energy, take up
more space, and eventually saturate the coding capacities of the brain,
affecting the ability to learn (Bushey et al., 2011). During sleep,
synapses are pruned to a sustainable level. This pruning has been
reported in a group of cells called the small ventral lateral neurons
(LNvs), which are part of the wake promoting system of the circadian
network and express the neuropeptide pigment dispersing factor
(PDF) (Parisky et al., 2008). Subjecting flies to sleep deprivation
and comparing the signal of synaptically-tagged GFP driven under
pdf-Gal4 in the LNvs between rested and sleep deprived flies showed
an increase in presynaptic boutons in the sleep deprived group
(Bushey et al., 2011). Similarly, the g neurons of the MB were
shown to have larger axonal tips after sleep deprivation, consistent
with volume growth of presynaptic terminals, further confirmed by an
increase in synaptically-tagged GFP puncta in g neurons in the sleep
deprived group (Bushey et al., 2011). An exhaustive analysis of
synaptic scaling in memory neurons under sleep deprivation have
reported that, although it seems that sleep does generally shape
synaptic connectivity in the MB network, the specific effect of the
loss of sleep depends on the cell type (Weiss and Donlea, 2021b).
Mechanical deprivation of sleep induces an overall increase in the
active zone marker Bruchpilot across KCs, which returns to baseline
after 48 h of recovery under spontaneous sleep restoration or after 6 h
artificially induced sleep through dorsal FB activation (Weiss and
Donlea, 2021b). On the other hand, no synaptic changes were detected
in PNs or DANs. The analysis of specific KC output synapses onto the
sleep inducing MBONg2α’1 using GFP reconstitution across synaptic

partners (GRASP) reported a decrease on the connectivity between
those neuron types after sleep deprivation (Aso et al., 2014b). This can
reflect a decrease on the input weights from the MB to the MBON, but
it could also support the idea that, although sleep-inducing, the
specific neural pathway involving MBONg2α’1 and the FB is not
involved in sleep homeostasis (Dag et al., 2019). It seems, however,
that the effects of sleep deprivation in synaptic densities is different
depending on the specific cell types involved in those synapses.

Nevertheless, there are lines of evidence supporting the beneficial
effects of sleep in synaptic pruning, and eventually favoring memory
acquisition. Exposure to complex social interactions leads to synaptic
upscaling in LNvs and increased sleep, which is dependent on genes
involved in synaptic plasticity (Ganguly-Fitzgerald et al., 2006).
However, if flies are subjected to memory training paradigms
shortly after social enrichment, they fail to display long-term
memory, perhaps showcasing a synaptic saturation incompatible
with memory encoding. Supporting the hypothesis of synaptic
homeostasis, sleep induction by FB activation immediately after
social enrichment restores the memory phenotype (Donlea et al.,
2011).

Sleep deprivation during development can lead to long-term
changes in synaptic plasticity (Seugnet et al., 2011). In fact, there
seems to be a critical period in development where both sleep and
LTM emerge at the same time (Poe et al., 2022). During the second
instar larvae stage (L2) sleep is not under circadian control (Szuperak
et al., 2018). The connections between clock neurons and arousal
promoting neurons are formed in the early third instar stage (L3),
which brings arousal under clock control to drive circadian sleep (Poe
et al., 2022). Interestingly, L2 larvae do not exhibit LTM, but L3 show
strong LTM, consistent with the fact that LTM depends on deep sleep,
which is not induced until the neural circuits mediating circadian sleep
are functional (Poe et al., 2022).

3 Memory impairments are rescued by
sleep

Considering the discussed effects of sleep facilitating memory
formation, one exciting possibility is that induced sleep could in fact
rescue sleep defects in pathological conditions. Two classical memory
mutants, the phosphodiesterase mutant dunce (dnc) and the adenylyl
cyclase mutant rutabaga (rut), display generalized impaired learning
and memory (Duerr and Quinn, 1982; Folkers, 1982; Livingstone,
1985; Han et al., 1992; Wustmann and Heisenberg, 1997). It is
important to highlight that these mutants do not seem to display
sleep phenotypes, however, inducing sleep can rescue memory in rut
and dnc mutants (Dissel et al., 2015; Dissel et al., 2020). Three
independent strategies were used to induce sleep: activating the
dorsal FB, increasing expression of Fatty acid binding protein
(dFabp) and administering GABA-A agonist 4,5,6,7-
tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP) (Dissel et al.,
2015). Each of these strategies increased sleep in wild-type and
mutant flies, and, in turn, rescued rut and dnc learning
impairments in APS and courtship conditioning tasks (Dissel et al.,
2015). Learning impairments seen in rut mutants during the spatial
learning heat maze task can also be rescued by THIP-induced sleep
(Melnattur et al., 2021). Importantly, THIP-induced sleep in wild-type
flies does not enhance STM in the APS further than the baseline
performance (Dissel et al., 2015). Both dnc and rut mutants showed
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impaired memory during a heat-box place learning task in which flies
learn to avoid an area in a box previously associated with high
temperatures (Dissel et al., 2020). Induced sleep via THIP rescued
performance in rut mutants, however, the performance index for dnc
mutants remained low even after THIP-induced sleep (Dissel et al.,
2020). These differences could be due to the particular requirements of
cAMP-mediated signalling in a specific task; the circuits that control
behavioural performance for different types of memory are different,
and they might rely of different genes for different functions (Dissel
et al., 2020).

The report that sleep can restore memory defects in mutants that
display relative normal sleep phenotypes opened the possibility that
sleep could in fact be used for therapeutical purposes in cases of
complex disorders that are difficult to treat. This idea has been
proposed in clinical settings (Mander et al., 2016). Many
neurodegenerative conditions such as Alzheimer’s disease (AD) are
associated with both memory defects and sleep disturbances. The
Drosophilamutant Presenilin is used as a model of familial AD. since it
recapitulates age-dependent cognitive deficits (Dissel et al., 2015).
Young Presenilin mutants display normal sleep patterns and intact
long-term memory, assessed in courtship conditioning; however, 30-
day-old mutant flies have impaired LTM (Dissel et al., 2015). Inducing
sleep by administering THIP 2 days prior to and 24 h following
training in these aged mutants was sufficient to reverse the LTM
deficits in this AD model (Dissel et al., 2015). However, one of the
hallmarks of AD in humans is the intercellular accumulation of Aβ
plaques (Turner et al., 2003; Zheng and Koo, 2011), therefore several
AD models in Drosophila aim to replicate this cellular phenotype.
Expression of the human Aβ42 peptide in flies leads to the
development of key features of AD, like age-dependent learning
impairment (Iijima et al., 2004). Interestingly, this model of AD in
Drosophila showcased a reciprocal relationship between sleep and Aβ
pathology: Aβ expression leads to fragmented and reduced sleep,
associated with increased neural excitability, and conversely, sleep
deprivation enhances the detrimental effects of Aβ accumulation
(Tabuchi et al., 2015; Dissel et al., 2017). Enhancing sleep in this
case reduced Aβ deposition (Tabuchi et al., 2015). Ubiquitously co-
expressing the human amyloid precursor protein and β-secretase
(APP:BACE) in adult flies also results in the accumulation of Aβ
peptides and memory impairment (Chakraborty et al., 2011). Induced
sleep in APP:BACE 14-day old flies rescued short-term memory
impairments in the APS task and long-term courtship conditioning
defects. Moreover, 2-days of induced sleep reduced C-terminal Aβ
peptide accumulation, and reversed synaptic deficits of APP:BACE
flies (Dissel et al., 2017).

It seems then that a better understanding of this relationship
between sleep and pathology can advance neurological recovery. It has
been previously reported that sleep can benefit memories by
decreasing forgetting. In humans it has been proposed that sleep
benefits both declarative and non-declarative memories in two very
different ways: non-declarative memories, which are independent of
hippocampal function, are often enhanced after a period of rapid eye
movement (REM) sleep. In this case, the memory performance
increases over the initial level. By contrast, hippocampus-
dependent declarative memories benefit from sleep by reducing
retroactive interference. In other words, there is decreased
forgetting during non-REM sleep. This hypothesis has been called
the “opportunistic theory of cellular and systems consolidation”.
There is evidence of this opportunistic theory in Drosophila, Berry

et al. (Berry et al., 2015) recently discovered that a small group of DAN
functionally connected to KC mediates the process of active forgetting
of olfactory memories. Blocking synaptic output from these cells
increases memory retention. Conversely, stimulating their output
after learning increases memory loss. Interestingly, these DAN are
the same neurons that convey the punishment signal during the
acquisition of aversive memory (Schwaerzel et al., 2003; Schroll
et al., 2006; Claridge-Chang et al., 2009; Aso et al., 2010; Aso et al.,
2012; Berry et al., 2012). Moreover, functional imaging of these DAN
demonstrated the presence of chronic calcium activity before and after
training. This chronic dopaminergic activity is modulated by the
animal’s behavioral state (Berry et al., 2015). Strong activity is
observed during periods of high locomotion, and little activity is
observed during rest or sleep periods. Furthermore, increasing
pharmacological or genetic sleep induction decreases chronic
dopaminergic activity while enhancing memory retention.
Contrarywise, artificial or mechanical increase of arousal stimulates
chronic dopaminergic activity and accelerates DA-based forgetting
(Berry et al., 2015). Recently, a model of AD in Drosophila mimicked
early-stages of the disease by restricting the expression of the Arctic
variant of the Aβ42 peptide (AβArctic) to the MB. These genetic
modification resulted in normal learning in both aversive and
appetitive olfactory associative conditioning tasks, but lead to what
could be considered accelerated forgetting (Kaldun et al., 2021). In
both STM and LTM olfactory associative conditioning tasks flies
expressing AβArctic in MB displayed similar learning scores
immediately after training than their controls, but there was a
significant memory loss after 2 h in STM tasks, and after 6 h in
LTM tasks. Although it is difficult to discard an effect of deficient
memory consolidation, this memory phenotype can be reversed by
silencing the aforementioned specific DANs involved in the active
forgetting process (Berry et al., 2015). Inducing sleep by both
activating the FB after training and pharmacologically via THIP
ingestion can restore the rate of forgetting in flies expressing
AβArctic in the MB (Kaldun et al., 2021). Hence, MB neurons
expressing AβArctic could influence the network increasing the
activity of forgetting DANs, process that can be suppressed by
induced sleep.

4 Sleep in memory consolidation

Memory consolidation is the process of converting new initially
labile memories into robust, long-lasting protein synthesis-dependent
memories (Roselli et al., 2021). The consolidated memories are then
integrated into a complex memory structure composed of all previous
relevant memories. It has been suggested that the consolidation of
memories requires the reactivation of neuronal activity patterns within
the neural circuits initially active during the acquisition of new
memories. The best example of this is the replay of place cells. Lee
and Wilson (Lee and Wilson, 2002) showed that firing sequences of
place cells during the walking of simple trajectories were replayed in
the hippocampus offline. It is plausible that this replay selectively
strengthens memory-specific cell assemblies that promote memory
consolidation.

Furthermore, the electrical disruption of these offline replay events
reduces the learning rate of a spatial memory task (Girardeau et al.,
2009; Ego-Stengel and Wilson, 2010). Remarkably, the consolidation
process occurs mainly during sleep. The presence of time-compressed
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versions of place cell sequences that correspond to preceding
trajectories of the animals, particularly during sharp-wave ripples,
has been reported (Lee and Wilson, 2002; Diba and Buzsaki, 2007;
Davidson et al., 2009). It is plausible that the memory consolidation
process is favored during the offline time because encoding and
retrieval of memories occurs during wake, and they, presumably,
could cause catastrophic interference and impede memory
consolidation.

In Drosophila, the role of post-learning sleep on memory
consolidation has also been documented. Memory consolidation
has been better characterized in olfactory memories. During
classical olfactory conditioning, the synaptic output of the dorsal
paired medial neurons (DPM) is required for memory
consolidation (Waddell et al., 2000; Yu et al., 2005; Lee et al., 2011;
Pitman et al., 2011; Cervantes-Sandoval and Davis, 2012; Lee et al.,
2021; Muria et al., 2021). DPMs are a pair of serotonergic neurons
innervating the MB (Lee et al., 2011; Pitman et al., 2011; Cervantes-
Sandoval and Davis, 2012). It was first reported that blocking the
synaptic output of DPM neurons after learning but before memory
retrieval impaired memory consolidation (Keene et al., 2006).
Remarkably, DPM neurons showed learning-induced plasticity,
characterized by increased calcium responses to odors paired with
either electric shock or sugar reward (Yu et al., 2005; Pitman et al.,
2011; Cervantes-Sandoval and Davis, 2012). The duration of these
changes correlated with the strength of the memory. STMwill induce a
transient increase in odor responses, whereas LTM will induce lasting
changes (Cervantes-Sandoval and Davis, 2012). Optical analysis of
DPM anatomy and, more recently, the connectome data, agree with
the idea that DPM forms a recurrent feedback loop with KCs in the
MB, continual activation of which favors consolidation of memory
(Pitman et al., 2011; Takemura et al., 2017; Li et al., 2020). Despite the
clear role of DPM neurons and memory consolidation, a link between
DPM function and the “need for sleep” for consolidation remained
elusive. Later, however, evidence indicated that DPM activity serves as
a link between sleep and memory consolidation. Haynes et al.,
(Haynes et al., 2015), reported that in addition to being
serotonergic, DPMs are also inhibitory GABAergic neurons. The
authors demonstrated that artificial thermogenetic activation of
DPM neurons robustly promotes sleep. Furthermore, they showed
that inhibiting both GABA and serotonin synthesis in DPM neurons
resulted in decreased nighttime sleep. They demonstrated that DPMs
are sleep-promoting by inhibiting the activity of wake-promoting α’/β’
KC neurons. Using functional imaging with SuperClomeleon reporter,
it was demonstrated that artificial chemoactivation of DPM neurons
induced chloride influx in α’/β’ KC neurons. Furthermore, knocking
down the GABA receptor Rdl in α’/β’ KC neurons resulted in
decreased sleep.

The neural substrates mediating the effect of sleep in memory
consolidation have also been extensively studied in the case of
courtship memory in flies. Naïve male flies will actively court both
virgins and mated females, while males exposed to and rejected by
unreceptive mated females will subsequently become less prone to
court receptive virgin females (Siegel and Hall, 1979). This reduction
in the courtship index reflects the newly acquired memory, which is
dependent on the MB (McBride et al., 1999). Courtship training for
shorter times leads to STM that can last hours, whereas longer training
sessions will induce protein-synthesis dependent long-term memory.
MB KC-γ neurons are essential for the formation of courtship
memories (Keleman et al., 2012). Similarly, acute inhibition of MB

output neuron MBON-γ5β’2α (also known as M6), which is
postsynaptic to KC-γ, both during acquisition and during memory
retrieval, impairs memory (Zhao et al., 2018). This potentiation is
modulated by dopaminergic input from PAM-γ5 (also known as
aSP13). Moreover, MBON-γ5β’2α synapses back into PAM-γ5
(Figure 1). This suggests the presence of a recurrent feedback loop
that reactivates the neural learning pathways during memory
consolidation. But how does sleep modulate this circuit?
Fascinatingly, sleep drive is plastic and is modulated by experience.
Males trained with paradigms that form LTM sleep more after
learning than untrained controls, or counterparts subjected to
STM-inducing protocols (Ganguly-Fitzgerald et al., 2006; Dag
et al., 2019), pointing at a demand of sleep after complex learning
experiences. This “need for sleep” will enable and engage
consolidation mechanisms, as proven by studies showing that sleep
deprivation after training abolishes LTM (Ganguly-Fitzgerald et al.,
2006; Donlea et al., 2011; Dag et al., 2019). A recently published study
identified specific neural circuits mediating this induction of sleep
exclusively after LTM-inducing training protocols, and not after
shorter training ones. The timing of the serial activation of two
MBONs switches on/off sleep driving circuits in the FB (Lei et al.,
2022). MBON-γ2α’1 activates sleep-inducing ventral FB (vFB)
neurons. The activity of MBON-γ2α’1 increases proportionally with
the length of the training session, and synaptic release from this
neuron is necessary for both the increase of sleep post-training and the
consolidation of memory (Lei et al., 2022). On the other hand,MBON-
β’2mp suppresses sleep (Aso et al., 2014b), inhibits vFB neurons, and
displays higher activity levels with shorter, STM-inducing training
protocols (Lei et al., 2022). These two MBON form a polysynaptic
circuit with vFB; they feed directly into SFS neurons which integrate
both MBON signals and then convey excitatory input to vFB. These
findings lever an elegant model where STM-inducing protocols will
recruit MBON-β’2mp, which inhibits the vFB facilitating wakefulness
and, on the other hand, LTM-inducing protocols recruit MBON-
γ2α’1, which activates the vFB promoting sleep and memory
consolidation.

Important studies in the field have identified distinct FB-neural
populations that seem to induce post-training sleep with different
rules, time scales and circuits. Dorsal FB-neurons (dFB) are involved
in sleep homeostasis (Donlea et al., 2011; Donlea et al., 2014) and have
been reported in a seminal study to promote sleep and memory
consolidation when activated for 4 h immediately after training,
even when the males were trained in short-lasting sessions that
would not induce LTM normally (Donlea et al., 2011).
Importantly, this protocol of dFB activation was not enough to
consolidate memory when combined with sleep deprivation, which
points to a specific role of dFB driving sleep, and not general activation
of the circuit, as the main factor for memory consolidation. More
recently, the vFB has been proposed as a key brain area responsible for
learning-induced sleep and memory consolidation (Dag et al., 2019).
The vFB also induces sleep, and its activation during a specific time
window of 5–7 h after the onset of training is sufficient to consolidate
memory when the flies where subjected to short training sessions that
would not induce LTM normally (Dag et al., 2019). vFB neurons are
active after LTM-training during consolidation, and they project to the
aforementioned PAMγ5. Interestingly, these dopaminergic neurons
have been reported to promote wakefulness and reduce sleep
(Sitaraman et al., 2015b; Driscoll et al., 2021), which could reflect
the importance of previous experience (mediating pre-existing
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plasticity) or the activation kinetics of neural activity in subsequent
behavioral outputs. Nevertheless, sleep mediated by the vFB is the
factor that mediates circuit reactivation during sleep involving the

feedback loop between PAMγ5, MBγ neurons and MBON-γ5β’2α
(Zhao et al., 2018), which reflects sleep-dependent memory
consolidation models in mammals (Diekelmann and Born, 2010).

FIGURE 1
Circuit for sleep-dependent consolidation of courtship memory. (A) Recurrent activation of the microcircuit formed by KCγ, MBON-γ5β’2a and
PAMγ5 leads to prolonged activation of the DANs, levering memory formation. (B). MBON-γ2α’1 activates the vFB through SFS neurons, promoting sleep and
memory consolidation. vFB projections to KC-γ5 mediate circuit reactivation during sleep. In contrast, the activity of MBON-β’2mpduring STM-inducing
protocols inhibits SFS/vFB and promotes wakefulness.

FIGURE 2
Sleep-dependent (A) and sleep-independent (B) circuits for appetitive memory. Fed flies form sleep-dependent memory that requires activity in α′/β′ap
neurons in association with a circuit comprised of PAM-β′2mp and recurrent connections between PPL1-γ2α′1 DANs and MBON-γ2α″1. In contrast, sleep-
independent long-termmemory in starved flies is mediated by α′/β′mneurons interacting with PAM-α1 and reciprocal signalling between PPL1-γ1pedc DANs
and MBON-γ1pedc. The switch between circuits is mediated by sweet taste signals received by gustatory receptor GR64f in fed flies and hunger signals
mediated by NPF in starved flies.
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The availability of genetic access to discrete neural subpopulations of
the FB and their post-synaptic partners will further enable the
dissection of the circuits mediating sleep and courtship memory
consolidation with unprecedented resolution.

Altogether this evidence shows that memorable experiences
increase the sleep drive. During sleep, there is a reactivation of the
neuronal pathways activated during learning. This favors the
transition from short-term labile and transient memories into
persistent LTM.

5 Olfactory appetitive conditioning and
sleep-independent consolidation

The metabolic state, i.e. satiation or starvation, is paramount
for memory formation. Expression of food-associated memory is
promoted by hunger and inhibited by satiety (Krashes et al.,
2009). Typically, in appetitive conditioning assessments, flies are
starved after training to enable memory retrieval (Krashes and
Waddell, 2008). It was found, though, that depending on the post-
training metabolic state appetitive memory has different
requirements for sleep and different neuronal circuits are
involved (Figure 2) (Chouhan et al., 2021; Chouhan and
Sehgal, 2022). Post-training feeding promotes a sleep-
dependent type of learning; while starvation triggers a
consolidation mechanism which is sleep-independent
(Chouhan et al., 2021). Unexpectedly, it is not the caloric
intake of sugar but its sweetness that promotes the switch
between sleep-dependent or independent memory. In fact,
trained flies kept on arabinose (a sweet but non-nutritious
sugar) form sleep-dependent memories (Chouhan et al., 2021),
while trained flies kept on sorbitol (a tasteless but nutritious
sugar) do not require sleep for memory formation (Chouhan and
Sehgal, 2022). Sweet taste signals the presence of food, determines
the initial feeding preferences of the animal (Stafford et al., 2012),
and may signal reward through the activation of PAM DANs
(Chouhan and Sehgal, 2022). It also seems to be responsible for
the memories to switch between sleep-dependent and
independent consolidation. In fact, enhancing activity of
sweet-sensing neurons (Gr64f+) in starved flies induces a
switch from sleep-independent to a dependent form of
memory (Chouhan and Sehgal, 2022). The opposite is true for
fed flies, in which inactivation of sweet-sensing neurons causes
the switch from sleep-dependent to independent memory
formation.

Molecularly the switch is mediated by neuropeptide F (NPF)
(Chouhan et al., 2021). NPF is a hunger signal (Wu et al., 2003;
Wu et al., 2005), and its expression in neurons is indicative of food
deprivation (Krashes et al., 2009). When starved flies, which usually
express NPF, have a lack of NPF or its receptor, sleep-dependent
memory consolidation is activated (Chouhan et al., 2021), supporting
the idea that NPF mediates the switch between sleep-independent to
sleep-dependent memories flies.

At circuit level α’/β’ lobes of the MB are known to be required for
appetitive memory (Krashes and Waddell, 2008) and to drive
wakefulness (Haynes et al., 2015; Sitaraman et al., 2015b). In fed
flies, sleep-dependent consolidation of memory is mediated by α’/β’
anterior-posterior (α’/β’ap) neurons, which increase sleep when active.
While in starved flies sleep-independent memory consolidation is

mediated by α’/β’medial (α’/β’m) neurons, which reduces sleep when
active (Chouhan et al., 2021). Interestingly, inactivation of both
neuronal subtypes, before training, doesn’t affect sleep, maybe
because both those neuronal subtypes induce sleep in the specific
context of appetitive conditioning. As expected, sleep loss in fed flies
reduces Ca2+ signal in α’/β’ap neurons, while blocking α’/β’ap neuronal
transmission post-training decreases sleep amount and bout length
(Chouhan et al., 2021), arguing that α’/β’ap are required for post-
training sleep increase in fed flies, while α’/β’m neurons are
dispensable.

Consolidation of appetitive memories requires, at least, two
other neuronal populations: DANs and MBONs (Aso et al., 2014b;
Musso et al., 2015; Aso and Rubin, 2016). Sleep-dependent and
independent consolidation activates and requires distinct neuronal
circuits for memory formation. Sleep-independent consolidation
occurs in animals that are starved post-training and requires α’/β’
m, PPL1-γ1ped (also known as MB-MP1) (Musso et al., 2015),
PAM-α1 (Ichinose et al., 2015) and MBON-γ1pedc (Pavlowsky
et al., 2018). Sleep-dependent consolidation of memory, on the
other hand, requires the synergistic action of α’/β’ap neurons and
the recurrent circuit PPL1-γ2α’1 MBON-γ2α’1 PPL1-γ2α’1. PPL1-
γ2α’1 (also known as MB-MV1), projects to the sleep-promoting
neurons MBON-γ2α’1 (Felsenberg et al., 2017; Berry et al., 2018),
which subsequently recruits PAM-β’2mp, essential for LTM in fed
flies (Chouhan and Sehgal, 2022). Interestingly, PAM-β’2mp
project to the aforementioned MBON-γ1pedc which are
essential for memory in starved animals (Aso et al., 2014b; Li
et al., 2020).

As a mechanism, it is proposed that sweet taste activates PAM-
β’2mp as reward signal. PAM-β’2mp then engage with MBON-γ2α’1
to establish sleep-dependent memory. On the other hand, PAM-
β’2mp response might also be modulated by MBON-γ1pedc.
MBON-γ1pedc might inhibit PAM-β’2mp to allow PAM-α1 to
form sleep-independent memories (Chouhan and Sehgal, 2022).

6 Conclusion

Memory can be affected by numerous biological processes, and
sleepmight be one of the most relevant ones, due to its universality and
drastic effects. As reviewed here, memory is impaired by sleep
deprivation, and memory defects can be rescued by inducing sleep
in models of pathological neurodegeneration, such as AD. These
findings support potential therapeutic benefits to mechanistically
understanding the interaction between memory and sleep. It will
be interesting to assess how general this beneficial function of sleep
is in neurological processes, and if and how it could enhance cognitive
brain function in cases of acquired damage, for example.

Recent studies have tremendously advanced our understanding of
the circuit motifs that mediate sleep dependent memory
consolidation. In-depth analysis of the neural subpopulations of the
FB with new and better drivers will continue to decipher the specific
contributions of the vFB and peripheral neurons with emerging
described roles in sleep to cognitive processes with unprecedented
resolution. Similarly, circuit dissection strategies can unravel the
mechanisms of sleep independent memory consolidation and how
general they are. It will also be interesting to establish the role glia has
in the interaction between sleep and memory, particularly in models
of AD.
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However, there is evidence of large variability on the effect of
sleep in memory in Drosophila (Weiss and Donlea, 2021a),
depending on the metabolic state, genetic background or the
specific type of memory. With the appropriate technical
development, it is critical to perform sleep deprivation
experiments using devices that keep the animals awake while
imparting the least stress and mechanical damage as possible.
By doing so, we now know that there is a wide variety of sleep
duration between individuals, with some flies showing as little as
4 min of spontaneous sleep per day (Geissmann et al., 2019). In this
study, it was found that even when subjecting flies to life-long sleep
deprivation there is no evidence of a difference in lifespan between
these sleep deprived flies and the control group (Geissmann et al.,
2019). It will be exciting to investigate spontaneous short sleeping
flies and sleep deprived ones to establish whether they suffer from
cognitive defects such as memory impairments, and to assess if they
can undergo canonical processes of memory consolidation.
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Glossary

AD Alzheimer’s Disease

APP β-Amyloid Precursor Protein

Appl β-Amyloid Precursor Protein-like

APS Aversive Phototaxic Suppression

BACE β-Site Amyloid precursor protein Cleaving Enzyme

DA1 D1-dopamine receptor

DAN Dopaminergic Neuron

DART Drosophila ARousal Tracking system

dEaat1 drosophila Excitatory amino acid transporter 1

dFabp drosophila Fatty Acid Binding Protein

DPM Dorsal Paired Medial

EB Ellipsoid Body

FB Fan-shaped Body

GRASP GFP Reconstitution Across Synaptic Partners

L2 Second instar larva

L3 Third instar larva

LNvs Small Ventral Lateral Neurons

LTM Long-Term Memory

MBON Mushroom Body Output Neuron

NPF Neuropeptide F

PAM Protocerebral Anterior Medial

PDF Pigment Dispersing Factor

PER Proboscis Extension Reflex

PPL1 Protocerebral Posterior Lateral 1

PPL2 Protocerebral Posterior Lateral 2

REM Rapid Eye Movement SEZ: Subesophageal Zone

SLIDE Sleep Interrupting Device

SNAP Sleep Nullifying Apparatus

STM Short-term Memory

THIP GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-
3-ol (Gaboxadol).
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