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Background: Intracranial photoplethysmography (PPG) signals can be measured
from extracranial sites using wearable sensors and may enable long-term non-
invasivemonitoring of intracranial pressure (ICP). However, it is still unknown if ICP
changes can lead to waveform changes in intracranial PPG signals.

Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG
signals of different cerebral perfusion territories.

Methods: Based on lump-parameter Windkessel models, we developed a
computational model consisting three interactive parts: cardiocerebral artery
network, ICP model, and PPG model. We simulated ICP and PPG signals of
three perfusion territories [anterior, middle, and posterior cerebral arteries
(ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four
intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and
75% decrease). We calculated following PPG waveform features: maximum,
minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive
index (RI), and max-to-mean ratio (MMR).

Results: The simulated mean ICPs in normal condition were in the normal range
(8.87–11.35 mmHg), with larger PPG fluctuations in older subject and ACA/PCA
territories. When intracranial capacitance decreased, the mean ICP increased
above normal threshold (>20mmHg), with significant decreases in maximum,
minimum, and mean; a minor decrease in amplitude; and no consistent change in
min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG
signals of all perfusion territories. Therewere significant effects of age and territory
on all waveform features except age on mean.

Conclusion: ICP values could significantly change the value-relevant (maximum,
minimum, and amplitude) waveform features of PPG signals measured from
different cerebral perfusion territories, with negligible effect on shape-relevant
features (min-to-max time, PI, RI, andMMR). Age andmeasurement site could also
significantly influence intracranial PPG waveform.
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1 Introduction

Intracranial pressure (ICP), defined as the pressure within the
craniospinal compartment, is an important physiological parameter
that reflects the biomechanical status of the brain. ICP is derived
from cerebral blood and cerebrospinal fluid (CSF) circulatory
dynamics. ICP can be significantly changed in many neurological
diseases (Czosnyka and Pickard, 2004). For decades, ICPmonitoring
has been a cornerstone of traumatic brain injury (TBI) management
(Stocchetti et al., 2014). Currently, external ventricular drain (EVD)
is considered as the gold standard of ICP monitoring due to its
accuracy with additional function of CSF drainage (Harary et al.,
2018). In EVDmeasurement, the ICP is transmitted into an external
saline-filled tube through a strain-gauge transducer for pressure
measurement. The insertion of the tube is invasive with a 5%–7%
risk of hemorrhage, and is difficult to perform in some patients with
inherently small ventricles size (Harary et al., 2018). To ease the
postoperative ICP monitoring especially in TBI patients, it is
essential to develop non-invasive methods of ICP monitoring.

The photoplethysmography (PPG) technology has been
applied in the daily monitoring of many physiological
parameters and may enable non-invasive long-term ICP
monitoring. The cyclic fluctuations of a PPG signal reflect
volumetric changes in the microcirculation, which is regulated
by many physiological factors, e.g., respiratory pattern, arterial
stiffness, and the mechanical properties of surrounding tissues.
Therefore, PPG signals derived from the distal area of intracranial
arteries might reflect ICP-related changes in cerebral
microcirculation. The infra-red PPG signals measured from
extracranial skin surface could reflect the intracranial
microcirculation in different cerebral perfusion territories (Viola
et al., 2013). A recent pilot study showed that the PPG signal
recorded non-invasively from forehead can detect apnea-induced
cerebral blood flow oscillations (Alex et al., 2019). In a pilot study
on 14 subjects, Morgan et al. (2021) estimated ICP using retinal
vein PPG signal and achieved clinically acceptable accuracy
(−0.35 ± 3.6 mmHg). These studies indicated that intracranial
PPG signals measured from extracranial areas might be a
promising tool for non-invasive ICP monitoring. However, it is
uncertain if ICP changes could generate waveform changes of
intracranial PPG signals, with a lack of theoretical basis and in-
depth analysis from a physiological perspective.

Computational modelling and simulation based on
biomechanical and hemodynamic theories have been widely
applied in the investigation of intracranial blood flow and ICP
(Liu et al., 2020b). Especially, the Windkessel model is a highly
simplified one where the resistance and compliance in the
circulatory system are simulated as resistors and capacitors in a
circuit (Alastruey et al., 2007). The unidirectional flow in the CSF
circulation can be simulated using diode elements (Ursino and Di
Giammarco, 1991). Recently, data-driven algorithms were proposed
to improve the accuracy of ICP simulation. It was suggested that ICP
can be computationally estimated from the cerebral blood flow and
blood pressure (Kashif et al., 2012). However, the biomechanical
properties of arteries are non-linear and age-dependent, which was
not fully considered in existing models of ICP simulation. Moreover,
the hemodynamic data in existing models were from invasive
measurement. The relationship between non-invasively measured

intracranial PPG and ICP has not been comprehensively
investigated using computational modelling.

To fill this research gap, we aim to develop a computational
model of intracranial PPG signals and investigate if the changes in
ICP could lead to the changes in intracranial PPG signals of different
cerebral perfusion territories (Figure 1).

2 Methods

2.1 Overview of the computational model

As shown in Figure 1A, we hypothesize that the changes in ICP
can lead to waveform changes in intracranial PPG signals. To verify
this hypothesis, we developed a computational model to simulate the
PPG signals of different cerebral perfusion territories in different
ICP conditions. The computational model consists of three parts: A
cardiocerebral artery network, an ICP model, and a PPG model
(Figure 1B). The cardiocerebral artery network simulated the blood
flow of intracranial arteries and the local blood pressure, which were
transmitted to the ICP and PPG models as model input. The ICP
signal derived from the ICP model was transmitted back to the
cardiocerebral artery networks to generate the boundary conditions.
At the same time, the ICP model generates the input of the PPG
model at microcirculatory level. In summary, the three parts are
interactive. All the components of the three parts are based on lump-
parameter Windkessel models. The computational models are

FIGURE 1
(A) Scientific hypothesis of this paper: changes in ICP values can
lead to PPG waveform changes which can be computationally
simulated. (B) Structure of the computational model. The arrows show
the data flows. ICP: intracranial pressure; PPG:
photoplethysmography.
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detailed in the following subsections. The parameters in the models
are listed in Table 1.

2.2 Cardiocerebral artery network

The cardiocerebral arterial network was based on the classic
brain circulation model proposed by Alastruey et al. (2007), with
outlet boundary conditions of intracranial arteries modified to

include the effect of ICP on cerebral microcirculation. The
cardiac output flow (i.e., the inflow of the aorta) was used as the
inlet boundary condition. The structure of the artery network starts
from the aorta and includes the major branches of intracranial
arteries (Figure 2). The intermediate (i.e., connecting other artery
segments without any inlet or outlet) branches included: ascending
aorta, aortic arch (in two segments), brachiocephalic artery,
common carotid arteries (left and right), subclavian arteries (left
and right), vertebral arteries (left and right), internal carotid arteries

TABLE 1 Data sources of the parameters in the computational models.

Models Data sources and references of the parameters

Cardiocerebral artery network Anatomic parameters of arteries: Table 1 of (Alastruey et al., 2007); Calculation of parameters of Windkessel elements: Eqs 1–3
and Table 1 of (Zhang et al., 2014)

Age-dependent non-linear arterial capacitance Parameters in age-dependent capacitance of aorta: Table 1 and Eq. 5 of (Wesseling et al., 1993); Parameters of age-dependent
capacitance of CCA: basic function from Table 1 and Eq. 1 of (Kopustinskas et al., 2010), References pressure (mean pressure of
healthy adults) from the subsection “Theoretical Background” and Eq. 1 of (Giudici et al., 2022), age-dependent capacitance
changes from Figure 2 of (Vriz et al., 2017)

ICP model Parameters of circuit elements in the ICP model: Table 1 of (Lee et al., 2015); Piecewise ICP function: References ICP value
(5 mmHg) from (Ryding, 2017) and (Alperin et al., 2000); parameter in the inverse proportional function from the subsection
“Assignment of Parameter Basal Values” of (Ursino and Lodi, 1997) and Figure 8 of (Ursino and Di Giammarco, 1991)

PPG model Values of distal resistance and capacitance: same as those in cardiocerebral artery network; Ratios between different
components: Table 1 of (Tanaka, 2022)

CCA, common carotid artery; ICP, intracranial pressure; PPG, photoplethysmography.

FIGURE 2
The structure of cardiocerebral artery network and the boundary conditions. The illustration of artery structure is adapted from Figure 2 of (Kang
et al., 2021).
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(left and right, both in two segments), basilar artery, as well as the
connecting arteries in the Circle of Willis, i.e., posterior
communicating arteries (left and right), anterior communicating
artery, and the first segments of anterior and posterior cerebral
arteries (left and right, for both). Each intermediate artery was
simulated using a three-element Windkessel model which consisted
of a resistor, a capacitor, and an inductor that reflected the
resistance, capacitance, and inductance of an elastic artery wall,
respectively (Figure 2). The anatomic properties of the arteries and
the methods of calculating the values of circuit elements can be
found in Alastruey et al. (2007) and Zhang et al. (2014) (Table 1).

Regarding the outlets, the extracranial ones included thoracic
aorta, brachial arteries (left and right), and external carotid arteries
(left and right). These arteries were connected to a 3-element
Windkessel model (Figure 2). The resistance included peripheral
and distal ones which denoted the flow resistances in the artery and
microcirculation, respectively. The outlet pressure was the venous
pressure (5 mmHg) which was simulated by a voltage source. For the
intracranial arteries (anterior, middle, and posterior cerebral
arteries, left and right for all), the outlet pressure at
microvascular level (i.e., prearteriole pressure) was derived from
the ICP value generated by the ICP model.

2.3 Age-dependent non-linear arterial
capacitance

To simulate the artery blood flow in different age groups, we
used age-dependent parameters in the Windkessel models of aorta
and common carotid arteries.

In the aorta model, we used the pressure-dependent Windkessel
capacitance element proposed by Wesseling et al. (1993). The
capacitance value depends non-linearly on the pressure:

CA P( ) � Amax · L
πP1 1 + P−P0

P1
( )2[ ] (1)

where Amax is the maximal cross-sectional area, approximated as
5.8 cm2 for male adults, L is the length of aorta, P denotes the local
blood pressure, whilst parameter P0 and P1 are age-dependent
reference pressure values.

P0 � 76 − 0.98*age( )mmHg age ∈ 20, 70[ ] (2)
P1 � 57 − 0.44*age( )mmHg age ∈ 20, 70[ ] (3)

The biomechanical relationship between the capacitance of
common carotid artery and local blood pressure is described by a
non-linear exponential function:

CCCA P( ) � a · e−b·P t( ) (4)

where a � 3.14ml*mmHg−1, b � 0.018mmHg−1, and P(t) denotes
transient value of blood pressure in common carotid artery which is
a major source of the capacitance effect on intracranial blood flow
(Kopustinskas et al., 2010).

CCCA P( ) � CCCA Pref( ) · e−b· P t( )−Pref[ ]
· 1.3 − 0.012* age − 20( )[ ] age ∈ 20, 70[ ] (5)

where Pref � 100mmHg is an established value for mean pressure
of healthy adults and has been used in computational simulation
studies (Giudici et al., 2022). The age-dependent function is based
on a large-scale physiological measurement of common carotid
artery stiffness in 900 healthy subjects (Vriz et al., 2017).

2.4 ICP model

The computational model for continuous ICP simulation was
based on the classic model proposed by Ursino and Di Giammarco
(1991) which has been widely used in ICP estimation (Lee et al.,
2015). The model includes resistors and capacitors to simulate the
overall resistance and capacitance of intracranial arteries,
microcirculation, and veins, respectively (Figure 3). Two diodes
were used to simulate the unidirectional flow in the CSF circulation.

The intracranial capacitance is a piecewise function of ICP,
which is a constant when ICP< 5mmHg (venous pressure) and
depends non-linearly on ICP when ICP≥ 5mmHg:

C �
7.502*10−9*RatioCD ICP ∈[0, 666.5)
5*10−6

ICP
*RatioCD ICP ∈ [ 666.5,+∞)

⎧⎪⎪⎨⎪⎪⎩ (6)

where the unit of ICP and intracranial capacitance are Pa and
m3/Pa, respectively. RatioCD denotes the ratio of intracranial
capacitance decrease, which is used to simulate the pathological
conditions due to the brain injury with acute increase of brain tissue
volume where ICP increases. The connection point of the two
subintervals (5 mmHg) was modified from the reference pressure
of 6 mmHg in (Ryding, 2017) to match the reference venous
pressure. The reference ICP value of 5 mmHg is also in
accordance with the clinical observation after the withdrawal of
CSF (Alperin et al., 2000). Both normal and pathological situations
were simulated, therefore, the parameter in the inverse proportional
function (5*10−6 m3, or 5 ml) was set marginally below the normal
range (6.66–20 ml) derive from (Ursino and Lodi, 1997) and within
the range used in the simulation of pathological situations
(1.92–6.41 ml) (Ursino and Di Giammarco, 1991).

2.5 PPG model

The PPG model was based on a cerebral microcirculation model
including arteriole, capillary, and venule components (Figure 4)
(Tanaka, 2022). The ratios of element values among the different
components were from physiological measurement results of human
cerebral circulation (Mandeville et al., 1999). The inputs of the
model include prearteriole pressure and ICP generated by the
cardiocerebral artery network and ICP model, respectively. The
PPG signals were generated from distal perfusion territories of
anterior, middle, and posterior cerebral arteries (ACA, MCA, and
PCA) on the left side. For the territory of a cerebral artery (e.g.,
MCA), the arteriovenous anastomoses in brain tissues were
simulated by a resistance between the middle points of arteriole
and venule components (RAVA-MCA in Figure 4). The PPG signal
was simulated as the voltage along the capacitance elements in the
Windkessel model (Figure 4). Therefore, the simulation result
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(“simulated PPG”) reflects the pressure drop on microvascular level
induced by the volumetric changes from which the PPG signal
originates, whereas the unit is in Pa instead of V or mV.

2.6 PPG waveform features

To quantitatively investigate the ICP-induced changes of PPG
waveform, we used five waveform features, as shown in Figure 5.
Besides the maximum and minimum (i.e., baseline) values, we
calculated the mean value as the integration of the PPG signal in

a cardiac cycle divided by the length of a cardiac cycle (T):
∫T

0
PPG(t)dt
T ,

where PPG(t) is the transient value of simulated PPG signal, and
T � 0.8s. The amplitude was defined as the difference between the
maximum and the minimum: Amplitude � PPGmax − PPGmin.
The min-to-max period was defined as the length of the period
from minimum to maximum, which was named as rising time in
existing studies on finger PPG signals where the systolic period was
clearly observable (Khalid et al., 2020).

Based on the directly measured basic waveform features, we

calculated three secondary waveform features which have been

applied in hemodynamic research: pulsatility index (PI):

PI � PPGmax−PPGmin
PPGmean

; resistive index (RI): RI � PPGmax−PPGmin
PPGmax

,

and the ratio between maximum and mean values of PPG

signal, i.e., max-to-mean ratio (MMR): MMR � PPGmax
PPGmean

. The

definitions of PI and RI were in accordance with those in 4D

flow magnetic resonance imaging (MRI) observation of cerebral

microcirculation based on flow velocity (Rivera-Rivera et al.,

2015).

2.7 Simulation and evaluation

The simulation was performed on MATLAB-Simulink
(Version: r2021a, MathWorks, Natick, MA, United States).
We simulated the ICP and PPG signals in male subjects of
three ages: 20, 40, and 60 years old. The simulation was repeated
in four pathophysiological conditions of intracranial

FIGURE 3
ICP model. (A) Electric analog of the human intracranial hydrodynamics for ICP simulation. R1-1, R1-2, and Ci-1: hydraulic resistance and
compliance of the proximal arterial cerebrovascular bed (basal brain arteries and large pial arteries), respectively; R2-1, R2-2, and Ci-2: hydraulic
resistance and compliance of the distal arterial cerebrovascular bed (medium and small pial arteries), respectively; Cic: intracranial tissue compliance; Cvi:
intracranial venous compliance; Rpv: hydraulic resistance of the proximal venous cerebrovascular bed; Rdv: hydraulic resistance of the distal venous
cerebrovascular bed (lateral lacunae and bridge veins); Rf: CSF formation resistance; Ro: CSF outflow resistance; Rve and Cue: hydraulic resistance and
compliance of the extracranial venous pathways; Pcv: central venous pressure. (B) The piecewise function between ICP and intracranial capacitance.
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capacitance decrease: 0 (i.e., normal status), 25%, 50%, and 75%.
To verify the model, the ICP values simulated at normal
condition were compared with the results of existing
physiological measurement. Each simulation lasted 30 s. To
avoid any initial effect, the features were measured in the first
cardiac cycle after 10 s when the signal was stable. The PPG
waveform features derived were quantitatively compared
between different intracranial capacitance conditions to
investigate if ICP changes could lead to the waveform changes
of intracranial PPG signals.

3 Results

3.1 Model validation: ICP and PPG
waveforms in different ages

As shown in Figure 6, the simulated ICP signals of 20, 40, and
60 years old subjects with normal intracranial capacitance have
minor differences in waveform but are similar in range:
9.31–11.12, 9.13–11.35, and 8.87–11.68 mmHg, with nearly
identical mean values of 11.12, 11.35, and 11.68 mmHg
(Figure 7). These mean ICP values were within the normal range
of healthy adults: 10–15 mmHg (Rangel-Castillo et al., 2008).

As to the PPG waveform, it can be observed that PPG signals of
ACA, MCA, and PCA territories are similar in amplitude and baseline,
but different in waveform (Figure 6). There is no sharp fluctuations in
the PPG waveform, which is in accordance with the fact that high-
frequency components (i.e., sharp fluctuations) are absorbed by the
capacitance of large arteries before arriving arterioles. The results of
simulated PPGwaveform features in Table 2 are in accordance with the
4DMRI flow observations that PI is large in PCA comparedwithMCA,
and in older subjects (Rivera-Rivera et al., 2015).

As a more general case of all the simulations, Figure 7 shows the
simulated waveforms of arterial blood pressure, PPG, and ICP of a
40 years old subject with 25% decrease of intracranial capacitance. It
can be observed that the dicrotic notch and secondary peak are
blurred with a flat systolic peak in the arterial blood pressure of
intracranial arteries, which reflects the buffering effect of
intracranial capacitance on the pulse wave (i.e., neutralization of
backward wave) and is basically in accordance with existing
modelling studies (Blanco et al., 2017; Schollenberger et al., 2021).

FIGURE 4
The structure of microcirculatory model to generate the PPG signal in MCA territory. RA1-MCA and RA2-MCA: equally divided arteriole resistances.
RC-MCA: capillary resistance. RV2-MCA and RV1-MCA: equally divided venule resistances. CC-MCA: capillary capacitance. CV1-MCA and CV2-MCA:
equally divided venular capacitances.

FIGURE 5
Basic waveform features of a simulated PPG signal in a cardiac
cycle.

Frontiers in Physiology frontiersin.org06

Liu et al. 10.3389/fphys.2023.1085871

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085871


Therefore, the model can reliably simulate the ICP values in
subjects with different ages, and reflect the waveform features of
human cerebral microcirculation in different perfusion
territories.

3.2 ICP values in different intracranial
capacitance conditions

As shown in Figure 8, ICP increases when intracranial
capacitance decreases. Between different ages, the differences in
maximum and minimum of ICP are very limited, while the
difference in mean ICP is even negligible. With 50% decrease of
intracranial capacitance, the mean values of ICP in all three ages are
above 15 mmHg (16–16.1 mmHg), which is beyond the normal
range (7–15 mmHg). With 75% decrease of intracranial capacitance,
the mean values of ICP in all three ages are marginally beyond
20 mmHg (20.2–20.3 mmHg) where clinical intervention is
recommended (Rangel-Castillo et al., 2008).

3.3 PPG waveform features in different
intracranial capacitance conditions

Figure 9 and Figure 10 illustrate the effects of age and
intracranial capacitance condition on the basic and secondary
PPG features in different cerebral perfusion territories.

In Figure 9, the maximum, minimum, and mean values
significantly decrease with intracranial capacitance, while the ICP
increases from <11.5 mmHg to hypertensive condition (>20 mmHg).
Meanwhile, there is a minor decrease in amplitude. In contrast, there is
no consistent changes in min-to-max time or any secondary waveform
feature (Figure 10) where themaximal relative difference is less than 2%
among all intracranial capacitance conditions.

On the other hand, we observed significant effects of age and
cerebral perfusion territory on all the waveform features. When age
increases, maximum, amplitude, PI, RI, andMMR are higher, while the
minimum and min-to-max time are lower, with negligible changes of
themean. Compared with PCA andACA territories,MCA territory has
lower maximum, minimum, amplitude, PI, RI, and MMR, with lower
age-relevant differences in min-to-max time (Figure 9 and Figure 10).

4 Discussion

4.1 Summary of results

In this study, based on lump-parameterWindkessel models with
age-dependent non-linear elements, we simulated the effect of ICP
increase due to intracranial capacitance decrease on the waveform
features of PPG signals of different cerebral perfusion territories in
subjects of different ages. The simulation results showed that ICP
changes could significantly influence the maximum, minimum,
and amplitude of PPG signals, with limited effect on min-to-max

FIGURE 6
Simulated ICP and PPG waveforms during five cardiac cycles (10–14s) in 20, 40, and 60 years old healthy male subjects with normal intracranial
capacitance.
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FIGURE 7
Arterial blood pressure, PPG, and ICP waveforms in a 40-years old subject with 20% decrease of intracranial capacitance. The illustration of artery
structure is adapted from (Kang et al., 2021).

TABLE 2 Simulated PPG waveform features in normal intracranial capacitance.

ACA MCA PCA

Age (years) 20 40 60 20 40 60 20 40 60

PI 0.134 0.178 0.222 0.114 0.147 0.182 0.137 0.181 0.226

RI 0.127 0.165 0.201 0.108 0.138 0.167 0.130 0.167 0.205

MMR 1.052 1.081 1.104 1.047 1.069 1.085 1.050 1.079 1.104

PI, pulsatility index; RI, resistive index; MMR, max-to-mean ratio.

FIGURE 8
The maximum, minimum, and mean values of ICP in a cardiac cycle in different intracranial capacitance conditions.
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time, PI, RI, and MMR. As far as we know, this is the first study that
quantitatively investigates the effect of ICP on the waveform features
of intracranial PPG signals using computational simulation.

4.2 Clinical need on non-invasive ICP
monitoring: A wearable pathway via PPG?

Recent years have witnessed the development of non-invasive
ICP monitoring technologies, including transcranial Doppler

measurement of cerebral blood flow, near-infrared spectroscopy
(NIRS), tympanic membrane displacement (TMD) (Lee et al., 2020),
ophthalmodynamometry (Nag et al., 2019), optic nerve sheath
diameter (ONSD) analysis based on ultrasound (i.e., transcranial
Doppler) or radiological [e.g., computed tomography (CT), MRI,
and optical coherence tomography (OCT)] data, and other imaging-
based methods (e.g., analysis of CT-derived ratio of CSF volume to
the total intracranial volume) (Harary et al., 2018; Nag et al., 2019).
These techniques enable the non-invasive measurement of ICP in
clinical practice. However, these methods depend on expensive

FIGURE 9
The basic waveform features of the simulated PPG signals in different intracranial capacitance conditions.
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devices or clinical imaging data, which require professional skills of
operation and data processing. Considering the risk of infection and
limited medical resources, the postoperative ICP monitoring was
often performed for a couple of days or a week for invasive and non-
invasive methods, respectively, despite its clinical significance
(Chang et al., 2019; Chang et al., 2021). To achieve better
postoperative management of TBI patients, there is a high
clinical need for easy-to-perform and low-cost techniques of
non-invasive long-term ICP monitoring.

Compared with existing techniques, PPG signals can be detected
from different body sites using low-cost wearable sensors without
any need for expertise or training. PPG technology has been widely
used in healthcare monitoring and early detection of cardiovascular
diseases (Allen, 2007; Liu et al., 2019). Transcranial Doppler
ultrasonography (TCD) and servo-controlled finger PPG have
been applied in continuous bedside monitoring of cerebral blood
flow and blood pressure, as well as the evaluation of cerebral
autoregulation (Aries et al., 2010). Some pilot studies showed
that PPG waveform features may indicate pathological
hemodynamic changes in cerebral circulation on which ICP has
a strong influence. The amplitude of PPG signals measured from
bilateral index fingers is associated with cerebral artery stenosis
(Kang et al., 2018). The TCD-derived PI and PPG waveform are

associated with cerebrovascular hemodynamic changes in the
patients with the disorder of consciousness (Liu et al., 2016).
Morgan et al. (2014) developed a modified PPG system using
video recordings taken through an ophthalmodynamometer and
timed to the cardiac cycle to investigate the phase lag between retinal
venous and arterial pulses. Based on this modified PPG system,
Abdul-Rahman et al. (2020) recently estimated ICP value from
retinal vascular pulse wave attenuation. Abnormal morphological
and biomechanical properties of retinal veins have been proven to be
biomarkers to guide diagnosis and management of elevated ICP
(Moss, 2021). In accordance with existing studies, our results
provided new evidence that waveform features (i.e., maximum,
minimum, mean, and amplitude) of intracranial PPG signals
could reflect the changes in ICP. Therefore, PPG technology may
enable the non-invasive long-term ICP monitoring.

Meanwhile, the majority of existing studies on PPG-assisted
ICP monitoring are based on the PPG signals of fingers, retina, or
other extracranial sites. The transcranial brain PPG technology
was developed to study the venules of cerebral cortex (Viola et al.,
2013) but has not been applied in ICP monitoring. Our results
provide new reference on ICP estimation based on intracranial
PPG signals which directly reflect the status of cerebral
microcirculation.

FIGURE 10
The secondary waveform features of the simulated PPG signals in different intracranial capacitance conditions.
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4.3 ICP-relevant PPG waveform features

We observed that ICP significantly influenced the value-related
waveform features (i.e., maximum, minimum, mean, and
amplitude), with negligible effect on shape-related ones
(i.e., min-to-max time, PI, RI, and MMR). Especially, the ICP
changes did not generate any consistent differences in PI, which is
in accordance with Fernando et al.‘s observation in a recent
systematic review that PI derived from TCD signal (TCD-PI)
has poor accuracy in estimating ICP (range of area under the
receiver operating characteristic curve: .550–.718) (Fernando et al.,
2019). Here we try to provide an initial explanation on this
phenomenon from a physiological perspective based on our
computational model. The changes in intracranial capacitance
influence the ICP, thus the boundary conditions of intracranial
arteries in the cardiocerebral artery network. However, the
fluctuations of ICP signals in a cardiac cycle are limited
(amplitude<5 mmHg, Figure 6 and Figure 8). Thus, the increase
of ICP changes the value of outlet pressure in the model, without
generating much pulsatility at the outlets. On the other hand, ICP
is much lower in value than the blood pressure, which does not
change the biomechanical properties of the vessel wall on both
macro- and microvascular levels. Therefore, ICP can significantly
change the value-related PPG waveform features of ICP with
minor effect on the shape-related ones.

4.4 Role of other physiological factors in
ICP-induced PPG waveform changes

We observed strong effects of age and measurement site
(i.e., cerebral perfusion territory) on intracranial PPG
waveform features. The PPG waveform depends on many
physiological features including age, measurement site, blood
pressure, respiratory pattern, and neural activities (Liu et al.,
2020a). The biomechanical properties of the cardiovascular
system (e.g., arterial stiffness) depends on the age. In Figure 9,
age-related changes in PPG waveform features are more
significant than ICP-related ones. Age-adjusted analysis can be
considered in PPG-based ICP estimation. However, the effect of
age on the mean is negligible, which indicates that the normal
intensity of cerebral microcirculation is unaffected by age (Cidis
Meltzer et al., 2000).

PPG waveform also strongly depends on the blood pressure
value and can be used for blood pressure estimation (Allen, 2007).
The combination of TCD and blood pressure showed much higher
accuracy than the TCD-PI method in estimating ICP (Fernando
et al., 2019). Ruesch et al. (2020) investigated the estimation of ICP
based on cerebral blood flow measured by diffuse correlation
spectroscopy, and found an obvious improvement in accuracy
when mean arterial blood pressure was included (R-squared
values: .82 and .92). Furthermore, the ICP-induced dysfunction
of cardiorespiratory system and cerebral autoregulation can lead
to complex changes in cerebral microcirculation and resultant PPG
waveform (Winklewski et al., 2019). Therefore, other physiological
factors and their interactions deserve further consideration in
investigating the relationship between ICP and PPG waveform
features.

4.5 Towards better accuracy:
Individualization of arterial parameters and
venous model

The proposedmodel consists of 33 artery segments from aorta to
the Circle of Willis. To generate reliable simulation results for
clinical application, the biomechanical properties of the arteries
need to be evaluated individually in different subjects. In this model,
the biomechanical and anatomic properties of the arteries were
derived from some earlier physiological measurement results
(Stergiopulos et al., 1992; Fahrig et al., 1999; Moore et al., 2006)
where the properties distributed in wide ranges. We noted that the
parameters of vascular anatomy in Alastruey et al. (2007) and Zhang
et al. (2014) models were not exactly the same. All the values fell in
the normal ranges, whilst the differences in anatomic parameters
provided a chance to observe the effect of individual vascular
anatomy on the simulated ICP and PPG signals. Figure 11 shows
the simulation results of a 40-year old male subject with 25%
decrease in intracranial capacitance based on Alastruey et al.
(2007) and Zhang et al. (2014) arterial models (scenarios 1 and
2, respectively), with the parameters of other parts identical. The
ICPs of both scenarios are similar in range but different in
waveform. The PPG signals of both scenarios are different in
range and waveform, whereas, similar trends can be observed,
i.e., the PPG of MCA territory is lower in amplitude, maximum,
and minimum compared with those of ACA and PCA territories.
Therefore, this model initially indicated the possibility of PPG-based
ICP estimation, while there is a long way to explore towards
individualization of the model where patient-specific anatomic
data are essential.

In addition, the simulated ICP has one or two peaks, while in
vivo ICP often has three peaks in a cardiac cycle: P1 (percussion
wave), P2 (tidal wave), and P3 (dicrotic wave) (Harary et al., 2018).
This might partly due to the simplification of venous circulation and
its interaction with ICP. Although the precise origin of ICP peaks is
not fully understood yet, P2 and P3 are often thought relevant to the
retrograde venous pulse of the jugular against the cortical veins
(Rodríguez-Boto et al., 2015). In the classic ICP model which we
adopted, the cerebral venous system was simplified as a unilateral
flow dependent on ICP (Ursino and Di Giammarco, 1991; Lee et al.,
2015). Some advanced mathematical models have been proposed to
describe the non-linear hemodynamic properties of cerebral veins
(Toro, 2016). However, these models have not been fully validated
on patients with different ICP levels. Considering the complexity
and individual difference of cerebral venous system, patient-specific
hemodynamic data (e.g., MRI-derived flow) are essential in the
individualization of the cerebral circulation model measurement
(Müller and Toro, 2014). A computationally efficient model that
reflects the interaction between ICP and intracranial venous system
is essential for improving the accuracy of ICP waveform estimation.

4.6 Limitations and future directions

There are some limitations in this pilot study. First, as
aforementioned, the model was an idealized one where the values
of elements and boundary conditions were derived from literature.
Considering the individual difference in waveform which may

Frontiers in Physiology frontiersin.org11

Liu et al. 10.3389/fphys.2023.1085871

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085871


involve other confounders, we did not include the analysis of focal
waveform features, e.g., the location of maximal/minimal first or
second derivatives. These features may reflect important
physiological information including neural activities (Khalid
et al., 2022) and cardiovascular pathophysiological changes
(Elgendi et al., 2018). Second, the Windkessel models were highly
simplified where the local hemodynamic changes within an arterial
segment or a perfusion territory could not be reflected. For
simplification, the aging effect was only considered in aorta and
big arteries. The aging effects on cerebral vasculature (Oudegeest-
Sander et al., 2014; Graff et al., 2021) and veins (Fulop et al., 2019;
Huang et al., 2021) were not included in the proposed model due to
the lack of comprehensive measurement results among subjects with
different ages and ICP levels. Cerebral autoregulation and
respiration can also significantly influence the dynamics of ICP
(Budohoski et al., 2012; Vinje et al., 2019). In addition, the ICP
model was simplified as a unidirectional flow system where the
interactions between cerebral ventricles were not included. The PPG
signals was also highly simplified as the pressure drop due to
volumetric changes. The optical and electronic components were
not included. In real-world scenarios, the PPG signals are sensitive
to many physiological and technical factors, e.g., motion artefact,
contact pressure, etc., which can significantly deform the PPG

signals (Fine et al., 2021). It needs further validation whether the
ICP-related changes can be reliably detected from the real-world
noisy PPG signals. Most importantly, the ICP values were generated
by setting different intracranial capacitance decrease levels, while an
elevated ICP could be generated by different pathological
mechanisms where multiple physiological factors are involved.

In future studies, by introducing patient-specific
biomechanical parameters and hemodynamic parameters as
boundary conditions, using more advanced biomechanical
models (e.g., venous valves, starling resistors) especially in
cerebral venous system (Toro et al., 2022), adding optical
sensing components, and including more physiological factors
(e.g., respiratory regulation), the relationship between ICP and
the waveform features of intracranial PPG signal could be further
investigated in different pathological conditions.

5 Conclusion

ICP values could significantly change the value-relevant
(maximum, minimum, mean, and amplitude) waveform features
of PPG signals measured from different cerebral perfusion territories,
with negligible effect on shape-relevant features (min-to-max time, PI, RI,

FIGURE 11
The ICP and PPG signals simulated in two scenarios with different values of the elements in cardiocerebral artery network.
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andMMR). In addition, age andmeasurement site significantly influence
all PPG waveform features except the mean.
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