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This review includes current and updated information about various ground-based
microgravity models and their impact on the human sensorimotor system. All known
models of microgravity are imperfect in a simulation of the physiological effects of
microgravity but have their advantages and disadvantages. This review points out that
understanding the role of gravity in motion control requires consideration of data
from different environments and in various contexts. The compiled information can
be helpful to researchers to effectively plan experiments using ground-basedmodels
of the effects of space flight, depending on the problem posed.
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1 Introduction

Gravity is an important factor that shaped life on Earth. Space flights (SFs) made it possible
to study the reaction of living systems to changes in gravity. Despite this, even after 60 years of
human space exploration, many physiological mechanisms of adaptation to microgravity
remain unknown. Few opportunities for SFs, high cost, and long intervals between
launches complicate space experiments with human participation. Ground-based models of
key SF factors make it possible to design, replicate, or confirm studies under controlled
conditions to draw informed conclusions about the effect of microgravity on the human body
(Reynolds and Shelhamer, 2020). Also, ground-based models are necessary to predict health
risks and to develop and select means to prevent the adverse effects of microgravity.

The sensorimotor system includes all afferent, efferent, and central components of
integration and processing. Although these processes may impact cognition and emotion
contribute, our work focus on the motor control system.

Among the factors that can cause the negative impact of SF on the human sensorimotor
system, changes in the activity of the sensory systems occupy an important place. In
weightlessness, the activity of afferent signals, such as body weight support or weight
differentiation, is almost eliminated. Signals from proprioception of the lower body are
weakened. At the same time, the otolith canal information without the gravity vector to act
on the otoconia differ from that on Earth during the execution of similar movements
(Kozlovskaya, 2018). In addition, signals from afferents may be distorted during adaptation
to microgravity exposure, as with changes in the density of otoconia, as shown by Boyle et al.
(2001), and changes in the synapses of type II hair cells identified by Ross (2000).
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Locomotor disturbances are a natural consequence of SF. The
noticeable instability of the gait among crew members is observed
even after relatively short expeditions (from 72 h to 16 days): the gait
becomes uncertain, legs are widely spaced, arms are kept apart, the
body shifts from side to side at every step (Gazenko et al., 1976;
Paloski et al., 1994; Reschke et al., 1998). Exposure to microgravity
leads to changes in many neurological areas, including changes in
perception, movement, cognition, and coordination (Moore et al.,
2019). Studies carried out on weightlessness identified a wide range
of changes in the muscle periphery—atony, atrophy, and decrease in
power and velocity characteristics (Kozlovskaya et al., 1984; Kohn
and Ritzmann, 2018). Each of these disturbances may influence the
work of the motor control systems (Kozlovskaya, 1976; Edgerton
et al., 2000) and be a factor in the development of disturbance of
postural regulation and precise locomotor coordination (Homick
et al., 1977; Paloski et al., 1994; Bloomberg and Mulavara, 2003;
Melnik, et al., 2006). The brain changes associated with SF are
complex because microgravity affects the brain through various
mechanisms, such as brain fluid shift, and vestibular dysfunction
(De la Torre, 2014; Penchenkova et al., 2019) have reported a
diminished association between the vestibular nuclei and sensory/
motor regions due to central adaptation which downregulates
vestibular input during space flight lessening sensory discord,
mitigating space motion sickness (Pechenkova et al., 2019). In
other studies, using magnetic resonance imaging (MRI) after
prolonged SF, signs of structural neuroplasticity and correction of
neurogenesis (Demertzi et al., 2016; Hasan et al., 2018), an increase
in the volume of white matter (Kramer et al., 2020) and the volume of
gray matter in the sensorimotor and motor areas of the brain
(Koppelmans et al., 2016) narrowing of the central furrow were
reported (Kramer et al., 2020). According to the study conducted by
Jillings et al. (2020a) MRI scans in cosmonauts, post-spaceflight
showed chiefly changes in gray matter due to volume shifts and white
matter volume expansion in the motor and coordination regions of
the brain (Jillings et al., 2020a). Also, post-flight studies done by Lee
et al. (2019) have demonstrated focal changes in white matter
microstructure within multiple sensory regions including
vestibular and proprioceptive processing. Normally the vestibular
system works in congruence with the cerebellum and eyes to
maintain spatial awareness. In SF, these facets are increasingly
challenged when compared to the rest of the central nervous
system (CNS; Van Ombergen et al., 2017a). Specifically, for the
vestibular system, the functionality of the otolith organs is more
affected than the semicircular canals due to their specialized role in
detecting linear accelerations (Cassady et al., 2016). This creates a
sort of space sickness, as the body now thinks there is much more
angular acceleration than linear, which can cause nausea, vomiting,
etc. just as motion sickness would. Within the first 2–3 days in SF up
to 60%–80% of astronauts experience space motion sickness which
can affect their operational performance (Mann et al., 2022).

Despite the above, astronauts and cosmonauts successfully
perform a high volume of physical activity during SFs. It would be
impossible without a profound reorganization of the sensorimotor
system, the mechanisms of which have not been sufficiently studied.
That requires further study human sensorimotor system in a ground-
based simulation of SF exposure.

Known ground-based models have different limits on the duration
of exposure and various effects on the sensorimotor system. This
review aims to discuss and summarize the influence of such

microgravity models as dry immersion, head-down bed rest,
parabolic flight, unilateral lower limb suspension, and immobilization.

The objectives of this work are to 1) describe the technology and
current possibilities of using each model, 2) describe current concepts
about the effects of these models on the human sensorimotor system,
and 3) define the main features of these models, determining their
selection in various experiments.

This review can help actualize the information that researchers
need to effectively design experiments using ground-based models of
SF effects, depending on the question posed.

2 Dry immersion

2.1 Technology overview

In the early 1970s Drs. E.B. Shulzhenko and I.F. Vill-
Villiams—two researchers from the Institute of Biomedical
Problems (Russia)—developed the dry immersion (DI) model
(Shulzhenko, 1975; Shulzhenko and Vill-Villiams, 1975).
Technology and specifics are detailed in Tomilovskaya et al. (2019),
and Navasiolava et al. (2011). The model suggests that the research
subject is immersed in a deep bathtub with thermoneutral water
(about 32°C–34.5°C) to the neck level in the supine position. The
participant is separated from the water by a waterproof fabric, which
surface area significantly exceeds the surface area of the water. The
folds of the waterproof fabric freely envelop the subject’s body from all
sides, while the bath is large enough (dimensions 2–3 × 1–3 × 1–2 m)
so that the subject does not touch its walls (Figure 1).

In other words, DI is based on the anti-gravity effect of water on
the human body immersed in it, which is known as Archimedes’
Principle: a body immersed in a liquid or gas is subjected to an upward
buoyant force (Archimedes’ force Fa) equal to the weight of the liquid
or gas displaced by the body. The buoyant force opposes gravity,
reducing the weight immersed in the water. This phenomenon makes
it possible to use DI to imitate weightlessness. The internal hydrostatic
pressures are exactly counterbalanced by those of the surrounding
water; hydrostatic compression induces a prompt thoracocephalic
fluid redistribution. Due to this, DI creates a factor of elimination
of the vertical vascular gradient and the effect of the body fluid
redistribution, similar to SF.

The DI can be considered one of the most widely used ground-
basedmicrogravity models (Tomilovskaya et al., 2019). Note that there
are other variants of the use of water immersion in scientific research
aimed at various problems. Solutions of sodium chloride or silicon
may be an immersion medium (Saenko et al., 2018). Immersion can be
wet—without the use of waterproof fabric (Kositsky and Avela, 2020).
Immersion can also be in a standing position (Prefaut et al., 1976;
Leeder et al., 2015) or sitting (Leeder et al., 2015). The temperature of
the immersion medium can be cold (Sánchez-Ureña et al., 2018; Ihsan
et al., 2020; Kositsky and Avela, 2020) or warm (An et al., 2019;
Sugawara and Tomoto, 2021). Immersion can be for the entire body
with the head (Elia et al., 2021) or a part of the body (Roberts et al.,
2015; Engelland et al., 2020). It is worth mentioning the existence of
the “Trout” thin-walled immersion suit equipped with an inflatable
neck pillow and designed to create postural, vestibular, and
operational conditions similar to SFs. Its main difference from DI
is the exclusion of strict hypokinesia and maintenance of vertical
posture (Genin et al., 1988).
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The above–mentioned studies with immersion in cold water in
various body positions are mainly aimed at studying the effects of the
influence of ambient temperature on the restoration of physiological
parameters after training, in hot water to search for health effects on
the body during such immersion. Immersion in a medium with a
higher density compared to water is used to increase the hypotensive
effect of immersion in patients with high blood pressure. Studies with
immersion in standing and sitting positions, as a rule, do not have the
necessary weight unloading to simulate the effects of microgravity on
motor control.

The wet immersion method was widely used as a microgravity
model before the DI approach. The appearance of DI made it possible
to use long exposures (up to 56 days), whereas when using the wet

model, immersion could hardly last more than a few hours
(Tomilovskaya et al., 2019). Willis showed that local water
exposure at test skin sites of 4 cm2 cause subacute dermatitis in as
little as 72 h (Willis, 1973). During whole-body immersion, skin
maceration might occur faster. Nevertheless, for almost 40 years
(from 1980 to 2018), DI experiments had no more than seventh
days. Only in 2018–2019, a complex 21-day DI study with 10th male
volunteers was conducted at the Institute of Biomedical Problems
(Russia, Tomilovskaya et al., 2021). Although this long experiment
allowed the researchers a deeper look into the effects of microgravity
on the human body, there were some challenges, for example,
hyperhydration maceration of the skin of the feet covered by the
fabric. Petechial rashes in the distal parts of the lower limbs appeared

FIGURE 1
Biomechanical factors effecting the sensorimotor system under real microgravity and onground simulation.
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during the first 2–3 min after verticalization of the subjects after 10th
days of DI exposure, indicating possible changes in the
microvasculature under these conditions (Tomilovskaya et al., 2021).

A landmark event for this model was the first 3-day DI experiment
with the participation of six female subjects in 2020 in Russia
(Nosikova I. et al., 2021; Tomilovskaya et al., 2021) since earlier DI
experiments were performed only in males. Experiments involving
females continue. For example, in 2021th in the Medes space clinic
(Toulouse, France), 20 female subjects participated in a 5-day DI study
(https://www.esa.int/ESA_Multimedia/Images/2021/09/Female_
volunteer_in_dry_immersion_study), in 2022nd in the Institute of
Biomedical Problems (Moscow, Russia), 16 female subjects also
participated in a 5-day DI study.

2.2 Impact on sensorimotor system

The key factors affecting the sensorimotor system in DI are
supportlessness, axial unloading, and hypodynamia (Kozlovskaya
et al., 2018). Important evidence for this is the effectiveness of
support stimulation (Miller et al., 2004; Kozlovskaya et al., 2007)
or the axial loading suit (Rukavishnikov et al., 2017; Sosnina et al.,
2020) in the prophylaxis of sensorimotor effects after DI. However, it
is possible that the elimination of the vertical vascular gradient in DI
can also affect human sensorimotor function (Amirova, 2018).

In keeping with the objective of describing the effects from
central to peripheral, let us consider the results of a study of the
rhythmic activity of the brain during DI (Lazarev et al., 2018). The
power of oscillations of the alpha range (8–13 Hz) on the
electroencephalogram (EEG) was shown to increase significantly
on the fourth and fifth days of DI exposure, whereas significant
changes in the theta (4–7 Hz), beta (14–19 Hz) and delta (1–3 Hz)
ranges, as well as in the total absolute power of EEG, were not
observed. The results of this study indicate that the changes in
relative power were due to changes in the general pattern of neural
activity and not due to a local independent increase in absolute
power in the alpha range. The authors suggested that the increase in
the power of alpha rhythm was not due to changes in any particular
physiological system, but rather due to a decrease in afferent
signals. The observed increase in alpha oscillations is also found
in space flight and may be a reflection of the modulation of activity
in the vestibular network due to a decrease in signals associated
with gravity. Since gravity-related signals decrease, the vestibular
network which includes the parietal cortex becomes inactive, which
is indexed by more pronounced alpha oscillations (Cheron G et al.,
2006). Also, Cebolla et al. (2016) observed the potentiation of an
alpha event-related synchronization in microgravity while a low-
level visuo-attentional task. The bilateral motor cortex was involved
in this effect, probably responding to the high demands of
continuous readjustment or maintenance of an appropriate body
posture while free-floating. In addition, the SF condition was
characterized by the cerebellum and the vestibular network
involvement to integrate partially reduced or incongruent
vestibular information (Cebolla et al., 2016). During SF, Petit
et al. (2019) show a global increase in theta oscillations
(5–7 Hz). Such an increase in local sleep-like episodes may be
caused by increased sleep pressure (Petit et al., 2019), which is
apparently not typical for DI conditions. Relatively recent studies of
vestibular function in DI (Glukhikh et al., 2020; Naumov et al.,

2021) confirm earlier results (Repin, 1981; Kornilova et al., 2008;
2013) about increased sensitivity to vestibular signals in the absence
of direct influence of DI on the vestibular apparatus.

During DI exposure, participants are still in Earth’s gravity
influence, and the vestibular system is still loaded and should yield
veridical information when stimulated with head movements in any of
the analog conditions on Earth. This may potentially point to the
reweighting of sensory utilization post-DI in this case and or the
influence of proprioception/somatosensory system on the vestibular
nuclei (Jian et al., 2002; Reschke et al., 2009; Mulavara et al., 2012;
2018; English et al., 2019). At the same time, recent studies indicate a
high interconnection of sensory systems with each other under
conditions of support withdrawal, as well as the presence of
changes in this interconnection in CNS. These studies, in
particular, revealed a correlation between indicators of vestibular
function and visual tracking (Glukhikh et al., 2020), an increase in
the contrast sensitivity of the visual system in the low spatial frequency
range with a specific sensitivity of the magnocellular pathway to these
frequencies (Sosnina et al., 2019; 2021; Shoshina et al., 2020). The
results of Pasekova et al. (2020) revealed a significant decrease in
transient-evoked otoacoustic emissions for the stimulation frequency
of 1 kHz when the subjects were in an immersion bath (Pasekova et al.,
2020). Apparently, DI allows a simulation of the sensory conflict
associated with a change in incoming weight-bearing sensory
information. The sensory conflict is also found in SF (Jillings,
2020b; Stella et al., 2021; Tays et al., 2021; Kourtidou-Papadeli,
2022). However, during SF, it is primarily related to the conflict
between otoliths and canals and may be associated with the otolith
tilt-translation reinterpretation hypothesis (Reschke et al., 1984a;
Merfeld, 2003). At the same time, there is a potential similar re-
interpretation for the proprioception (Roll et al., 2009). It was also
shown that the cortical organization of voluntary movements
undergoes changes (Kirenskaya et al., 2006; Tomilovskaya et al.,
2008), the systems of posture and locomotion control are severely
affected (Melnik et al., 2006; Shpakov et al., 2008; Sayenko et al., 2016;
Amirova et al., 2017), and the accuracy of motion control decreases
(Sosnina et al., 2016). At present, little is known about the dynamic
changes in the CNS caused by cerebrovascular changes that may be
involved in the reorganization of the brain (Kermorgant et al., 2020),
however, during a 3-day DI, no significant changes in cerebral blood
flow in the cerebral arteries were detected (Ogoh et al., 2017). Note
that no cerebral MRI studies of the DI model have been published
so far.

It is assumed that changes in the work of the CNS under
conditions of support unloading may be the cause of a decrease in
inhibitory effects on spinal reflexes, however, this statement remains
the subject of discussion. The phenomenon of spinal hyperreflexia is
observed both after SF (Reschke et al., 1984b; Kozlovskaya et al., 1988;
Grigoriev and Ushakov, 2013) and after DI (Zakirova et al., 2015;
Acket et al., 2018). A recent study of the excitability of the motor
neuron pool in the soleus and gastrocnemius muscles in terms of
values of the thresholds and amplitudes of the motor response to
transcranial and transspinal magnetic stimulation after DI confirms
the spinal nature of the development of hypogravitational
hyperreflexia. At the same time, the authors noted that a decrease
or increase in the amplitudes of the motor response is possible, but not
necessary for the state of hypogravitational hyperreflexia, while a
decrease in reflex thresholds can be considered as a hallmark of this
phenomenon (Nosikova I. N. et al., 2021). This phenomenon is part of
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pictures of “gravitational ataxia” and “muscular hypogravity
detraining” syndromes, which were described earlier based on the
studies performed in SF, onground models, and animal experiments
(Kozlovskaya, 1983; 1988; Shenkman et al., 1997; Recktenwald et al.,
1999; Ohira et al., 2002; Kakueva and Kaplanskii, 2005; Reschke et al.,
2009). The removal of the support is a key in the development of these
syndromes—the activity of slow muscle units reflexively decreases,
causing the rapid development of atony of extensor muscles, and
probably a decrease in their proprioceptors activity, leading to changes
in the structure of these muscles, a decrease in their speed-strength
properties, and a change in the quality of movement control
(Kozlovskaya, 1983). At the same time, further work is necessary to
clarify the mechanisms and significance of changes in cortical-spinal
excitability in response to the unloading of the lower extremities.
Roberts et al. (2010) based on the results of fourth subjects during 90-
day bed rest with a tilt angle of −6 hypothesized that corticospinal
excitability has a direct relationship with individual performance and
may be associated with the plasticity of the cerebral cortex (Roberts
et al., 2010).

It has now been confirmed that DI causes a change in the order of
recruitment of soleus and gastrocnemius lateralis muscles motor
units (MUs) by suppressing the recruitment of small (tonic) MUs
and facilitating the recruitment of large (phase) MUs (Shigueva et al.,
2015). There is an assumption that this interconnection may be the
cause of a decrease in muscle tone (Kirenskaya et al., 1986), which in
turn is a consequence of DI (Gevlich et al., 1983; Miller et al., 2010;
Ogneva et al., 2011). While early studies of muscle tone, mainly by
assessing the transverse stiffness of the muscles, demonstrated its
significant decrease in the extensor muscles of the lower leg (in the
gastrocnemius and soleus) and the absence of its changes in the lower
leg flexor (tibialis anterior), but the most recent data using other
measurement methods indicate that this statement is not so
unambiguous. In the acute period of adaptation to DI, in the first
2 h of exposure, there was a significant decrease in the tone of the
tibialis anterior and soleus muscles accompanied by an increase in
the tone of the gastrocnemius muscle (Amirova L. E. et al., 2021;
Amirova et al., 2021 L.). Similar results were found in the study of
transverse stiffness and tone of the longissimus dorsae muscle in 3-
day and 6-hour DI. It is worth noting that a pronounced decrease in
stiffness correlated with an increase in the severity of back pain
during DI, while no similar correlations were found with changes in
muscle tone. The authors suggested that muscle tone and back pain
are determined by a large number of intermediate factors
(Rukavishnikov et al., 2017). Moreover, a study of muscle tone in
a long-term 21-day DI showed a decrease in the tibialis anterior
muscle and an increase in the soleus and gastrocnemius muscles,
which may be the result of functional compensation through
increasing fascial contractility (Amirova et al., 2020). A similar
phenomenon was also observed in a study of the dynamics of the
morphological and functional characteristics of the foot structure in
a 5-day DI (Saveko et al., 2021), as well as in the rectus femoris
muscle in a 3-day DI (Demangel et al., 2017). Furthermore, Reschke
et al. (2009) noted a decrease in the stretch reflex parameters of the
postural muscles after exposure to long-duration head-down bed
rest: a decrease in start latency and peak latency of the monosynaptic
stretch reflex, peak magnitude and latency of the functional stretch
reflex (Reschke et al., 2009). Due to the above, the questions on the
effect of DI on muscle tone and the mechanisms of this effect are
open for further research and discussion.

Morphological studies of muscle tissue made another contribution
to understanding themechanisms of DI and linking those to the effects
during SF. The elimination of support afferentation was shown to
inactivate the pool of slow motor units, which leads to selective
inactivation and subsequent atony and atrophy of muscle fibers
(Shenkman and Kozlovskaya, 2019). Fibers that lost a significant
part of the cytoskeleton molecules are not capable of effective
actomyosin motor mobilization, which results in a reduction in
sensitivity to calcium and a decrease in the range of maximum
tension of permeabilized fibers. Support unloading in DI also leads
to a reduction in the effectiveness of protective mechanisms (such as
nitric oxide synthases), a decrease in the activity of AMP-activated
protein kinase, a decrease in the relative content of titin, nebulin,
desmin, and α-actinin (Shenkman and Kozlovskaya, 2019; Sharlo
et al., 2021). A comprehensive study of acute changes during 3-day
DI in the morphological parameters of muscles and speed-strength
characteristics of the maximum isometric voluntary contraction
showed the relationship between these phenomena (Demangel
et al., 2017). Demangel et al. (2017) also found an increase in the
amount of NCAM-positive myofibrils, which indicates an increased
percentage of denervated fibers and early changes in MU recruitment
models. A decrease in the speed-strength properties of muscles was
also observed earlier (Koryak, 1998), and the authors also associated
this phenomenon with a decrease in the intensity of the central
efferent command.

3 Head-down bed rest

3.1 Technology overview

Since the 1960s, the head-down (with an angle of −6–8) bed rest
(HDBR) was the major ground-based model of the effects of
weightlessness. Technology and specifics are detailed in Pavy-Le
Traon et al. (2007); Fortney et al. (1996). The key role in the
development of one of the first HDBR experiments played by
Russian cardiologist Evgeniy Ivanovich Chazov (Grigoriev et al.,
2018). These experiments allowed researchers to obtain data on
changes in the physiological systems of the body and test new
means and methods to prevent adverse consequences of SF. The
HDBR model became more widespread in the early 1970s. In 1972,
Voskresensky et al. (1972) published the first data that the anti-
orthostatic position with an inclination angle of −4 is a more
adequate model of the effects of weightlessness than the usual
horizontal position with limited mobility (Voskresenskiy et al.,
1972). Finding the most adequate tilt angle during bed rest was an
important objective for researchers (Mikhaĭ;lov, 1979). Even now,
used angles in HDBR vary from −4 to −15, depending on the aims of
the study. The most common angle for modeling the effects of SF is
currently −6, and many researchers recognize such conditions as the
international standard for weightlessness modeling (Smith et al., 2011;
Pandiarajan and Hargens, 2020), however, this question is still
debating.

During the HDBR, the body weight is not eliminated, but rather
the gravity vector is transferred from the head-legs to the chest-back
direction. At a −6 bed rest with the head tilted down, the Gz vector is
practically leveled, so that the body adapts to the Gx vector from front
to back in the supine position (Figure 1). A tilt angle of −6 gives
approximately −0.1 Gz [ = sin (−6)] (Watenpaugh, 2016). In this
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position, headward fluidshift occurs; bones, most muscles and the
heart work much less against gravity (Gz) compared to their normal
function on Earth.

Compliance with the standards for conducting research using the
HDBRmodel means that any exercise, showering, and toileting should
be performed in a perfectly horizontal or anti-orthostatic posture to
ensure the best accuracy of microgravity simulation in space (Hargens
and Vico, 2016). This is also the case during DI. Often, in order to
reduce health risks during eating, a short-term change in the position
of the subject’s body is allowed. For example, while in DI a pillow is
placed under the upper body of the participants, during HDBR, the
participants are allowed to lean on an elbow or use a pillow to take a
comfortable eating position. In HDBR, leaving the anti-orthostatic
posture even for a short time, as well as the use of a pillow to support
the head, were shown to significantly affect intracranial pressure and
can neutralize possible symptoms of visual disorders (Lawley et al.,
2017).

Both male and female subjects participated in HDBR since the
1980s (Convertino et al., 1977; Pavy Le Traon et al., 2007). An
important distinguishing feature of the use of HDBR is the
possibility of a long duration of exposure. For example, as early as
1979, such an experiment lasting 182 days was reported (Bychkov
et al., 1979), which is more than 3 times longer than the duration of the
longest experiment with DI. The longest-ever experiment with HDBR
(angle of inclination of 4.5) lasted 370 days (1987–1988) and was
performed on 10 men, five of whom used means of countermeasure to
the effects of microgravity (Grigoriev et al., 2018). Note that a lower
number of study participants was mistakenly reported by Hargens and
Vico 2016.

3.2 Impact on sensorimotor system

The HDBR model reproduces most correctly the following factors
of SF: reduction in static and dynamic muscle loads, redistribution of
the body fluids in the cranial direction, and removal of the support
load from the receptor surface of the feet (Grigoriev et al., 2018).

Functional magnetic resonance imaging (fMRI) allows researchers
to study patterns of central activity and connectivity during HDBR.
The findings from studies using fMRI in HDBR demonstrated a
reduction in connectivity at rest in the thalamus after third days of
HDBR (Liao et al., 2012), in the anterior insula and anterior middle
cingulate cortex after 45 days of HDBR (Zhou et al., 2014), in the
motor, somatosensory, and vestibular areas of the brain after 70 days
of HDBR (Cassady et al., 2016), as well as a widespread increase in gray
matter in the posterior parietal areas and its decrease in the frontal
areas (Koppelmans et al., 2017). These results are believed to be
primarily associated with a decrease in motor activity (Stella et al.,
2021), however, it is possible that in this case the leading role in the
identified changes is played by a decrease in the gravity reference
afferent inflow. A similar trend toward an increase in gray matter
tissue in the basal ganglia was observed in SFs, which indicates
adaptive sensorimotor neuroplasticity (Jillings et al., 2020a;
Doroshin et al., 2022). Also, fMRI studies of brain activity after a
long SF revealed a decrease in connectivity at rest in the right insula,
between the left cerebellum and the right motor cortex. At the same
time, a decrease in connectivity at rest after SF in the right insula which
is part of the vestibular cortex indicates changes in the integration of
neurosensory information: vestibular, visual, and proprioceptive

(Demertzi et al., 2016). In a study by McGregor et al. (2021a)
during 30 days of HDBR + CO2, five out of 11 subjects showed a
sign of spaceflight-associated neuro-ocular syndrome (SANS)—optic
disc edema, that was accompanied by a slowdown in reaction and
movement time after exposure when performing a visuomotor
adaptation task using a joystick (Banker et al., 2021) and greater
visual contributions to balance (Hupfeld et al., 2020). Interestingly, in
six subjects without signs of SANS (NoSANS), there was a greater
decoupling between the insula and the other regions within the
network during the baseline phase, as well as a decrease in
connectivity between the right posterior parietal cortex and clusters
in bilateral insular cortices during HDBR + CO2 (McGregor et al.,
2021a). These observations are consistent with the results of
Pechenkova et al. (2019), namely, indicating that such a decrease
in connectivity may be associated with the theory of central
adaptation, which downregulates vestibular input during space
flight lessening sensory dissonance. Functional connectivity
decreases involving the insula and posterior cingulate cortex at rest
are the most notable commonalities between HDBR and SF
(McGregor et al., 2021b). After 70 days of HDBR, brain activity in
the cerebellum and visual areas was significantly increased with foot
movement. The degree of this increase positively correlated with
indicators of functional mobility and balance control, which
indicates not only adaptive changes in neural control during
prolonged bed rest but also a close relationship between changes in
the activity of the CNS and locomotor and postural functions (Yuan
et al., 2018a). For example, disturbances in static and dynamic postural
characteristics were previously noted after HDBR (Reschke et al., 2009;
Viguier et al., 2009). Furthermore, a greater increase of activation in
multiple frontal, parietal, and occipital regions in response to
vestibular stimulation during HDBR was associated with greater
decrements in balance and mobility from before to after HDBR,
suggesting reduced neural efficiency (Yuan et al., 2018b). Although
the results of EEG in HDBR confirmed the increase in alpha power
observed during actual SF, contrary results were also reported (Han
et al., 2001). Since the gravitational stimulus is preserved in HDBR,
some authors believe that it is not the best model for studying the
impact of microgravity on the human brain (Marušič et al., 2014; Van
Ombergen et al., 2017a).

The study of the features of the rhythmic activity of motor units
before and during a 120-day HDBR demonstrates the advantage of
this model from the point of view of the duration of exposure. For
example, during the first 14–30 days of HDBR, a sharp increase in the
variability of interpulse intervals and an increase in the degree of
synchronization of motor unit activity were observed; starting from
the 30th day of HDBR, a reproducible decrease in the duration of
interpulse intervals was observed, as well as the disappearance of
synchronization of motor units while maintaining a high level of
variability in spike activity. The obtained results allowed the authors of
this work to separate the effects of HDBR exposure into two stages: at
stage 1, the changes were associated with reflex reactions to support
unloading, at stage 2, with the process of postural muscles atrophy
(Kozlovskaya and Kirenskaya, 2004). The phenomenon of
hypogravitational hyperreflexia occurs in HDBR as well as in DI
and after SF (Kozlovskaya et al., 1988; Saenko et al., 2000; Roberts
et al., 2010), however, despite this and other similarities in the impact
on the human sensorimotor system, a comparison of the effects of DI
and HDBR shows the superiority of DI in the dynamics and depth of
these changes (Aleksandrova et al., 1980; Chaika et al., 1982;
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Kozlovskaya et al., 1984; Grigoriev et al., 2004; Tomilovskaya et al.,
2019). After 20 days of 6 HDBR, the value of the maximum H-reflex
(Hmax) of the soleus muscle, expressed as a percentage of the
maximum M-response (Mmax), decreased from 36.6% (Yamanaka
et al., 1999), when a similar parameter on the seventh day of DI
decreased by 20% (Zakirova et al., 2015). Electroneurographic findings
have suggested decreased tibial nerve M-responses after second and
fourth mouth of HDBR (Ruegg et al., 2003), similar to DI (Zakirova
et al., 2015). After 5 days of DI, the maximum amplitude of the motor
evoked potential of the soleus muscle while transcranial magnetic
stimulation was almost twice the baseline values (Nosikova I. N. et al.,
2021). At the same time, in a study by Yamanaka et al. (1999) and
Miyazaki et al. (2002) there were no significant differences between the
average amplitudes of the motor evoked potential of the same muscle
before and after HDBR.

A comparison of the transverse stiffness of the tibialis anterior and
soleus muscles also demonstrates a more rapid development of
changes in DI (Gevlich, 1984). The transverse stiffness of the
soleus muscle decreased by 15% after 7 days of SF, by 16% after
14 days of 4 HDBR, by 29% after 7 days of DI, and by 47% after 7 days
of combined DI (daytime) and 4 HDBR (nighttime; adapted in
Amirova L. et al., 2021). A study of a similar parameter by
Kozlovskaya et al. (1988) showed that on day 3 of DI and day
31 of HDBR, there was a comparable decrease in the stiffness of
the soleus muscle.

The amplitude of maximal voluntary muscle contraction (MVC)
of the lower leg was equally decreased after 7 days of SF, 7 days of DI,
and 4 months of HDBR (Koryak, 1998; Koryak, 2001). Demangel
et al. (2017) registered a decrease of about 11% in the quadriceps
MVC during a 3-day DI, while a 15% reduction in the quadriceps
MVC was observed only after 5 weeks of HDBR (Krainski et al.,
2014). Also, according to Shenkman et al. (1997), the decrease in the
size of slow and fast types of muscle fibers by the seventh day of DI
reached 15%–18%, whereas, in HDBR, similar changes were
observed only after 40–60 days of exposure (Berg et al., 1997).
Overall, recent studies of cardiovascular, postural, and
neuromuscular changes during 21-day HDBR and 3-day DI found
similarities in their effects, suggesting that DI is an accelerated model
compared to HDBR (Tomilovskaya et al., 2018). However, it was the
use of the HDBR model that made it possible to confirm under
strictly controlled laboratory conditions the specific features of the
order of transformation of muscle fibers identified by Fitts et al.
(2010) during a long 6-month SF: type I soleus muscle > type II
soleus muscle > type I gastrocnemius muscle > type II gastrocnemius
muscle (Trappe et al., 2004; Krainski et al., 2014; Hargens and Vico,
2016). It should be noted that a 60-day HDBR led to a decrease in the
cross-sectional area (CSA) of the muscles of the lower back by 10%
(Holt et al., 2016), a short-term (17–20 days) HDBR—a decrease in
the CSA of the lower leg muscles by 10%–12% (Akima et al., 2001),
and a 90-day HDBR—a decrease in the CSA of the lower leg muscles
by 26% (Rittweger et al., 2005). At the same time, the atrophy
correlated with a decrease in the contraction force of these
muscles (Koryak, 2014). After 84 days of HDBR, MRI showed a
17% decrease in weight and a 40% decrease in the strength of the
lateral thigh muscle (Trappe et al., 2004). It was also shown that not
all muscles of the lower limbs are affected by long-term HDBR: after
60 days of HDBR, there was no significant decrease in the volume of
the rectus femoris, adductor brevis, gracilis or pectineus muscles
compared with the baseline level (Akima et al., 2001).

4 Parabolic flight

4.1 Technology overview

Flying a parabolic trajectory in an airplane, or parabolic flight
(PF), is a unique way to create free fall on Earth, which is important for
astronaut training and scientific research. The technology and
specifics of PF are reviewed in detail by Karmali and Shelhamer
(2008). Note that the authors emphasize that it is important to
distinguish between a “free fall” and “weightlessness”. For example,
in an orbital flight, a spacecraft in a near-Earth orbit and its crew are
constantly falling toward the Earth under the influence of the Earth’s
gravity, but they have the sufficient tangential speed to keep them at
the same distance from the Earth. That is, the sum of velocities toward
and parallel to earth keeps spacecraft at the same distance from earth,
in constant free fall, but gravity is not equal to zero. In this case,
weightlessness is a subjective feeling for humans, because, according to
Einstein’s principle of equivalence, no simple physical sensor can
determine whether the applied acceleration is due to gravitational or
inertial force, including sensory organs in the human body. By a
similar principle, the PF creates a free fall, following a trajectory in
which the acceleration of the aircraft cancels for the acceleration due to
gravity along the vertical axis of the aircraft. Thus, if the aircraft and its
passengers “fall” together with an acceleration of 9.81 m/s2, they find
themselves at 0 g, so that the aircraft is not acting on the passengers.
Such a flight usually consists of 15–60 parabolas, each of which
provides about 20–25 s of free fall. Between parabolas, the aircraft
must climb again, typically within a 40 s interval. In this process, the
speed of descent of the aircraft decreases and eventually becomes the
speed of ascent, and the acceleration levels reach 1.5–1.8 g. The entire
flight usually continues for 3–3.5 h. Thus, it is worth noting that the
actual level of gravity during PF along the vertical axis of the aircraft
demonstrates a longer action of hypergravity on the human body than
microgravity. Moreover, the pitch rotation of an aircraft (3°/s on
average) is almost undetectable by the vestibular system but may
influence some physiological parameters (Jones and Milsum, 1971).
Researchers need to consider these details when designing, analyzing,
and interpreting experiments under conditions of PF (Karmali and
Shelhamer, 2008). White et al. (2020) also noted that alternating
between 1 g, 1.8 g, and 0 g may affect adaptation measured in PF.
Finally, the numbers of participants and experiments per parabolic
flight campaign are rather low. Typically, one campaign consists of
three PFs with two to three participants in each flight, which results in
six to nine participants for a single study. Operational and budgetary
constraints often make it difficult to run the same experiment over
several campaigns, which sometimes makes data collection difficult
when there is a large number of participants.

PF also makes it possible to reproduce gravity conditions on Mars
(0.38 g) for 32 s and on the Moon (0.16 g) for 25 s (Pletser et al., 2012),
but this review only considers the results obtained by modeling 0 G.

4.2 Impact on sensorimotor system

Among the factors affecting the human body in PF, a consistent
and rapid change between normo-, hyper- and microgravity can be
distinguished. It can be assumed that the studies of the sensorimotor
system carried out before and after the end of the entire PF rather
reflect the response to gravitational transitions. However,
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measurements taken directly within the 20–25 s interval of
supportlessness at 0 g reflect the short-term acute effects of such
factors as axial and support unloading, elimination of the vertical
vascular gradient, unloading of the otolith organs, not excluding the
possible effect of the previous 20 s hypergravity exposure.

Data from fMRI scans before and after PF with the participation of
28 volunteers revealed decreased intrinsic connectivity at the right
temporoparietal junction (rTPJ), an area involved in multisensory
integration and spatial tasks (Fiori et al., 2015), as well as a decreased
in intra- and interhemispheric anticorrelations between rTPJ and
supramarginal gyri, which indicates both altered vestibular and
intrinsic functions. The authors noted that the observed changes
demonstrate how the brain copes with gravitational transitions
(Van Ombergen et al., 2017b); it is also likely that they are
associated with the process of suppression of conflicting vestibular
signals (Van Ombergen et al., 2017a). Interesting data were obtained
by (Schneider et al., 2008; Schneider et al., 2009) when recording EEG
activity during PF, as well as under normal gravity in various body
positions (lying on the back, sitting, and with the head tilted down by
9). Beta-2 frequency activity was increased in the right superior frontal
gyrus in the normal gravity phase of the flight. The power of alpha-2
frequencies was significantly reduced in the hypergravity phase
compared to the normal gravity phase. The most notable aspect of
these data is the suppression of increased frontal beta-2 activity during
the microgravity phase. Notably, the data do not reflect the effects of
continuous exposure to microgravity. Rather, the data reflect the
recurring and instantaneous effects of altered gravitational forces.
Since experiments with HDBR showed changes in the left inferior
temporal gyrus in the supine and tilted positions, the authors
concluded that the observed changes in weightlessness conditions
cannot be explained by hemodynamic changes, but rather reflect the
emotional processes associated with the experience of weightlessness.
This assumption can also be supported by the noted increase in beta
oscillations from the preflight to flight phase (Schneider et al., 2008;
2007). However, there is an opinion that such changes may be the
result of baroreceptor stimulation (Lipnicki, 2009) or a decrease in
excitation levels (Wiedemann et al., 2011). It is important to
emphasize that under conditions of SF the alpha rhythm increases
in the parietal-occipital and sensorimotor areas, which is believed to be
associated with an elimination of the action of gravity in space
(Cheron et al., 2006; Van Ombergen et al., 2017a).

An important aspect is a fact that parabolic flight causes a
symptom complex of space motion sickness, indicating the
presence of a sensory conflict under the influence of PF factors
(Kornilova and Kozlovskaya, 2003) and the feasibility of using this
model to investigate preventive measures for this condition
(Russomano et al., 2019).

Analysis of the PF data on the dynamics of various parameters
reflecting the state of the sensorimotor system demonstrates how this
model can be used for an immediate comparative assessment of the
influence of various gravitational levels on the human body. For
example, the illusion of arm movement created by muscle vibration
increased during the 1.8 g phase and decreased during the free fall
phase (Lackner and DiZio, 1992). The researchers concluded that
gravity affects the power of muscle spindle receptors per unit of
spindle stretch in the following way: otolith unloading in
microgravity conditions reduces the downward modulation of the
α- and γ-motor neurons, which leads to a decrease in tonic vibration
reflexes. Alternatively, increased gravitational load on the arm could

be equivalent to resistance (Lackner and DiZio, 1992). Testing of
motor coordination of the hands (aiming and tapping with pencil and
paper) in both normal and alternating gravity in PF showed that
changes in the g level cause errors in the direction of the gravity axis -
the hand aims too high at 0 g and too low at 2 g. Interestingly, there
were more errors at 0 g than at 2 g. In addition, there was a downward
trend in velocity at 0 g for all motion orientations (Ross, 1991). A
change in the motor strategy of the hand during g-transitions was also
observed in the study by Boulanger et al. (2021). It is interesting that
elastic bands on the arm, simulating the gravitational torque in the
shoulder joint, helped to significantly increase the accuracy of arm
movements during PF, bringing it closer to the ground level. The
authors concluded that the decrease in the proprioceptive function of
the forearm in weightlessness conditions is a consequence of the
absence of torques in the joints (Saradjian et al., 2013; Weber and
Proske, 2022). Macaluso et al. (2017) reported a change in the
kinematic strategy of body movements in PF at 0 g and its
similarity with the strategy observed in the prototype of a spacesuit
simulating immersion in water (AquaS environment; Macaluso et al.,
2016), namely, there was some “simplification” of the postural
control—a reduction in the number of degrees of freedom, which
helps to minimize the cost of mechanical energy and maximize the
smoothness of the joints (Gaveau et al., 2014; Hilt et al., 2016). When
walking and running in the 0 g PF phase, there was an increase in hip
flexion, an increase in the amplitude of motion in the hip joint, an
increase in the duration of contact with the support surface (De Witt
et al., 2010), as well as a redistribution of the support load on the
forefoot (McCrory et al., 1997), similar to the walking strategy in space
flight conditions (Saveko et al., 2020). It was also shown that periods of
hypergravity in PF can affect the perception of one’s own body
movements. Even if during the period of hypergravity the apparent
stability of the self and the environment was gradually restored, then
with repeated exposure, voluntary locomotion again was causing an
illusion of the motion of the self and the environment (Lackner, 2018).
At the same time, in PF, similar to SF, there was an increase in the
value of the visual afferent inflow to maintain equilibrium (Clement
and André-Deshays, 1987). It was shown that changing the level of
gravity affects the control of the isometric force of the arms: compared
to the normal level of g, the forces produced were higher in
hypergravity and even higher in microgravity. Vibration reduced
the magnitude of the generated forces regardless of the level of g
(Mierau et al., 2008). The data obtained in PF highlight the ability of
the CNS to perform very fast neuromuscular adjustments adapted to
gravitational transitions (Gambelli et al., 2016; Bringoux et al., 2020;
Waldvogel et al., 2021).

The study of the influence of the gravity level on the excitability of
the soleus motoneuron pool to the afferent input Ia while maintaining
a vertical position also demonstrates the immediate development of PF
effects in humans. For instance, the electromyographic (EMG) activity
of the soleus muscle was the highest in hypergravity, while it was
practically absent in microgravity. During normo- and hypergravity, a
linear relationship between the EMG activity and the amplitude of the
H-reflex of this muscle was observed. However, under microgravity,
despite the almost absent EMG activity, the amplitude of the H-reflex
was greater than under terrestrial gravity. Moreover, when the subjects
were voluntarily contracting the soleus muscle, applying a load to the
joints of the lower limbs and the spine by pulling the handle up, this
increase in the H-reflex was almost disappearing. These results suggest
that somatosensory systems that determine the load on the lower
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limbs and/or the spine may play a role in reducing the excitability of
the soleus motor neuron pool to afferent inputs Ia via presynaptic
inhibition (Miyoshi et al., 2003). Note that an increase in the
amplitude of the H-reflex was also observed under the action of DI
(Zakirova et al., 2015). Nomura et al. (2001) also reported an increase
in the H-wave of the Hoffmann reflex of the soleus muscle at 0 g in PF.
At the same time, hypergravity of 1.5 or 2 g did not affect the
amplitude of the H-wave. Changes in the level of gravity did not
affect the time interval between stimulation and theM- or H-wave and
the amplitude of the M-wave of the soleus muscle. Although the
vertical position of a person during PF was maintained due to
pronounced tonic activity of the soleus muscle at 1 g and 2 g, the
same posture at 0 g was maintained mainly due to the activity of the
tibial muscle (Clement and André-Deshays, 1987). At the moment,
there is very little information about morphological changes in human
muscle tissue after exposure to PF.

5 Suspension

5.1 Technology overview

Technology and specifics of ULLS are detailed in Hackney and
Ploutz-Snyder (2012). In 1991, Hans Berg et al. in collaboration with
the Kennedy Space Center published the first study using unilateral
lower limb suspension (ULLS) as a human model for studying the
effects of unloading on skeletal muscles (Berg et al., 1991; Dudley et al.,
1992a). ULLS requires the participant to perform all activities with
underarm crutches while wearing a single boot with a thick sole. The
raised boot eliminates ground contact with the adjacent foot, thereby
unloading the lower limb. There are two main versions of ULLS in the
published literature. The original model developed by Berg et al.,
requires wearing belts around the waist and a strap attached to a
modified shoe to suspend one lower limb. The strap holds the knee in a
flexed state (~90–120), while a 50 mm platform shoe is put on the
opposite foot to prevent involuntary weight transfer. However, this
method was associated with a higher risk (~2.7%) of deep vein
thrombosis (Berg and Tesch, 1996; Bleeker et al., 2004). In the
modified model, the strap was removed and the platform shoe was
raised (by approximately 10 cm) to allow the unloaded foot to swing
freely (Ploutz-Snyder et al., 1995). Elastic compression stockings were
also used to prevent the accumulation of blood in the lower leg (Byrne,
2001). Most studies today use a modified ULLS model (Hackney and
Ploutz-Snyder, 2012; Figure 1). ULLS is a well-known ground-based
analog of microgravity; it is also one of the most cost-effective methods
to study the effects of unloading on human skeletal muscles
(Pandiarajan and Hargens, 2020). Increased mobility is a decisive
factor in determining cost-effectiveness and patient compliance with
the treatment regimen since mobility allows the subjects to travel,
work, and stay at home. This reduces the costs associated with
methods that require a hospital stay or constant monitoring. At the
same time, reduced monitoring means that the adherence to the study
protocol cannot be fully controlled, but the reduced impact on the
subject’s daily life allows to recruit of more volunteers (Tesch et al.,
2016). In addition to daily interviews with participants, monitoring of
compliance with the experimental conditions can be carried out by
measuring the temperature of the skin surface and the circumference
of the lower leg. As a rule, skin temperature in an unloaded limb is
approximately 2°C lower than in a loaded one, and calf circumference

is approximately 2–3 cm greater (when compression stockings are not
worn) in an unloaded calf compared to a loaded one (Adams et al.,
1994; Tesch et al., 2004). In addition, specially designed plantar
accelerometers can be used for more precise control (Cook et al.,
2006). Typically, the duration of such exposure ranges from 12 h to
56 days (Campbell et al., 2019).

5.2 Impact on sensorimotor system

The main factors in ULLS that affect the human body are a
unilateral decrease in the motor activity of the lower limb, the
elimination of support and proprioceptive afferent signals, and the
removal of axial load on the lower limb. It is important to emphasize
that this model is difficult to compare with the study of the impact of
microgravity and space flight on the human body (Pandiarajan and
Hargens, 2020) since the impact in ULLS is very local. In this
connection, it is more correct to consider this model as a method
for studying the effect of unloading on human skeletal muscles
(Hackney and Ploutz-Snyder, 2012).

To date, the authors of this review have not been able to find any data
on the study of brain functions under the influence of ULLS. However, it
can be assumed that even a unilateral effect of the above factors can affect
the CNS, for example, by changing the perception of the body scheme,
movement stereotype, etc. For instance, ULLS was noted to alter the
dynamicmovements of the entire body (Tesch, et al., 2016). After 3 weeks
ofULLS, the ability to vertical jump both on one leg (previously unloaded)
and on two legs was worsening (Horstman et al., 2012).

Quite often in the literature, there is a comparison of the effects of
ULLS with the effects of bed rest without tilt (Tesch, et al., 2016). In
general, it can be said that the effects of ULLS on the structural and
functional characteristics of the lower limb do indeed have similar
trends with the effects of the earlier considered models. After
21–28 days of ULLS, the amplitude of the H-reflex of the soleus
muscle of the unloaded leg at rest increased by approximately
18%–35% (Clark et al., 2006; Seynnes et al., 2008; 2010); similar
changes were observed after 35 days of bed rest (Duchateau, 1995),
indicating an increase in spinal excitability.

Despite these changes, the vast majority of studies showed that
ULLS does not affect the voluntary activation of motor units (De Boer
et al., 2007; Seynnes et al., 2010; Horstman et al., 2012; Campbell et al.,
2013; Cook et al., 2014), but there is recent evidence of motor unit
dysregulation as a key component of functional loss after ULLS (Inns
et al., 2022). The results of surface EMG recording showed that during
the reproduction of the MVC, the EMG amplitude was decreasing
compared to that before ULLS (Dudley et al., 1992b; Seynnes et al.,
2008), however, when performing submaximal tasks, the EMG signal
after ULLS was increasing (Berg and Tesch, 1996; Schulze et al., 2002;
Tesch et al., 2004).

In two ULLS studies, the unloaded leg showed increased contrast
shifts in T2-weighted MRI scans of skeletal muscles during various
physical activities, indicating an increase in required muscle mass and/
or higher metabolic requirements to perform a concentric muscular
action (Ploutz-Snyder et al., 1995; Akima et al., 2009). These data are
likely to indicate that more type IIa or type IIx explosive motor units
are recruited to achieve the same level of force output after unloading
(Hackney and Ploutz-Snyder, 2012). A reduction in muscle size
depending on the duration (up to 42 days) of unloading the knee
extensors and plantar flexors was shown using MRI or computed
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tomography. In total, the observed rates of reduction in the sizes of
extensor knee and plantar flexor muscles (anatomical cross-sectional
area or volume) per each day of ULLS comprised ~0.40 and ~0.36%,
respectively (Adams et al., 1994; Tesch et al., 2004; Clark et al., 2006;
De Boer et al., 2007; Akima et al., 2009; Seynnes et al., 2010). A
summary analysis of the ULLS results showed that during unloading
the vastus lateralis muscle is most prone to atrophy, followed by the
gastrocnemius muscle (Hackney and Ploutz-Snyder, 2012). According
to the literature, however, the longer the duration of unloading (more
than 50 days), the greater the atrophy of the plantar flexors compared
to the knee extensors (Narici and de Boer, 2011). Several studies
showed significant fiber atrophy in combination with a marked
decrease in phosphorylation of the mechanosensitive FAK protein
(Flück et al., 2014), an increase in the content of 3-methylhistidine
(Tesch et al., 2008), a marker of myofibril destruction (Sharlo et al.,
2021), and an increase in theMuRF1 andMAFbxmRNA levels (Abadi
et al., 2009; Gustafsson et al., 2010) within 3 days after the completion
of ULLS. Moreover, the early activation of proteolysis was also
indicated by increased expression of atrogin-1 and MuRF-1 (Flück
et al., 2014). These signs of early activation of muscle protein
disintegration appear to precede a marked reduction in muscle
protein synthesis (by ~50%) during a 10-day ULLS (De Boer et al.,
2007).

A consequence of changes in the neuromuscular apparatus is a
decrease in its functional parameters during ULLS. After 28 days of
ULLS, MVC values decreased by 32.6% (Sinha et al., 2020), and
strength stability assessed at moderate intensity (~25% of MVC)
decreased by approximately 22% and 12% in knee extensors and
plantar flexors, respectively (Clark et al., 2007). In the knee extensors,
overall isokinetic performance decreased by about 13% after 21 days of
ULLS (Schulze et al., 2002), while dynamic endurance decreased by
about 24% by day 30 (Cook et al., 2010). Studies of individual muscle
fibers before and after ULLS show a decrease in their diameter (Malis
et al., 2019) and contraction force (Brocca et al., 2015). This, together
with changes in the neural and elastic components of the muscles,
results in a marked decrease in knee extensor and plantar flexor
muscle strength by 4%–5% a week (Tesch et al., 2016). It is important
to note that the ability to produce force per unit of time also
deteriorates after ULLS, and a significant decrease in the rate of
strength development was reported (Clark et al., 2006), which was
explained by a decrease in maximum strength rather than a change in
the contractile properties of the muscles (Horstman et al., 2012).

6 Other methods/models

Plaster casts for the immobilization of joints can also be used to study
the effects of a local radical decrease in motor activity, the elimination of
support and proprioceptive afferent signals, and the removal of axial load
(Sargeant et al., 1977; Gibson et al., 1987). However, the fixation of joints
at different angles was shown to affect muscle tone and cellular
metabolism (Booth, 1977; Goldspink et al., 1986). In contrast, human
exposure to microgravity during space flight unloaded both muscles and
bones, while the joints were free to move in a wide range of motion
(Hackney and Ploutz-Snyder, 2012). In a study by Suetta et al. (2012), a
10% atrophy of muscle fibers after only 4 days of immobilization with a
cast was reported. Even a 5-day immobilization of the knee was causing a
decrease in the cross-sectional area of the quadriceps femoris muscle by
3.5% and muscle strength by 9%. At the same time, similarly to a 3-day

ULLS, the expression of MAFbx and MuRF1 mRNAs was increasing
(Dirks et al., 2014; Sharlo et al., 2021); however, in a 14-day
immobilization of the legs, an increased content of MAFbx mRNA,
but not MuRF1 mRNA, was observed in the vastus lateralis muscle of the
thigh. In addition, the isometric force of the knee extensor muscles was
decreasing by 27% compared with the initial level (Jones et al., 2004). Note
that although the short-radius centrifuge is not a microgravity model, it
can be used to imitate the symptoms of motion sickness (Lewkowicz,
2019; Frett et al., 2020). Moreover, rotationmodes can be adjusted in such
a way as to simulate the effects of parabolic flight. At the same time, the
participants experienced an illusion of microgravity, visual-motor
coordination similar to the conditions of microgravity, and a training
effect that facilitated the further experience of the parabolic flight
(Kowalczuk et al., 2018). The short-radius centrifuge can be used as a
countermeasure in combination with the microgravity models—HDBR
and DI (Clément et al., 2016). Recent data also show that isolation
experiments may be responsible for the formation of a specific stereotype
of movements due to the long stays of crewmembers in a limited space of
the space station model (Saveko et al., 2022).

7 Methodological considerations

Having a variety of advantages and disadvantages, all of the listed
approaches to modeling the effects of SF on the sensorimotor system
are actively used by scientists throughout the world. Under the
circumstances, the authors find it important to match the research
objectives with the choice of the model of SF effects. The authors listed
some main features of the discussed models in Figure 1, however, to
choose the right ground-based experimental model of the SF effects, a
broader approach that takes into account previously obtained results
should be applied.

Understanding the role of gravity in movement control, in
general, requires consideration of data from different
environments and contexts. The complexity of these processes
and the potential distorting factors associated with them make it
sometimes difficult to interpret the results. However, the great
variety of the results obtained in various ground-based models
provides insight into the neural basis of gravity-dependent aspects
of perceptual and motor tasks (White et al., 2020). SF-induced
changes in electrocortical activity should also be considered in the
context of emotional stressors. For instance, parabolic and space
flights are associated with increased levels of anxiety; on the other
hand, DI and HDBR can trigger boredom due to monotony and
immobilization (Marušič et al., 2014), while allowing to explore of
the mechanisms of sensorimotor disorders under more controlled
conditions (Bock, 1998). Of interest is the comparison of data from
similar measurement methods obtained in different ground-based
models. For example, after 5 weeks of HDBR (Krainski et al., 2014)
and after 10 days of bed rest (Kortebein et al., 2007; 2008), the
degree of MVC reduction in the quadriceps muscle in men was
approximately 15%, while to reduce this indicator by 11% under
conditions of DI or strict immobilization, 3 days were sufficient
(Demangel et al., 2017). This comparison indicates the importance
of the complete elimination of support afferentation for the
development of this phenomenon, as well as an increase in the
rate of its development at the conditions of severe limitation of
movements and old age, expanding our understanding of the
mechanisms of reducing this indicator.
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