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Background/aims: Psychological and physiological stress can cause
gastrointestinal motility disorders. Acupuncture has a benign regulatory effect
on gastrointestinalmotility. However, themechanisms underlying these processes
remain unclear.

Methods: Herein, we established a gastric motility disorder (GMD) model in the
context of restraint stress (RS) and irregular feeding. The activity of emotional
center—central amygdala (CeA) GABAergic neurons and gastrointestinal
center—dorsal vagal complex (DVC) neurons were recorded by electrophysiology.
Virus tracing and patch clamp analysis of the anatomical and functional connection
between the CeAGABA → dorsal vagal complex pathways were performed.
Optogenetics inhibiting or activating CeAGABA neurons or the CeAGABA → dorsal
vagal complex pathway were used to detect changes in gastric function.

Results: We found that restraint stress induced delayed gastric emptying and
decreased gastric motility and food intake. Simultaneously, restraint stress
activated CeA GABAergic neurons, inhibiting dorsal vagal complex neurons,
with electroacupuncture (EA) reversing this phenomenon. In addition, we
identified an inhibitory pathway in which CeA GABAergic neurons project into
the dorsal vagal complex. Furthermore, the use of optogenetic approaches
inhibited CeAGABA neurons and the CeAGABA → dorsal vagal complex pathway in
gastric motility disorder mice, which enhanced gastric movement and gastric
emptying, whereas activation of the CeAGABA and CeAGABA → dorsal vagal complex
pathway mimicked the symptoms of weakened gastric movement and delayed
gastric emptying in naïve mice.

Conclusion: Our findings indicate that the CeAGABA → dorsal vagal complex
pathway may be involved in regulating gastric dysmotility under restraint stress
conditions, and partially reveals the mechanism of electroacupuncture.
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GRAPHICAL ABSTRACT

We identified that CeA GABAergic neurons project into the DVC, and proposed that activation of the GABAergic projections from CeA to DVC may be
responsible for restrained stress (RS)-induced gastric motility disorder (GMD).

Introduction

Excessive stress is associated with gastrointestinal motility and
mood disorders (Doney et al., 2022). The prevalence of symptoms of
depression and anxiety is positively correlated with functional
gastrointestinal diseases (FGIDs), and epidemiological data
provide evidence that FGIDs and mood disorders interact with
each other (Koloski et al., 2020). The high incidence of psychological
disorders in FGID patients suggests an intimate and complex link
between the gastrointestinal tract and brain, known as the brain-gut
axis (Mukhtar et al., 2019; Person and Keefer, 2021). The brain-gut
axis suggests how psychological factors directly influence FGIDs by
top-down signalling, which is intriguing but poorly understood. The
treatment of FGIDs are based on a biopsychosocial model involving
the management of physical symptoms and potential psychological
comorbidity (Reed et al., 2020; Fikree and Byrne, 2021). Patients
with FGIDs frequently also resort to complementary medicine,
including acupuncture (Rabitti et al., 2021). Acupuncture is a
traditional non-drug therapy that assists the overall regulation of
complex systems. In previous studies, we demonstrated that
electroacupuncture (EA) at BL21 (Weishu) and RN12
(Zhongwan) promoted gastric movement (Wang et al., 2015). In
another clinical functional magnetic resonance imaging (fMRI)
project, we demonstrated the effects of acupuncture at RN12 plus
BL21 on gastric motility were related to changes in amplitude of low-
frequency fluctuations (ALFF) within the amygdala. Moreover,
studies have found that EA at the ST36 (Zusanli) improved
visceral hypersensitivity and anxiety in functionally dyspepsic rats
through inhibition of neuronal discharge of the amygdala (Chen

et al., 2022). Therefore, we sought to determine the impact of
emotional center, the amygdala, on the modulation of gastric
movement upon treatment with EA.

The amygdala is an important component of the limbic system,
which is involved in a variety of complex behaviors including
emotion, motivation, memory, learning, as well as the
modulation of gastric motility (Janak and Tye, 2015; He and Ai,
2016). Mood change is associated with alterated gastric functions
(Israelyan et al., 2019). However, the role of this emotional center in
gastrointestinal system function remains largely unknown. The
amygdala consists of multiple subdivisions, of which the central
amygdala (CeA) is the main output nucleus projecting to the
brainstem and hypothalamus to control autonomic and motor
responses (LeDoux et al., 1988; Sah et al., 2003). Furthermore,
physiological and anatomical studies have demonstrated that the
CeA projects to the dorsal vagal complex (DVC) which is involved
directly in gastrointestinal regulation (Liubashina et al., 2000; Jin
et al., 2020). Researchers have uncovered that electrical stimulation
of the CeA can alter the basic firing rate of 65% of gastrointestinal-
related neurons in the DVC and can also adjust the response of DVC
neurons to gastrointestinal stimulation (Zhang et al., 2003). The
DVC is composed of the dorsal motor nucleus of the vagus nerve
(DMV) and the nucleus of the solitary tract (NTS), and is important
for autonomic regulation. Gastric motility is regulated by the vagal
pathway originating in the DMV, and the NTS is the recipient of
gastrointestinal sensory input (Travagli and Anselmi, 2016).
GABAergic neurotransmission to the DMV plays an important
role in regulation of gastric motility (Jiang et al., 2019). The CeA
is a nucleus predominantly composed of GABAergic inhibitory
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neurons, and the axonal projections of these GABAergic neurons
from the CeA distribute themselves to the midbrain, forebrain and
brainstem (Ciocchi et al., 2010; Liu et al., 2021a). Therefore we
further investigated the role of CeA GABAergic neurons in targeting
and regulation of brainstem DVC neuronal activity to improve RS-
induced gastric motility disorders.

Methods

Animals

We used Ai9 (RCL-tdT), GAD2-Cre, and C57BL/6J mice
(purchased from Jackson Laboratories or Charles River) at

8–10 weeks of age. All mice were maintained at a stable
temperature (23°C–25°C) under a 12-h light/dark cycle. Before
surgery, mice were housed in cages of six in a colony. The
animal protocols were approved by the Animal Care and Use
Committee of Anhui University of Chinese Medicine.

Gastric motility disorder (GMD) model

We used restraint stress (RS) combined with irregular
feeding to establish our GMD model. Mice were periodically
restrained in a 50 mL syringe for 1 h once per day to constrain
their movements and they were fed irregularly (fed on 1 day,
fasted for 1 day) for 21 days. Holes were drilled in the syringes

FIGURE 1
The effect of RS and EA on gastric motility . (A) GMD model building; (B) An outline of the experimental procedure in GMD mice. (C–F) Gastric
function tests of food intake, gastric emptying, and gastric motility. (n = 6 mice per group). All data are presented as the mean ± SEM. ##p < 0.01, **p <
0.01, one-way ANOVA for (C, D, F).
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to allow the mice to breathe. Control mice were allowed to
freely move, and they had ad libitum access to food.

Electroacupuncture (EA) stimulation

The EA group received EA stimulation on the 15th day of
the experiment (Figure 1B). Mice were anesthetized by
inhalation of isoflurane (1.5%–3.0%) via an anesthesia
machine. EA was performed with a disperse-dense wave
mode for 20 min once per day for 7 days, with electrical
current range of 1–2 mA, and a frequency of 2/15 Hz by using
a SDZ-IV electronic instrument (Huatuo Brand). EA
stimulation was performed at the abdominal RN12
(Zhongwan) and dorsal BL21 (Weishu) acupoints by inserting
a 0.18 × 13 mm acupuncture needle. The RN12 acupoint is
located on the anterior median line of the upper abdomen,
10 mm below the xiphisternal synchondroses. The
BL21 acupoint is located under the spinous process of the
12th thoracic vertebra.

Measurement of food intake and gastric
emptying

Food intake and gastric emptying studies were performed as
in other studies (Sampath et al., 2021). Mice were fasted
overnight (water available ad libitum). The next day, each
mouse was caged separately and fed with pre-weighed food
for 30 min. In optogenetic experiments, each mouse was fed
with light on, and was deprived with light off, the food intake
recorded also for 30 min. The remaining unconsumed food was
weighed to determine how much food each mouse ate. Food
intake (g) = pre-weighed amount-remaining amount.
Thereafter, each mouse was placed in a separate clean cage
without food and water for 90 min. Mice were then
anaesthetized with pentobarbital and euthanized by cervical
dislocation. The stomach was removed and weighed (whole
stomach weight). The gastric contents were removed from the
stomach and the stomach was weighed again (empty stomach
weight). The rate of gastric emptying (GE) was calculated as
follows: GE(%) = [1—(whole stomach weight-empty stomach
weight)/weight of food intake] × 100.

Measurement of gastric motility

Gastric motility studies were performed as described
previously (Wang et al., 2020). Mice were fasted overnight
(water ad libitum) and anesthetized with pentobarbital
(50 mg/kg, intraperitoneally). Following a laparotomy, a
miniature strain gauge (1 mm × 1 mm, 120 Ω) was fixed to
the circular smooth muscle of the gastric antrum. The
laparotomy was then closed with a 5–0 suture with the strain
gauge leads exteriorized. Strain gauge signals were amplified,
filtered, digitized via powerlab 8/30 signal system, and recorded
using labchart software (AD Instruments). The waves of gastric
contraction were monitored for at least 30 min.

In vivo electrophysiology

A custom-made tetrode array was implanted into the DMV
(ML: −0.4 mm, AP: −7.64 mm, DV: −4.45 mm) or CeA (ML:
−2.77 mm, AP: −1.22 mm, DV: −4.52 mm) in different batches of
mice at the beginning of experiments. The coordinates were defined
as dorsal-ventral (DV) from brain surface, anterior-posterior (AP)
from bregma and mediolateral (ML) frommidline. The screw-based
microdrive scaffolds for lowering the electrodes were cemented onto
the skull. Each tetrode was made of four twisted fine platinum/
iridium wires (diameter 12.5 μm, California Fine Wire). The mice
were allowed to recover for 3 days, and the electrodes were attached
to a 16-channel signal acquisition system to collect the spontaneous
discharge. Then the mice received restraint stress and
electroacupuncture treatment. On the next day after the
completion of EA treatment, the neuronal activities were
recorded, and the data filtered at a bandwidth of 300–5,000 Hz
were stored using Neurostudio software. Neuroexplorer 4 (Nex
Technologies, United States) was used to calculate the firing rates
of the sorted units. We sorted more than 24 units from the recorded
spikes of different groups. Only those units with signal noise ratio
exceeding 2.5 and average amplitude exceeding 50 μVwere included
for comparison. However, we removed those with much noise or
smaller amplitude to minimize the potential artifact effect.

Virus injection

We anaesthetized the mice and restrained them in a stereotaxic
frame (RWD). A volume of 200 nL of virus was injected into the
CeA using a glass microelectrode, which was connected to an
infusion pump (micro 4, WPI, United States).

For anterograde tracing of the CeAGABA → DVC circuit, we
injected the Cre-dependent virus AAV-DIO-mCherry into the
unilateral CeA of GAD2-Cre mice. For inhibition of the CeAGABA

neurons or CeAGABA → DVC circuit, we injected the AAV-DIO-
eNpHR3.0-EYFP viruses into the bilateral CeA; However, we
injected the AAV-DIO-ChR2-mCherry viruses into the unilateral
CeA to activate the CeAGABA neurons or CeAGABA → DVC circuit
with optogenetic manipulation. The AAV-DIO-mCherry and AAV-
DIO-EYFP viruses were used as controls. All viruses were packaged
by BrainVTA (Wuhan). 21 days later, the mice were transcardially
perfused with 0.9% saline followed by 4% paraformaldehyde. The
brain was sectioned for imaging. Images of viral expression were
obtained using a confocal microscope (LSM 710; ZEISS, Germany).

Optogenetic manipulations

An optical fiber (200 µm in diameter) was implanted into the
CeA or DVC. The implant was fixed to the skull of mouse using
dental cement. The delivery of a 30 min yellow light (594 nm,
5–8 mW, light on 10 min/light off 5 min, three cycles) or 30 min
pulsed blue light (473 nm, 2–5 mW, 10 ms pulses, 20 Hz, light on
10 min/light off 5 min, three cycles) was controlled by a master-8
pulse stimulator (A.M.P.I., Israel) (Figures 3D–L). After the
experiment, we examined the location of the fibers and removed
data from situations in which the fibers weren’t in the proper target.
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Brain slice electrophysiology

Brain slice preparation
Anesthetizedmice were perfused intracardially withmodified ice-cold

oxygenated N-methyl-d-glucamine (NMDG) artificial cerebrospinal fluid
(ACSF), containing 93mM NMDG, 1.2 mM NaH2PO4, 2.5 mM KCl,
20mMHEPES, 30mMNaHCO3, 2mMthiourea, 25mMglucose, 3 mM
Na-pyruvate, 5 mM Na-ascorbate, 0.5 mM CaCl2, 3mM glutathione
(GSH), and 10mM MgSO4 (osmolarity: 300–310mOsm/kg, pH: 7.3-
7.4). Coronal slices (300 µm) containing the DVC or CeA were obtained
using a vibrating microtome (VT1200s, Leica).

Brain slices were incubated in 33°C NMDGACSF for 12 min and
transferred to 25°C N-2-hydroxyethylpiperazine-N-2-ethanesulfonic
acid (HEPES) ACSF that contained 92 mMNaCl, 1.2 mMNaH2PO4,
2.5 mM KCl, 20 mM HEPES, 30 mM NaHCO3, 5 mM Na-ascorbate,
25 mM glucose, 2 mM thiourea, 3 mM Na-pyruvate, 2 mM MgSO4,
2 mM CaCl2, and 3 mM GSH (osmolarity: 300–310 mOsm/kg, pH:
7.3-7.4) for 1 h. Brain sections were put into a slice chamber (Warner
Instruments) for recordings, and the slice chamber was continuously

perfused with standard ACSF that contained 2.4 mM CaCl2, 129 mM
NaCl, 3 mM KCl, 1.3 mM MgSO4, 3 mM HEPES, 20 NaHCO3,
1.2 mM KH2PO4, and 10 mM glucose (osmolarity:
300–310 mOsm/kg, pH: 7.3-7.4) at ~3 mL/min.

Whole-cell patch-clamp
CeA GABAergic neurons in the slice from GAD2-tdTmice were

visualized using an upright microscope (BX51WI, Olympus).
Current-evoked action potential was recorded in current-clamp
mode. Signals were obtained by a Multiclamp 700B amplifier,
low-pass filtered at 2.8 kHz, digitized at 10 kHz and analyzed
with Clampfit software (Molecular Devices, United States).

Light-evoked response
To verify functional characteristics of AAV-DIO-ChR2-mCherry

and AAV-DIO-eNpHR3.0-EYFP, pulsed blue light (473 nm, 10 mW,
10 ms pulses) with 5-Hz, 10-Hz, and 20-Hz stimulation protocols, and
sustained yellow light (594 nm, 10 mW, 100 ms) were delivered using
a laser (Fiblaser, Shanghai) through an optical fiber, respectively.

FIGURE 2
The effect of RS and EA on CeA and DVC neuronal activity (A, D) Schematic of in vivo electrophysiological recording of CeA and DVC neurons
discharge. (B, C, E, F) Representative traces (B, E) and summarized data (C, F) show the firing rate of CeA neurons and DVC neurons in mice with multiple
channel recordings (n = 24 units from six mice per group). (G) Representative image of GABA-tdTOM mice (GABAergic neurons with red tdTOM). Scale
bar, 100 µm. (H, I) Sample traces (H) and statistical data (I) for action potential firings recorded from GABAergic neurons in the CeA in mice (n =
18 neurons from six mice per group). All of the data are presented as the mean ± SEM. ##p < 0.01, **p < 0.01. One-way ANOVA for (C, F); two-way
repeated-measures (RM) ANOVA for (I).
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FIGURE 3
The relationship among CeAGABA neurons and gastric motility. (A) Schematic of AAV-DIO-eNpHR3.0-EYFP or AAV-DIO-EYFP viral injection and
optic fibre implantation in the CeA. (B) Representative image of viral expression in the CeA ofGAD2-Cremice. (D) Scale bar: 100 μm. (B) Sample traces of
action potentials evoked by the injected current with photostimulation (594 nm, yellow bar) recorded from eNpHR3.0-EYFP+CeAGABA neurons in acute
slices from GAD2-Cre mice. An outline of the optogenetic experimental procedure in GMD mice. (E–H) Gastric motility effects of the optical
silencing of CeAGABA neurons with CeA injection of AAV-DIO-eNpHR3.0-EYFP in GAD2-Cre GMD mice [n = 6 mice per group, food intake (E), gastric
emptying (F) and gastric motility (G, H)]. (I) Schematic of AAV-DIO-ChR2-mCherry or AAV-DIO-mCherry viral injection and optic fibre implantation in the
CeA. Representative image of viral expression in the CeA ofGAD2-Cremice. Scale bar: 100 µm. (K) Sample traces of action potentials evoked by 473 nm
light (blue bars) recorded from ChR2 -mCherry +CeAGABA neurons in acute slices from GAD2-Cre mice. (L) An outline of the optogenetic experimental
procedure in naive mice. (M–P) Gastric motility effects of the optical activation of CeAGABA neurons [n = 6 mice per group, food intake (M), gastric
emptying (N), gastric motility (O, P)]. All of the data are expressed as the mean ± SEM. ##p < 0.01, **p < 0.01. Unpaired t-test for (E, F, H, M, N, P).
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Light-evoked inhibitory postsynaptic currents (IPSCs) were recorded
at 0 mV with a blue light (10 mW, 10 ms) in the presence of 4-AP
(1 mM) and TTX (1 µM).

Statistical analysis

SPSS 25.0 software was used for statistical analysis. An unpaired
t-test was performed for two-group comparisons. ANOVA (two-
way or one-way) with a post hoc Tukey’s test was used for multiple
group comparisons. The significance levels are indicated as **p <
0.01, ##p < 0.01. All data are expressed as the mean ± SEM.

Results

RS induces gastric motility disorder (GMD),
which is alleviated by EA

Physiological and psychological stress can cause FGIDs, and
acupuncture improves gastrointestinal motility. To confirm this
phenomenon, we established a GMD model in the context of RS
and irregular feeding and performed EA (Figures 1A, B). The results
illustrated that RS induced delayed gastric emptying, decreased food
intake and gastric motility, and EA alleviated GMD (Figures 1C–F).

RS enhances CeA and suppresses DVC
neuronal activity, which is reversed by EA

The emotional center (CeA) and gastrointestinal center (DVC)
are involved in stress-induced GMD. We recorded the neuronal
activity across the CeA and DVC in GMD mice. We demonstrated
that RS increased the firing rate of CeA neurons and decreased the
firing rate in DVC neurons in free-moving mice, with EA reversing
this phenomenon (Figures 2A–F). GABAergic neurons are
distributed throughout the CeA, and GABAergic projections play
an important role in control of DMV neuronal firing. Therefore, we
focused on CeAGABA neurons. Patch clamp recordings were
performed in CeAGABA neurons in acute brain slices. To visualize
GABAergic neurons, Ai9 (RCL-tdT) mice were crossed with GAD2-
Cre mice to reproduce transgenic mice with red tdTomato-
expressing GABAergic neurons (GAD2-tdT, Figure 2G). We
demonstrated an increase in action potentials with the current-
elicited in GMD mice and a decrease in action potentials in GMD +
EA mice (Figures 2H, I). These results indicate that CeAGABA

neurons and the DVC neurons are involved in the regulation of
gastric motility with EA. However, the role of CeAGABA neurons in
modulating the activity of DVC neurons to regulate gastric motility
is still unclear.

Inhibition of CeAGABA neurons
alleviates GMD

Given the enhanced CeAGABA neuronal activity in GMD mice,
we subsequently aimed to inhibit CeAGABA neurons and observe the
change in gastric motility in GMDmice. We injected Cre-dependent

eNpHR3.0 into the CeA to selectively suppress CeAGABA neurons.
The functionality of the eNpHR3.0 virus was verified by patch clamp
(Figures 3A–C). Gastric motility data illustrated that optical
inhibition of CeAGABA neurons resulted in significantly increased
food intake, gastric movement, and gastric emptying in GMD mice
(Figures 3D–H).

In naïve mice, we injected Cre-dependent ChR2 into the CeA to
selectively activate CeAGABA neurons. The functionality of the
ChR2 virus was verified by patch clamp (Figures 3I–K). The
results showed that activation of CeAGABA neurons reduced food
intake, delayed gastric emptying and decreased gastric motility
(Figures 3L–P). These results establish the functional linkage
between CeAGABA neurons and gastric motility.

An inhibitory pathway from CeAGABA to DVC

Previous evidence suggested a direct link between the CeA and
DVC. To confirm the presence of a CeAGABA → DVC projection, an
anterograde transmonosynaptic tracing system was employed. Cre-
dependent AAV was injected into the CeA (Figure 4A). 21 days
later, we examined mCherry+ cell bodies within the CeA (Figure 4B),
and numerous additional mCherry+ signals were observed in the
DVC (Figure 4C). These findings suggest an anatomical connection
from CeAGABA neurons to the DVC.

To test the functional connection between the CeAGABA → DVC
pathway, brain slice recordings were performed. Brief light
stimulation of ChR2-containing CeAGABA terminals in the DVC
reliably elicited IPSCs in DVC neurons, which were eliminated by
the GABA receptor antagonist picrotoxin (PTX) (Figures 4D–F).
These data verify that CeAGABA neurons send inhibitory afferents to
the DVC.

CeAGABA neurons through DVC to regulate
gastric motility

We mapped the CeAGABA → DVC pathway to examine
whether it participated in regulation of RS-induced GMD.
Optogenetic manipulations were employed in GMD mice. We
found that optogenetic inhibition of the activity of the CeAGABA

→ DVC circuit significantly promoted food intake, gastric
movement, and gastric emptying in GMD mice (Figures
5A–E). However, in naïve mice, we found that activation of
the CeAGABA → DVC circuit reduced food intake, delayed
gastric emptying, and subsequently decreased gastric motility
(Figures 5F–J). These results suggest that activation of
GABAergic projections from CeA to DVC may mimic the
symptoms of RS-induced GMD, and inhibition of these
projections may relieve symptoms of GMD.

Discussion

Our study found that activation of the GABAergic projections
from CeA to DVC may be responsible for restrained stress (RS)-
induced gastric motility disorder (GMD). However,
electroacupuncture (EA) is capable of inhibiting CeA and
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activating DVC neuronal activity to restore gastric motility, partially
revealing the mechanism of EA.

Psychological (e.g., fear, anxiety, and anger) and physiological
stress (e.g., hunger, overeating, and restraint) can cause FGIDs
(Labanski et al., 2020; Chuang et al., 2021; Ge et al., 2022). Many
studies have shown that stress delays gastric emptying, inhibits
feeding, induces gastric hypersensitivity, and suppresses antral
motility in animals (Bulbul et al., 2019; Li et al., 2019; Jiang and
Travagli, 2020). Consistent with this notion, we demonstrated that
RS and irregular feeding delayed gastric emptying, decreased gastric
motility, and food intake.

Chronic stress is a precipitating factor for emotional disorders,
which is associated with the effects of chronic stress on the amygdala
(Liu et al., 2020a; Song et al., 2020). One study reported that repeated
restraint stress increased the neuronal activity of the amygdala
(Zhang and Rosenkranz, 2012). Furthermore, another study
showed that chronic restraint stress enhanced the activity of CeA
GABAergic neurons (Zhu et al., 2019). In our study, we found that
the activity of CeAGABAergic neurons was increased in RS-induced
GMD mice. However, the functional linkage between CeAGABA

neurons and gastric motility remains largely unknown. The
connection is confirmed by our findings that optogenetic
inhibition of CeAGABA neurons relieved the RS-induced GMD,
and optogenetic activation of CeAGABA neurons induced the
GMD in naïve mice. Of note, the mechanism of CeAGABA

neurons regulation of gastric motility is still unclear.
The CeA is an integrative hub of multisensory information

which transforms sensory stimuli of emotional relevance into
behavioral and physiological responses, which is accomplished

through large efferent fibers sent to a number of downstream
nuclei involved in behavioral and autonomic responses (Gilpin
et al., 2015). Studies have shown that CeA nesfatin-1 may
operate through DMV pathway to regulate gastric distention-
sensitive neurons and gastric motility (Wang et al., 2014). Other
studies revealed that CeA orexin-A regulated food intake and gastric
motility, and that the CeA-DMV-vagus-stomach pathway may be
involved in the effect (Jin et al., 2020). Moreover, studies have found
that chemogenetic activation of GABAergic neurons from CeA to
the lateral hypothalamus (LHA) induced emotional and intestinal
motility disorders (He et al., 2022). As the major center of
gastrointestinal regulation, the DVC plays an important role in
the regulation of gastric motility. Anatomical studies have
uncovered that the CeA sends GABAergic projections to the NTS
(Saha et al., 2000). In our study, we identified a pathway between
CeAGABA → DVC, suggesting that CeA release the neurotransmitter
GABA to DVC directly. In addition, injection of GABA-receptor
antagonists into the DVC is capable of increasing gastric motility
(Sivarao et al., 1998; Babic et al., 2011). Based on our findings, we
propose a hypothesis for the neural circuit responsible RS-induced
GMD, in which inhibition of the CeAGABA → DVC pathway
alleviates GMD, and activation of the pathway results in the
symptoms observed in GMD.

Acupuncture stimulation is an ancient practice used to treat human
diseases. One core ideal is that stimulation of specific somatic tissues
(acupoints) can regulate internal organ function (Liu et al., 2020b).
However, the underlying neural mechanism is still poorly understood.
Professor Qiufu Ma has proposed that acupuncture effects can be
realized through somatosensory-autonomic reflexes, and they found

FIGURE 4
The anatomical and functional connection between CeAGABA→DVC pathway (A) Schematic of the viral injection. (B, C) Representative images of viral
expression in the CeA (B) and mCherry signals in the DVC (C). Scale bars: 100 µm. (D) Schematic of viral injection in GAD2-Cremice and the whole-cell
recording configuration in brain slices. (E, F) Representative traces (E) and summarized data (F) of inhibitory postsynaptic currents (IPSCs) in DVC neurons
induced by photostimulation (473 nm, blue bars) of CeAGABA terminals in the DVC in the presence of ACSF or theGABAA receptor antagonist PTX (n=
6 cells from three mice).
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that EA stimulation at ST36 activated the Phox2a projection neurons
within the spinal dorsal horn, and the neurons densely project to the
NTS (Ma, 2020; Liu et al., 2021b). Furthermore, studies have
highlighted acupuncture alter specific brain regions such as
cardiovascular regulation-related paraventricular nucleus (PVN)
(Cheng et al., 2018), psychomotor response-related CeA (Kim et al.,
2021), and drug dependence-related cuneate nucleus (Chang et al.,
2019) and so on, which suggest that acupuncture-evoked brain
response. Acupuncture stimulation at different acupoints has been
reported to drive different autonomic pathways associated with
gastrointestinal-motility control (Li et al., 2007). The autonomic
nervous system is divided into sympathetic and parasympathetic

systems, in which the DMV is the nucleus of origin of
parasympathetic nerves. Studies have revealed that EA inhibited the
expression of GABA receptors in DMV neurons (Yang et al., 2021).
Other studies have found that EA suppressed GABA transmission to
DMV to improve gastric motility (Lu et al., 2019). Consistent with
previous results, we demonstrated that EA alleviated GMD, inhibition
of the GABAergic projection neurons, and activation of DVC neurons
in GMDmice. In view of the relationship of CeAGABA→DVC pathway
and gastric motility, we proposed that EA regulated gastric motility may
through modulate the activity of CeAGABA → DVC pathway.
Admittedly, limitations of this study include: 1) Our way of
measuring gastric emptying rate did not eliminate the compounding

FIGURE 5
The CeAGABA→DVC pathway controls gastric motility (A) Schematic of viral injection in the CeA and optical fibre implantation in the DVC. (B–E)
Gastric motility effects of optical silencing of CeAGABA terminals in the DVC in GAD2-Cre GMD mice. [n = 6 mice per group, food intake (B), gastric
emptying (C) and gastric motility (D, E)] Schematic of viral injection in the CeA and optical fibre implantation in the DVC. (G–J) Gastric motility effects of
optical activation of CeAGABA terminals in the DVC ofGAD2-Cremice [n= 6mice per group, food intake (G), gastric emptying (H), gastric contraction
(I, J)]. All of the data are presented as the mean ± SEM. ##p < 0.01, **p < 0.01. Unpaired t-test for (B, C, E, G, H, J).
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effect of gastric secretion, and ideally the gastric content should have
been dried. 2) Our acupuncture research is rather preliminary, although
the study provides a new outlook for the research of mechanism of
acupuncture from the perspective of neural circuit.

Overall, the CeA sends GABAergic projections to DVC which
contribute to restraint stress-induced gastric motility disorder,
which provides a neuroanatomical explanation for stress-induced
GMD. Moreover, our study also reveals the overall regulatory
mechanism effects of acupuncture.
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