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There are a variety of difficulties in evaluating clinical cardiac mapping systems,
most notably the inability to record the transmembrane potential throughout the
entire heart during patient procedures which prevents the comparison to a
relevant “gold standard”. Cardiac mapping systems are comprised of hardware
and software elements including sophisticated mathematical algorithms, both of
which continue to undergo rapid innovation. The purpose of this study is to
develop a computational modeling framework to evaluate the performance of
cardiac mapping systems. The framework enables rigorous evaluation of a
mapping system’s ability to localize and characterize (i.e., focal or reentrant)
arrhythmogenic sources in the heart. The main component of our tool is a
library of computer simulations of various dynamic patterns throughout the
entire heart in which the type and location of the arrhythmogenic sources are
known. Our framework allows for performance evaluation for various electrode
configurations, heart geometries, arrhythmias, and electrogram noise levels and
involves blind comparison of mapping systems against a “silver standard”
comprised of computer simulations in which the precise transmembrane
potential patterns throughout the heart are known. A feasibility study was
performed using simulations of patterns in the human left atria and three
hypothetical virtual catheter electrode arrays. Activation times (AcT) and
patterns (AcP) were computed for three virtual electrode arrays: two basket
arrays with good and poor contact and one high-resolution grid with uniform
spacing. The average root mean squared difference of AcTs of electrograms and
those of the nearest endocardial action potential was less than 1 ms and therefore
appears to be a poor performance metric. In an effort to standardize performance
evaluation of mapping systems a novel performance metric is introduced based
on the number of AcPs identified correctly and those considered spurious as well
asmisclassifications of arrhythmia type; spatial and temporal localization accuracy
of correctly identified patterns was also quantified. This approach provides a
rigorous quantitative analysis of cardiac mapping system performance. Proof of
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concept of this computational evaluation framework suggests that it could help
safeguard that mapping systems perform as expected as well as provide estimates
of system accuracy.
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cardiac mapping, computational modeling, cardiac electrophysiology, arrhythmia,
regulatory science

1 Introduction

Catheter ablation is a primary therapy for the treatment of
cardiac arrhythmias. Life threatening ventricular tachycardia and
fibrillation occur for a variety of reasons including heart failure and
affect millions of individuals each year. The most common
arrhythmia is atrial fibrillation (AF) with an estimated prevalence
in the United States (U.S) alone of 3–5 million (Calkins et al., 2017),
and the deadliest arrhythmia is ventricular fibrillation (VF) which is
the leading cause of death in the U.S. There has been a substantial
increase in the annual number of in-hospital catheter ablation
procedures (Kneeland and Fang, 2009; Deshmukh et al., 2013;
Hosseini et al., 2017; Breithardt and Borggrefe, 2021) and
experimental data and ablation outcomes suggest that multi-
electrode cardiac mapping systems, that provide simultaneous
acquisition of tens or hundreds of recording sites, is responsible
for this increase (Calkins et al., 2017; Rolf et al., 2019). Studies have
shown that electroanatomical mapping systems significantly reduce
procedure duration and radiation exposure compared to
conventional fluoroscopy-guided atrial fibrillation (AF) ablation
procedures (Rotter et al., 2005; Estner et al., 2006). Cardiac
mapping is necessary to locate the sources of arrhythmias for
ablation and multipolar catheters, such as those incorporated
into electroanatomical mapping systems, allow rapid
identification of complex spatial patterns of electrical activity and
structural abnormalities (e.g., scar tissue) during fibrillation.
Purported mechanisms of electrical impulse propagation during
arrhythmias include (Schotten et al., 2021): 1) stable reentrant waves
(either anatomical or functional) sometimes accompanied by
fibrillatory conduction; 2) unstable reentry; 3) single or multiple
foci with or without fibrillatory conduction; and 4) asynchronous
activation of the endocardium and epicardium due to transmural
electrical dissociation.

There is considerable debate regarding the underlying activation
patterns of clinical AF and there are inconsistencies in ablation
outcomes in different studies (Roney et al., 2020). A variety of factors
are thought to underly these uncertainties including catheter
electrode density (Barbhayia et al., 2015; Roney et al., 2017a;
Aronis et al., 2019) and significant differences in mapping system
catheters and algorithms, most notably phase mapping. For
example, studies directly comparing two mapping algorithms
using the same raw data from catheter electrodes in clinical
studies indicate variability in concordance/discordance at both
ablation sites and elsewhere (Alhusseini et al., 2017; Bellmann
et al., 2018; Swerdlow et al., 2019). In another example,
Martinez-Mateu et al. demonstrated in computational modeling
studies that “far-field contributions to electrograms during AF
reduce the accuracy of detecting and interpreting reentrant
activity.” (Martinez-Mateu et al., 2019) The early success of

phase mapping during clinical VF (Masse et al., 2007) has not
been replicated for clinical AF, probably for a variety of interrelated
reasons including: the differences in ventricular and atrial geometry;
possible differences in underlying mechanisms; and differences in
electrogram signal characteristics (Gray et al., 1998; Umapathy et al.,
2010). Numerous authors have discussed further difficulties of
implementing phase mapping during clinical AF (Roney et al.,
2017b; Jacquemet, 2018; Podziemski et al., 2018; Li et al., 2020;
Roney et al., 2020) and Child et al. conclude “Despite phase analysis
being the preferred method in mapping AF, there are significant
challenges in this approach because of the non-sinusoidal and
fractionated nature of the recorded signal. Several complex signal
transformations and analytical methods have been used in response
to these difficulties reporting conflicting results, and there is urgent
need to validate and standardize these techniques.” (Child et al.,
2018).

The performance of cardiac mapping systems depends on
numerous complex and inter-related factors including the
patient’s condition, the mapping system hardware and software
including numerous mathematical algorithms, and the
interpretation of the mapping system output by the physician
(see Figure 1). Typically, performance analysis of a new mapping
system involves interpretation of system output by multiple
electrophysiological physicians. The ability to quantitatively
evaluate the performance of mapping systems in the intended
population is challenging, if not impossible, however, a
computational framework that can quantitatively integrate these
multifactorial complexities has the potential to provide concrete
performance metrics for cardiac mapping systems. Here we present
a novel computational modeling framework that enables
quantitative assessment of the accuracy of cardiac mapping
systems and demonstrate a “proof-of-concept” using a
hypothetical example. Our proposed framework allows for
blinded system evaluation and is based on estimating mapping
algorithm performance using simulated electrograms derived
from computer simulations in which the precise transmembrane
potential patterns are known.

2 Methods

2.1 Overview of proposed Mapping System
Evaluation Framework (MSEF)

Here we present a Mapping System Evaluation Framework
(MSEF) to quantitatively evaluate clinical cardiac mapping
systems using computational models. Our proposed framework
includes the ability to evaluate mapping system performance
under: 1) various electrode configurations; 2) various heart
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geometries; 3) various arrhythmias; and 4) the effect of noise on
system performance. MSEF allows for blind testing of cardiac
mapping system performance against a ‘silver standard’ in which
the transmembrane potential is known throughout the entire heart.
Our framework takes advantage of the fact that the methodology for
quantifying the dynamic spatial patterns of transmembrane
potential throughout the heart are well-established and robust, as
exemplified in hundreds of experimental (e.g., optical mapping) and
numerical (e.g., computational modeling) studies.

The framework includes a “library” of pre-computed
simulations incorporating a range of activation patterns including
paced beats, reentry, and “focal” beats replicated via pacing. For each
simulation, activation times for each node in the computational
mesh are computed using the maximum upstroke velocity of each
action potential. The location of reentrant beats are computed via
the computation of phase maps, identifying surface phase
singularities, and then computing their “center of mass” from
phase singularity density maps. Each entry in the library consists
of: 1) transmembrane potential at every node sampled at 1 kHz; 2)
activation times at every node; 3) the location of all paced beats
(including simulated focal activity); and 4) the surface location and
chirality of all reentrant waves.

Table 1 provides the chronological list of steps in the overall
process of evaluating a generic cardiac mapping system (MS) using
the MSEF. The process includes two participants: the “User” which
is most likely the MS developer and; 2) the MSEF “Administrator”.

2.2 Pilot study to demonstrate the feasibility
of MSEF

To demonstrate the feasibility of this framework, we present a
specific implementation of the approach described above in this

manuscript. Due to the large number of variables identified in Step
1) above, a comprehensive assessment of MSEF is beyond the
scope of this study. The implementation presented here is
comprised of: 1) two simulations of electrical activity in a
healthy isotropic human left atria (2 seconds duration)
comprised of paced (P), reentrant (R), and focal (F) beats; 2)
three virtual electrode catheters: two idealized 64 basket arrays and
one high-resolution 6 × 6 array; 3) well established algorithms to
compute activation times and localize reentry from high resolution
transmembrane patterns; and 4) simple generic mapping system
algorithms. Video movies of these two simulations are provided in
the Supplementary Material.

2.3 Simulations

The monodomain equation governing electrical activation and
propagation in excitable tissue was solved:

χ Cm
zV

zt
+ Iion + Istim( ) − ∇. σ∇Vm( ) � 0 (1)

where Vm is the transmembrane voltage, χ = 1,400 cm−1 is the
surface-area-to-volume ratio, and Cm = 1.0 μF cm−2 is the
capacitance per unit area. Iion is the ionic current computed by
coupling the monodomain equation with the Nygren cell model
(Nygren et al., 1998) of an adult human atrial cell; Istim is the
stimulus current imposed during S1 and S2 stimulation. The
conductivity was chosen to be isotropic with a value of
0.466 mS cm−1 to match the conduction velocity of human atria
of 55 cm/s (McDowell et al., 2015). The monodomain equation was
solved using the finite element method using the Chaste software
package (Mirams et al., 2013). Simulations were run on a high-

FIGURE 1
Overview of cardiac mapping system use. Cardiac mapping systems include both hardware and software elements are used to record electrograms
from the patient’s heart and display a variety of information to the cardiac electrophysiological physician.
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resolution computational mesh of a human left atrium derived from
a commercially available computer aided design (CAD) model by
Zygote Cooperation. The CADmodel was imported into Tetgen (Si,
2015) and an unstructured tetrahedral mesh consisting of
1.32 million nodes and 4.6 million elements with an average edge
length of 252 µm was generated. The thickness was nonuniform and
derived from patient specific imaging. The partial differential
equations were solved using a backward Euler discretization with
timesteps of 0.1 ms for both the partial differential equations and the
cell model. The transmembrane voltage of each node was saved
every 1 ms and simulations were run for a total of 2 s.

Two simulations were performed and videos of these are
provided in the Supplementary Material. The first simulation is
comprised of a single paced beat followed by 6 beats of figure-of-
eight reentry, i.e., a pair of counter rotating reentrant waves (one
clockwise denoted as “R+” and one counterclockwise denoted as “R-
” when viewed from the endocardium), generated via an S1-S2
stimulus protocol. The paced beat was initiated at the junction of the
posterior left atrium and the left inferior pulmonary vein and is
referred to as “P” and the S2 was applied in the free wall of the
septum of the left atria (LA). The second simulation is simulated
focal activity and was constructed to allow a direct comparison with
the reentrant beats. We simultaneously paced the locations
corresponding to the center of mass of R+ and R-with inter beat
intervals corresponding to the reentrant cycle lengths of each of the
six reentrant beats; we refer to these patterns as “F+” and “F-”.
Overall we simulated 13 activation patterns (AcPs) across the two
simulations: one paced beat (P), six figure-of-eight patterns with

clockwise (R+) and counterclockwise (R-) activation patterns and
6 pairs of focal beats (F+ and F-).

2.4 Electrode configurations and
electrograms

We choose two idealized generic basket electrode geometries
comprised of 64 unipolar electrodes (8 electrodes spaced 2 mm apart
on 8 separate splines) with a diameter 38 mm and one idealized “grid”
electrode geometry comprised of 36 electrodes aligned in a 6 × 6 grid
4 mm apart. Basket catheters expand within the heart chamber into
which they are placed and the distance between each electrode and the
heart surface varies depending on the electrode spacing and the
endocardial geometry. We initially considered the “worst-case” as all
64 electrodes residing on a 38mm sphere “centered” in the LA; however,
this case provided meaningless results which are not presented here. We
consider the “best case” by finding the 64 LA sites on the mesh that
minimize the distance from the endocardial surface to each electrode (see
Figure 2), and then placing the electrodes 0.5 mm from the heart surface;
we refer to this case as “basket good contact” (BGC).We also consider an
“intermediate” case by placing the 64 locations at themidpoint of the line
connecting the point on the sphere to the nearest endocardial site (see
colored lines in Figure 2A); we refer to this case as “basket poor contact”
(BPC). Although a sphere was used to derive the locations for BGC and
BPC, the resulting electrode locations do not lie on a sphere; as such the
distance between electrodes on a spline are not constant. The 8 ×
8 electrode arrays for BGC and BPC are represented in 2-D arrays

TABLE 1 Steps for MSEF execution in chronological order.

1) The User identifies the following information relevant for their mapping system (MS)

a. The heart chamber(s)

b. Type of activity (e.g., sinus rhythm, pacing, atrial tachycardia, etc.)

c. Recording electrode type(s) (e.g., contact endocardial)

2) The Administrator selects a number of simulations from the library based on the information contained in 1)

3) The Administrator provides the User with the set of points representing the heart surface(s) corresponding to the simulations selected in 2)

4) The User identifies the location(s) of the electrode(s) in their MS in the same three-dimensional space as the data in 3) so that the relative electrode location(s) and heart
chamber geometry are known. For example, the User could ‘align’ their MS electrodes to the 3-D heart geometry digitally using visualization software with a CAD
representation of their electrode catheter or physically using a 3-D printed version of the heart geometry and their actual catheters. The User provides these locations to the Tool
Administrator. In the case of ‘roving’ catheters this information will include locations as a function of time

5) The User characterizes the noise level for each of electrode locations, which may vary across locations, and also provides these noise levels to the Administrator

6) For EACH simulation selected in 2), and based on the information contained in 1) and 4), the Administrator computes the virtual electrograms corresponding to the location(s)
provided by the User in 4) and sends these electrogram(s) to the User such that the User is blind to the specifics of the underlying electrical activity in the simulation. ‘Virtual
noise’ is added to each electrogram based on the information provided by the User in 5)

7) The User processes the electrograms sent by the Administrator in 6) either by using a digital to analog converter and inputting these signals into their physical MS or via
inputting them directly into their software. In either case the User will bypass the physical electrode(s) in their system

8) The User sends the following system output to the Administrator

a. Predicted activation times at specific locations on the heart surface (i.e., a subset of points in 3) corresponding to their MS. For example, for non-contact electrodes these
locations will be different than the electrode locations provided in 4)

b. Predicted type(s) of electrical activation patterns and their location(s) as a function of time in relation to the surface points that were provided in 3)

9) The Administrator runs a set of ‘comparison’ tools which include

a. Computing the root mean square error (RMSE) in activation times computed for all points provided in 8.a) as well as the average RMSE per electrode and number of ‘missed’
activations and spurious (i.e., wrong) activations by comparing the activation times computed from the virtual transmembrane potential from the same sites

b. Comparing the type(s), location(s), and timing of electrical activation patterns provided by the User to those computed from the corresponding computer simulations, as well
as identifying missed and spurious patterns as well as those that were misclassified

c. Computing the spatial and temporal distances between the source(s) of activity patterns correctly predicted by the User
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labeled A1 to H8 (see Figure 2B). Finally, we studied an idealized
localized electrode ‘uniform array’ (referred to as “UA”) in which a
2 cm× 2 cm square wasmanually placed close to the endocardial surface
over R+ and then each of the 36 virtual electrodes were moved such that
they were 0.5 mm from the nearest endocardial site. The 6 × 6 electrode
array for UA is represented in a 2-D array labeled a1 to f6 and shown in
Figure 2C. Examples of electrograms from BGC and BPC with noise
added are shown in Figure 2D.

Virtual electrograms (referred to as electrograms in this
manuscript) were computed for all electrode locations for the
three catheter configurations for the two simulations as:

∅e x′, y′, z′( ) � ∫ −σe∇Vm( ). ∇1
r

[ ]dx dydz (2)
where

r � x − x′( )2 + y − y′( )2 + z − z′( )2[ ]1/2 (3)
where ∅e is the extracellular unipolar potential (i.e., electrogram),
∇Vm is the spatial gradient of Vm, σe � 7 m/cm is the extracellular
conductivity, r is the distance from a “source” point (x, y, z) within
the heart to the electrode location, (x′, y′, z′), and the integral is
over the myocardium. This computation ignores the size of the
electrode assuming it is a point. The integral was computed by
summing the volume integrals over each element in the finite
element mesh, calculated using Gaussian quadrature and using
the finite element solution for Vm (linear in each element).

2.5 Algorithms

The value of activation times (AcTs) for Vm were computed as
the time of maximum derivative ofVm provided it was greater than a
threshold value (α) with the constraint that two activations did not
occur within a specific interval (β). The values of α and β were
selected based on a sensitivity analysis performed on seven Vm sites
from the first simulation at five locations within the reentrant
isthmus and two sites outside the isthmus. Specifically, we
computed AcTs for thresholds of α = 0.1, 0.2, 0.3, and 0.5 mV/
ms and for β = of 25, 50, 100, 150, 200, 250, and 500 ms. For all seven
sites, the number and values of AcTs were the same for thresholds of
0.1, 0.2, and 0.3 mV/ms and window sizes of 100 and 150 m.
Therefore, we choose values of α = 0.2 mV/ms and β = 100 m
for the computation of AcTs from Vm signals (Dube et al., 2009).
Interpolation between samples was not employed so the resolution
of AcTs was 1 ms.

The algorithm for identifying reentrant patterns for the
simulations involved computing the 3-D filaments using state-
space phase analysis using Eqn (Hosseini et al., 2017). as
described previously (Pathmanathan and Gray, 2015;
Galappaththige et al., 2019).

θ t( ) � atan 2 Vm t + 2( ) + 30, Vm t − 2( ) + 30[ ] (4)
where θ is a computed phase variable; endocardial phase
singularities (PSs) were computed from the proper end of these

FIGURE 2
LA geometry and virtual electrode locations. (A) LA with the projection lines (colored according to spline #) from the sphere to the endocardial
surface. (B) Location of BGC electrode locations (A1-H8). (C) Location of UA electrode locations (a1-f6). Endocardial site R+ is shown as a red sphere and
R-as a green sphere. (D) Examples of electrograms from basket electrodes: Good Contact (BGC) and Poor Contact (BPC) with noise added; noise level
was 1 mV/ms for BGC and 0.5 mV/ms for BPC.
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filaments. PS density maps were computed using a custom Python
script that calculated the number of times a PS occurred at each
node within the simulation interval between 1 and 2 s. Since we
identified a relatively stable figure-of-eight reentrant pattern via
visual inspection, a k-means clustering algorithm was
implemented to identify two clusters corresponding to
clockwise (+) and counterclockwise (−) reentry on the
endocardial surface. The center of mass of these two clusters
were considered the locations of the two endocardial surface PS
locations, R+, and R-.

The algorithm for computing AcTs from the electrograms
was identical to that used for Vm with the exception that the sign
of the ‘derivative threshold’ was opposite; the value of ß was
100 m and the value of a was −1 mV/ms for BGC and
a = −0.5 mV/ms for BPC and UA. Due to the significant
differences between the morphology of Vm and ∅e signals, we
did not employ phase analysis for the algorithms to identify
activation patterns from the electrogram data. Instead we
developed very simple algorithms to identify focal (F) and
reentry (R) patterns using only AcTs. The algorithms include
two parameters (a ‘difference threshold’, δ in ms; and an interval,
γ in ms). We identified the presence of both F and R patterns at
each electrode location using the value of AcT at that site and the
AcTs of the eight surrounding electrode neighbors. A site was
classified as F if all the AcT differences of the 8 neighbors and the
central pixel were between -δ and γ+δ. A site was classified as R+
(R−) if there was a clockwise (counterclockwise) progression of
AcT’s along the path of the 8 neighboring electrodes including a
continuation of activation between beats; specifically, each of the
differences along the path had to be between -δ and γ+δ. These
pattern identification algorithms include the computation of
eight differences and we chose δ = 2 and γ = 100.

2.6 Addition of noise

Noise was included by adding uniformly distributed random
values to ∅e. We choose the level of noise to be equal to the
threshold value (a) which varied with electrode configuration (see
above) which is a level at or above clinical values (Unger et al., 2019)
although the effect of noise (as a factor of threshold) is included in
the Supplement. Recall that in the actual use of our proposed
framework the user will provide information on the actual level
of noise for their MS to the MSEF.

2.7 Performance analysis

Evaluation of AcTs was performed for the electrograms for both
BGC and BPC MSs by comparing to the corresponding values
computed from Vm. The acceptable level of difference in AcTs
between the MSs and simulation is unclear and may depend on the
activation pattern, therefore we introduce a “tolerance” variable
(Tol) and analyzed performance as a function of Tol. The ability of
each MS to identify AcTs was computed by identifying: 1) correctly
identified AcTs; and 2) spurious AcTs. In addition, the average RMS
of all correctly identified ACTs was computed. An “AcT

Performance Metric” (AcTPM) was computed to assess the
ability of a MS to identify AcTs:

AcTPM � fC p 1 − fS( ) p 100 (5)
where fC and fS are the fraction of correct and spurious AcTs,
respectively. A value of 100 indicates perfect performance.
Specifically, fC is computed as the number of AcTs for
simulated electrogram that are within Tol of a corresponding
AcT computed from Vm of the nearest endocardial site divided
by the total number ofVm AcTs from that site; and fS is computed as
the number of AcTs for a simulated electrogram that are not within
Tol of a corresponding AcT computed from Vm of the nearest
endocardial site divided by the total number of Vm AcTs from that
site (if fS is >1, then fS is set equal to 1).

Activation patterns (AcPs) were computed at each site using the
AcTs from the 3 × 3 array neighborhood and analyzed similarly and
were considered correct if they were localized within 100 ms and if the
distance to the true (x,y,z) location in the simulations was less than
1 cm. We define the temporal localization error (ET) as the difference
between the electrogram AcT at the centralized site and the
corresponding stimulation time (i.e., S1, S3, S4, S5) and the spatial
localization error (EX) is the Euclidean distance between the centralized
electrode location and the site identified as R+ or R-from the Vm

simulations (as described above). An ‘AcP Performance Metric’
(AcPPM) was computed to assess the ability of a MS to identify AcPs:

AcPPM � fC p 1 − fS( ) p 1 − fM( ) p 100 (6)
where fC and fS are the fraction of correct and spurious AcPs and fM
is the fraction of “misclassifications” defined as a wrong pattern type
for a beat (matching the identification criteria for the above temporal
and spatial distances of a different pattern). Specifically, a correct AcP
from a virtual electrode array was defined as the identification of the
identical pattern for the same beat for the “ground truth” (25 patterns:
1P, 6 R+, 6 R-, 6 F+, and 6 F-); and a spurious AcP from a virtual
electrode array was defined as the identification of a pattern that did
not correspond to the ground truth. AcTs and AcPs for BGC and BPC
were compared to those computed for the simulation results for
pacing, focal and reentrant patterns separately. In addition, the
average temporal (ET) and spatial (EX) localization errors of the
correctly identified and spurious AcPs were computed. Since the
definition of the correct identification of a pattern depends on a 1 cm
‘tolerance’ the value of EX is constrained (EX ≤ 1).

3 Results

3.1 High-resolution simulations

Figure 3 illustrates the initiation of the paced beat (Panel A) and
the location of the S2 stimulus whichwas applied 390 m after the paced
stimuli (Panel B). A snapshot of activity from 6 views is shown in
Figure 4 illustrating the figure-of-eight reentrant pattern. A video of the
simulation is provided as a Supplementary Material. The figure-of-
eight reentrant patterns from this simulation and focal patterns from
the second simulation on the endocardial surface are shown in Figure 5
with the computed centers of mass of R+ and R-displayed as grey
spheres. The location of these patterns in relation to the LA can be
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ascertained by viewing Figure 2A and the isochrone maps constructed
from the 8 × 8 grid of electrodes for BGC for paced, reentry and focal
activity in Figure 6. Similarly, isochronemaps constructed from the 6 ×
6 grid of electrodes for UA are shown in Figure 7.

3.2 Comparison of mapping system output
and simulation results

The average RMS value of the difference of AcTs computed from
Vm and∅e signals was less than 1 ms for all beats for all values of Tol

ranging from 0 to 100 ms for both BGC and BPC. In fact, all values
were below 0.24 ms except for the paced beat for BPC, for which the
average RMS was between 0.38 and 0.58 ms. The fact that all values
were less than 1 ms motivated the development of the novel
performance metrics presented in the Methods Section. AcTPM
and %S values are shown for BGC and BPC as a function of Tol for P,
R, and F patterns in Figure 8. As expected AcTPM was always larger,
and % S was always smaller, for BGC compared to BPC for all
activation patterns. The trend was for AcTPM values to increase and
% S values to decrease as Tol increased and reach plateau values with
these values being less for BPC compared to BGC, and highest for P

FIGURE 3
(A) small S1 site (radius of 0.5 cm) (B) large S2 site (radius of 1.0 cm). Transmembrane potential is represented with a blue-red color map such that
blue corresponds to −90 mV and red to +30 mV. The hole on the left in panel B is the fossa ovali (FO)s, the extensions represent pulmonary veins (PV) and
the left atrial appendage (LAA) is in the bottom right.

FIGURE 4
A snap shot of the reentry simulation in multiple view angles at 1,679 ms into simulation. Transmembrane potential is represented with a blue-red
color map such that blue corresponds to −90 mV and red to +30 mV.
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as compared to R and F for both BGC and BPC. The plateau for BGC
was reached at Tol = 2 ms, where the corresponding value for BPC
was Tol ≈ 10 ms. For BGC, the values forAcTPM for Tol = 2 ms were
100, 93.5 and 93.6 for P, R, and F respectively and the corresponding
values for %S were 0.2, 2.5, and 1.8. For BPC, the values for AcTPM
for Tol = 10 m were 84.9, 79.2 and 81.5 for P, R, and F respectively
and the corresponding values for % Swere 4.7, 2.0, and 3.9. Although
the average RMS values were always less than 1 ms, the RMS SD was
a function of Tol and was much greater for BPC compared to GC
(Figure 8C).

The ability of the MSs (BGC, BPC, and UA) to identify the one
paced (P) beat, the twelve reentrant (6 R+; 6 R-) patterns, and the
12 focal patterns (6 F+; 6 F-) are presented in Table 2. This
comparison was carried out for two values of δ (2 and 10 ms)
which corresponds to the values for which Tol reached plateau
values for BGC and BPC respectively. The P beat was not identified
for any MS (hence AcPPM = 0) with one misclassification and one
spurious patterns evident for BGC only. Only 1 of 6 R-beats were
identified for BGC (with 0 and 5 spurious patterns for δ = 2 and
10 m, respectively). Four (δ = 2 ms) or five (δ = 10 ms) of 6 R+
beats were identified by BGC and 2 of 6 for BPC (δ = 10 ms) while

5/6 were identified for UA; UA resulted in no spurious patterns
while there were 0 for both BGC and BPC (δ = 2 and 10 m); the
only misclassifications of R+ occurred for BGC, δ = 10 ms. Focal
beats were identified with temporal error less than 10 ms for BGC,
BPC, and UA, although only F+ beats were identified for UA
(which is consistent with its placement, see Figure 2C). Overall, F
beats were easier to identify than R beats for our simplified
algorithm.

Two factors that affect the ability of a MS to identify patterns on the
heart surface are: 1) the distance of the electrodes from the heart surface;
and 2) the density of the surface projection of the MS electrode sites.
These two values for each electrode are shown in Table 3 for BPC; the
first number is the distance of the electrode to the nearest endocardial
mesh node, and the second number is the average distance to the eight
nearest projected endocardial sites. The fact that the location for nearest
electrode for R+, F+ (E2) was closer and had a higher surface density
compared to the location of the nearest electrode for R-, F- (D4) is
consistent with the trend of better identification of + patterns sites
compared to—patterns. To demonstrate the effect of these factors, the
pattern identification algorithm described above was applied to the AcTs
computed from the noiselessVm signals. These values ofAcPPM forVm

FIGURE 5
Activation time isosurfaces with points of reentry (spheres) for (A) Reentry simulation (B) Focal simulation. Surface electrodes are marked by black
dots with spline label in white. The color bar represents the activation times for beat 2, red 500 ms and blue 970 ms.
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data were: P: 0 (1S); R+: 69; R-:14; F+: 83; F-:100 for δ = 2m. These
values are similar to BGC (δ = 2ms) suggesting that BGC performed
nearly as well as could be expected (except for F- suggesting that the
optimal electrode resolution might fall between E2 and D4, see Table 3).
The actual x,y,z location of R+ and F+ beats was located 0.52 cm from
the nearest surface site which corresponded to B7. The fact that electrode
B7 corresponds to a high surface projection density and a small electrode
to surface distance (0.18 cm) explains why F+ was the only activation
pattern identified by BPC (δ = 2ms).

4 Discussion

The success of an electrophysiological procedure to localize and
ablate arrhythmogenic sources in the heart depends on a variety of
interrelated factors such as: the patient’s heart geometry, disease
state, and arrhythmia; the number, type, and location of recording
electrodes; mapping system hardware and software (algorithms);
data display; and physician interpretation. These can be summarized
into four distinct categories as shown in Figure 1: 1) the heart; 2) the
mapping system; 3) the display; and 4) the physician.

In this manuscript we present a novel computational
framework that enables a rigorous evaluation of a mapping
systems ability to localize the arrhythmogenic sources and

their type (i.e., focal or reentrant), which spans categories 1)
and 2), via a blinded comparison with numerical simulations. As
far as we are aware, the only other similar study focused on a
computational framework for MS evaluation was by Bartolucci
et al., 2021 in which the results from two virtual catheters were
compared using simulations of a two-dimensional spiral wave
(Bartolucci et al., 2021). Here, activation times and patterns for
virtual ∅e signals were computed for simulations incorporating
three hypothetical MSs (BGC, BPC, and UA) and compared to
the corresponding high resolution Vm data from two simulations
containing paced (P), reentrant (R), and focal (F) patterns. We
introduce two novel ‘quantitative performance metrics’ (QPMs);
one for patterns (AcPPM) and one for activation times (AcTPM)
because RMS error was not indicative of performance. These
QPMs reflect the ability of the MS to identify AcTs and AcPs,
respectively by combining the number of correctly identified,
spurious, and misclassified AcTs and AcPs. Identifying “correct”
AcTs and AcPss from electrogram data requires choosing “error
tolerances” for continuous variables and these choices most
likely will impact the QPMs. Therefore, we believe it is
important to be transparent and clear regarding these error
tolerance choices. The choices in this work are the threshold
derivative for virtual ∅e AcTs (a); AcT similarity tolerances (Tol
and δ); an interval threshold for neighboring AcT to ensure they

FIGURE 6
Isochrone maps of paced (A), reentrant (B) and focal (C) activation patterns computed from 8 × 8 grid of electrodes for BGC.
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are part of the same wavefront (γ); as well as distance (1 cm) and
time (100 ms) thresholds when comparing patterns to the
simulations. Each of these “tolerance parameters” (TPs) will
affect the performance evaluation (see Table 3); therefore we
suggest identifying the sensitivity of the QPMs to these TP
values. In addition, these TPs could be constrained based on
important clinical factors (e.g., ablation lesion size). We believe
that much further work is required to identify the best QPMs
and TPs for a computational framework for clinical MS
evaluation. Regardless of the choices, we believe that the ideal
computation of QPMs should include an analyses of the
sensitivity to TPs and relevant simulation parameters (e.g.,
noise) as well as the consideration of uncertainty (including
measurement uncertainty).

It is well understood that the specific activation patterns in the
heart are dependent on the underlying mechanism of the patient’s
arrhythmia and that the corresponding sources can be either focal or
reentrant, which can be difficult to distinguish with a limited
number of electrogram recordings (Li et al., 2020). In addition,
comparison studies involving retrospective analyses of clinical data
have shown both similar (Alhusseini et al., 2017; Podziemski et al.,
2018; Swerdlow et al., 2019) and disparate (Luther et al., 2017; Anter
et al., 2018) results regarding mapping system algorithms. A
computational approach to MS evaluation will aid in not only
making these issues transparent but also in providing a
framework to quantify these effects. The fact that BGC and
simple algorithms performed poorly in identifying AcPs (see
Table 2) was the result of inadequate sampling capture patterns
as demonstrated by similar results when analyzing the nearest
64 transmembrane signals.

As expected, we found that the following two issues were the
primary factors contributing to the ability of a mapping system to
correctly identify activation patterns: 1) the distance from the
electrodes to the heart surface; 2) the physical location of each
activation pattern in relation to the density of the projection of
the electrodes onto the heart surface. This finding is consistent
with previous studies. For example, Alessandrini et al. computed
extracellular electrograms during simulated AF in a patient-
specific LA using models of grid catheters as well as
realistically deformed basket catheters (Alessandrini et al.,
2018). They found that computed maps of rotor tip trajectory
density correctly identified and located the virtual rotors
(deviation <10 mm) only for catheter recordings of sufficient
resolution (inter-electrode distance ≤3 mm) and proximity to the
wall (≤10 mm). In addition, Roney et al., performed simulations
to estimate the minimum number of measurement points
required to correctly identify the underlying AF mechanism
and found that the spatial resolution required for correct
identification of rotors and focal sources was a linear function
of spatial wavelength (the distance between wave fronts) of the
arrhythmia (Roney et al., 2017a). They also found that all clinical
high-resolution multipolar catheters are of sufficient resolution
to accurately detect and track rotors when placed over the rotor
core, although the low-resolution basket catheter was prone to
spurious detections and may incorrectly identify rotors that are
not present (Roney et al., 2017a). Martinez-Mateu et al.
(Martinez-Mateu et al., 2019) also identified two different
types of ‘phantom rotors’ associated with basket catheters due
to the far-field sources and to the interpolation between the
electrodes and found that the ability to detect rotors depended
on the basket’s position and the distance between the electrodes
and the heart surface.

The goal in this study was to develop a framework for
evaluating MSs, therefore the choice of QPMs are most likely
not be optimal, in part due to a variety of limitations. First, the
specific comparison analyses presented here depend on: 1) the
electrode configuration; 2) the simple MS algorithms we
employed; 3) the noise level as well as its spatial uniformity
and 4) the specific type and location of electrical patterns in the
simulations as well as the choice of cell model (e.g., including
“remodeling” may be appropriate for simulating AF (Heijman
et al., 2021)). For this pilot study the RMS error of AcTs was less
than 1 ms indicating that activation pattern reconstruction of
electrograms will be similar to those computed from “down
sampling” the transmembrane action potentials from the
endocardial surface. AcTs may not correspond well to action
potential depolarization during situations in which propagation
is abnormal (e.g., at sites of fractionization during persistent AF).
More sophisticated MS algorithms than those used here that
include spatial and temporal interpolation might improve the
identification of AcPs, although care must be taken to interpolate
phase values correctly (Roney et al., 2017a; Jacquemet, 2018).
Incidentally, our simple MS algorithms did not include any phase
calculations; preliminary tests to identify patterns using phase
showed decreased performance in identifying reentry compared
to the algorithms presented here based on AcTs only. Second, the
simulations presented here were carried out using an isotropic
left atrium (only) derived from a healthy male. A computational

FIGURE 7
Isochrone maps of paced (A), reentrant (B) and focal (C)
activation patterns computed from 6 × 6 grid of electrodes for UA.
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study by Jacquemet et al. (Jacquemet et al., 2003) provides insight
into the impact of atria structure on electrogram morphology:
they concluded that regardless of anisotropy, wavefront collisions
are not the basis of multiphasic electrograms during AF. Third,
we implemented a specific “basket-like” geometry which does not
capture certain aspects of the clinical situation (Laughner et al.,
2016; Oesterlein et al., 2016; Honarbakhsh et al., 2017). Fourth,
this study ignored electrogram morphology and only considered
the time of activations (i.e., only AcTs were computed using a
simple threshold of maximum derivative); in order to support the

practical usefulness of this framework to incorporate electrogram
morphology validation of virtual electrode signals with clinical
signals would be required. Nevertheless, our study includes a
quantitative comparison of three hypothetical electrode
configurations with the same reference standard
(i.e., simulation results) and the same MS algorithms.

A very important question is “How well do the Quantitative
Performance Metrics (QPMs) of a MS, resulting from
challenging the MS with simulated electrograms from
computer simulations, predict real-world performance of the

FIGURE 8
Comparison of activation times between virtual mapping systems BGC and BPC and simulations. (A) Activation time performance metric (AcTPM)
defined in Eq. 5 as a function of tolerance (Tol). (B) Percentage of spurious AcTs as a function of Tol. (C) RMS standard deviation (SD) as a function of Tol.

TABLE 2 Value of ACPPM of Paced (P), Reentrant (R), and Focal (F) patterns, with temporal (ET) and spatial (EX) errors as a function of δ; when ACPPM = 0, the
number of spurious (S) and misclassifications (M) are presented.

AcPPM (%) P: (EX cm; ET ms) R+: (EX cm) R-: (EX cm) F+: (EX cm; ET ms) F-: (EX cm; ET ms)

BGC (δ = 2) 0 1S, 1M 67 (0.52) 17 (0.63) 83 (0.52; 0.0) 50 (0.63; 5.7)

BPC (δ = 2) 0 0S, 0M 0 0S, 0M 0 0S, 0M 83 (0.5; 0.0) 0 0S, 0M

BGC (δ = 10) 0 1S, 0M 69 (0.47) 2.3 (0.63) 69 (0.52; 0.0) 83 (0.68; 7.3)

BPC (δ = 10) 0 0S, 0M 33 (0.41) 0 0S, 0M 69 (0.57; 1.7) 83 (0.83; 9.4)

UA (δ = 2) NA 0S, 0M 83 (0.34) NA 0S, 0M 83 (0.37; 0.0) 0 (NA)

UA (δ = 10) NA 0S, 0M 83 (0.37) NA 0S, 0M 69 (0.47; 2.2) 0 (NA)
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same MS in the intended use population?” Ideally, this would be
addressed by performing validation of the MSEF Framework.
This would involve comparing conclusions from MSEF MS
evaluation with conclusions from clinical MS evaluation.
However, we expect this approach to be very difficult and
possibly unethical.

FDA is responsible for ensuring the reasonable assurance of
safety and effectiveness of medical products in the United States
using the following definition of effectiveness defined in Section
860.7(e) (1) of the Code of Federal Regulations: “There is reasonable
assurance that a device is effective when it can be determined, based
upon valid scientific evidence, that in a significant portion of the
target population, the use of the device for its intended uses and
conditions of use, when accompanied by adequate directions for use
and warnings against unsafe use, will provide clinically significant
results.” We believe that this study represents a major step in
establishing appropriate performance criteria for MSs using a
computational simulation framework. However, discussions with
the MS and clinical community regarding appropriateness,
justification, and validation will help further refine the framework
and next steps in development of MSEF tools such as generating an
appropriate library of computational simulations; identifying and
standardizing appropriate performance metrics; validating the
approach; and automating the steps identified in Table 1.

Our MSEF is based on well-established scientific methods
and provides results in the form of two new performance
metrics. We believe that our MSEF provides significant new
information to aid in the performance evaluation of cardiac
mapping systems which is necessary to assess effectiveness.
The results can be used to identify the performance of a specific
mapping system as a function of a variety of variables, and due
to the use of computer simulations the framework is flexible to
account for a multitude of inter-related factors that depend of
the context of use of the system. Identifying the number and
type of simulations to include in the library is extremely
challenging; ideally they would represent the geometry,
patterns, and electrogram morphology representative of the
patient population of interest. Incidentally, the framework can
incorporate simulation results from a combination of super

computers, graphical processing units (Kaboudian et al., 2010),
or desktop computers (Pathmanathan and Gray, 2015;
Galappaththige et al., 2019), depending on the level of
desired fidelity. Overall, our results demonstrate the
feasibility of a computational framework as a method for
quantitatively evaluating the performance of mapping
system algorithms that compute activation time and/or
analyze activation patterns.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

All authors listed havemade a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Funding

This project was funded in part by the FDA Critical Path
Initiative and by appointment to the Research Participation
Program at the Division of Biomedical Physics, Office of Science
and Engineering Laboratories, Center for Devices and Radiological
Health, U.S. Food and Drug Administration, administered by the
Oak Ridge Institute for Science, and Education through an
interagency agreement between the U.S. Department of Energy
and FDA.

Acknowledgments

We would like to thank the following individuals from FDA for
useful comments: Jun Dong MD, Kan Fang MD, Mark Fellman MS,
Chris Scully PhD, and Sandy Weininger PhD.

TABLE 3 Distance between electrodes for BPC and endocardial surface (in cm), average distance of 8 nearest neighbors of 64 projected endocardial sites (in cm).
Electrodes near the poles of the sphere do not have 8 neighbors so the second value is undefined (NA).

A B C D E F G H

1 0.12, NA 0.06, NA 0.04, NA 0.09, NA 0.16, NA 0.19, NA 0.21, NA 0.19, NA

2 0.29, 0.65 0.14, 0.65 0.13, 0.74 0.17, 0.85 0.18, 0.88a 0.21, 0.86 0.32, 0.91 0.37, 0.77

3 0.50, 1.48 0.30, 1.17 0.30, 1.14 0.27, 1.10 0.23, 1.10 0.26, 1.12 0.42, 1.4 0.62, 1.76

4 0.63, 1.89 0.37, 1.57 0.46, 1.60 0.43, 1.61b 0.37, 1.64 0.43, 1.58 0.52, 1.73 0.68, 2.14

5 0.42, 1.27 0.30, 1.43 0.62, 2.10 0.57, 1.80 0.47, 1.61 0.33, 1.40 0.35, 1.20 0.43, 1.31

6 0.24, 1.05 0.39, 1.56 0.60, 1.61 0.39, 1.17 0.28, 0.99 0.19, 0.99 0.18, 0.95 0.23, 1.01

7 0.14,0.82 0.30, 0.95 0.38, 0.96 0.26, 0.81 0.16, 0.79 0.09, 0.77 0.07, 0.77 0.10, 0.77

8 0.1, NA 0.18, NA 0.21, NA 0.17, NA 0.11, NA 0.05, NA 0.04, NA 0.05, NA

aSurface electrode nearest to R+ and F+ location.
bSurface electrode nearest to R- and F- location.

surface electrode nearest to P location.
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function of Tol. (C) RMS standard deviation (SD) as a function of Tol.

SUPPLEMENTARY VIDEO S1
AF_test14.mpg https://www.researchgate.net/publication/366893522_AF_Test14.

SUPPLEMENTARY VIDEO S2
Focal_AF_test14.mpg https://www.researchgate.net/publication/
366893430_Focal_AF_Test14.

References

Alessandrini, M., Valinoti, M., Unger, L., Oesterlein, T., Dössel, O., Corsi, C., et al.
(2018). A computational framework to benchmark basket catheter guided ablation in
atrial fibrillation. Front. Physiol. 9, 1251. doi:10.3389/fphys.2018.01251

Alhusseini, M., Vidmar, D., Meckler, G. L., Kowalewski, C. A., Shenasa, F.,Wang, P. J.,
et al. (2017). Two independent mapping techniques identify rotational activity patterns
at sites of local termination during persistent atrial fibrillation. J. Cardiovasc
Electrophysiol. 28 (6), 615–622. doi:10.1111/jce.13177

Anter, E., Duytschaever, M., Shen, C., Strisciuglio, T., Leshem, E., Contreras-Valdes,
F. M., et al. (2018). Activation mapping with integration of vector and velocity
information improves the ability to identify the mechanism and location of complex
scar-related atrial tachycardias. Circ. Arrhythm. Electrophysiol. 11 (8), e006536. doi:10.
1161/CIRCEP.118.006536

Aronis, K. N., Ali, R., and Trayanova, N. A. (2019). The role of personalized atrial
modeling in understanding atrial fibrillation mechanisms and improving treatment. Int.
J. Cardiol. 287, 139–147. doi:10.1016/j.ijcard.2019.01.096

Barbhayia, C. R., Kumar, S., and Michaud, G. F. (2015). Mapping atrial fibrillation:
2015 update. J. Atr. Fibrillation 8 (4), 1227. doi:10.4022/jafib.1227

Bartolucci, C., Fabbri, C., Tomasi, C., Sabbatani, P., Severi, S., and Corsi, C. (2021).
Computational analysis of mapping catheter geometry and contact quality effects on rotor
detection in atrial fibrillation. Front. Physiol. 12, 732161. doi:10.3389/fphys.2021.732161

Bellmann, B., Lin, T., Ruppersberg, P., Zettwitz, M., Guttmann, S., Tscholl, V., et al.
(2018). Identification of active atrial fibrillation sources and their discrimination from
passive rotors using electrographical flow mapping. Clin. Res. Cardiol. 107 (11),
1021–1032. doi:10.1007/s00392-018-1274-7

Breithardt, G., and Borggrefe, M. (2021). The dawn of radiofrequency catheter
ablation for cardiac arrhythmias. Heart rhythm. 18 (3), 485–486. doi:10.1016/j.
hrthm.2020.11.030

Calkins, H., Hindricks, G., Cappato, R., Kim, Y. H., Saad, E. B., Aguinaga, L., et al.
(2017). HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter
and surgical ablation of atrial fibrillation: Executive summary. J. Arrhythm. 33, 369–409.
doi:10.1016/j.joa.2017.08.001

Child, N., Clayton, R. H., Roney, C. H., Laughner, J. I., Shuros, A., Neuzil, P., et al.
(2018). Unraveling the underlying arrhythmia mechanism in persistent atrial
fibrillation: Results from the STARLIGHT study. Circ. Arrhythm. Electrophysiol. 11
(6), e005897. doi:10.1161/CIRCEP.117.005897

Deshmukh, A., Patel, N. J., Pant, S., Shah, N., Chothani, A., Mehta, K., et al. (2013). In-
hospital complications associated with catheter ablation of atrial fibrillation in the
United States between 2000 and 2010: Analysis of 93 801 procedures. Circulation 128
(19), 2104–2112. doi:10.1161/CIRCULATIONAHA.113.003862

Dube, B., Vinet, A., Xiong, F., Yin, Y., LeBlanc, A. R., and Pagé, P. (2009). Automatic
detection and classification of human epicardial atrial unipolar electrograms. Physiol.
Meas. 30 (12), 1303–1325. doi:10.1088/0967-3334/30/12/002

Estner, H. L., Deisenhofer, I., Luik, A., Ndrepepa, G., von Bary, C., Zrenner, B., et al. (2006).
Electrical isolation of pulmonary veins in patients with atrial fibrillation: Reduction of

fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation
system (NavX). Europace 8 (8), 583–587. doi:10.1093/europace/eul079

Galappaththige, S. K., Pathmanathan, P., Bishop, M. J., and Gray, R. A. (2019). Effect
of heart structure on ventricular fibrillation in the rabbit: A simulation study. Front.
Physiol. 10, 564. doi:10.3389/fphys.2019.00564

Gray, R. A., Pertsov, A. M., and Jalife, J. (1998). Spatial and temporal organization
during cardiac fibrillation. Nature 392 (6671), 75–78. doi:10.1038/32164

Heijman, J., Sutanto, H., Crijns, H. J. G. M., Nattel, S., and Trayanova, N. A. (2021).
Computational models of atrial fibrillation: Achievements, challenges, and perspectives
for improving clinical care. Cardiovasc Res. 117 (7), 1682–1699. doi:10.1093/cvr/
cvab138

Honarbakhsh, S., Schilling, R. J., Providência, R., Dhillon, G., Sawhney, V., Martin, C.
A., et al. (2017). Panoramic atrial mapping with basket catheters: A quantitative analysis
to optimize practice, patient selection, and catheter choice. J. Cardiovasc Electrophysiol.
28 (12), 1423–1432. doi:10.1111/jce.13331

Hosseini, S.M., Rozen, G., Saleh, A., Vaid, J., Biton, Y.,Moazzami, K., et al. (2017). Catheter
ablation for cardiac arrhythmias: Utilization and in-hospital complications, 2000 to 2013.
JACC Clin. Electrophysiol. 3 (11), 1240–1248. doi:10.1016/j.jacep.2017.05.005

Jacquemet, V. (2018). Phase singularity detection through phase map interpolation:
Theory, advantages and limitations. Comput. Biol. Med. 102, 381–389. doi:10.1016/j.
compbiomed.2018.07.014

Jacquemet, V., Virag, N., Ihara, Z., Dang, L., Blanc, O., Zozor, S., et al. (2003). Study of
unipolar electrogram morphology in a computer model of atrial fibrillation.
J. Cardiovasc Electrophysiol. 14 (10), S172–S179. doi:10.1046/j.1540.8167.90308.x

Kaboudian, A., Cherry, E. M., and Fenton, F. H. (2010). Real-time interactive
simulations of complex ionic cardiac cell models in 2D and 3D heart structures
with GPUs on personal computers. Comput. Cardiol. 2021. doi:10.23919/cinc53138.
2021.9662759

Kneeland, P. P., and Fang, M. C. (2009). Trends in catheter ablation for atrial
fibrillation in the United States. J. Hosp. Med. 4 (7), E1–E5. doi:10.1002/jhm.445

Laughner, J., Shome, S., Child, N., Shuros, A., Neuzil, P., Gill, J., et al. (2016). Practical
considerations of mapping persistent atrial fibrillation with whole-chamber basket
catheters. JACC Clin. Electrophysiol. 2 (1), 55–65. doi:10.1016/j.jacep.2015.09.017

Li, X., Almeida, T. P., Dastagir, N., Guillem, M. S., Salinet, J., Chu, G. S., et al. (2020).
Standardizing single-frame phase singularity identification algorithms and parameters
in phase mapping during human atrial fibrillation. Front. Physiol. 11, 869. doi:10.3389/
fphys.2020.00869

Luther, V., Sikkel, M., Bennett, N., Guerrero, F., Leong, K., Qureshi, N., et al. (2017).
Visualizing localized reentry with ultra-high density mapping in iatrogenic atrial
tachycardia: Beware pseudo-reentry. Circ. Arrhythm. Electrophysiol. 10 (4), e004724.
doi:10.1161/CIRCEP.116.004724

Martinez-Mateu, L., Romero, L., Saiz, J., and Berenfeld, O. (2019). Far-field
contributions in multi-electrodes atrial recordings blur distinction between

Frontiers in Physiology frontiersin.org13

Galappaththige et al. 10.3389/fphys.2023.1074527

https://www.frontiersin.org/articles/10.3389/fphys.2023.1074527/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2023.1074527/full#supplementary-material
https://www.researchgate.net/publication/366893522_AF_Test14
https://www.researchgate.net/publication/366893430_Focal_AF_Test14
https://www.researchgate.net/publication/366893430_Focal_AF_Test14
https://doi.org/10.3389/fphys.2018.01251
https://doi.org/10.1111/jce.13177
https://doi.org/10.1161/CIRCEP.118.006536
https://doi.org/10.1161/CIRCEP.118.006536
https://doi.org/10.1016/j.ijcard.2019.01.096
https://doi.org/10.4022/jafib.1227
https://doi.org/10.3389/fphys.2021.732161
https://doi.org/10.1007/s00392-018-1274-7
https://doi.org/10.1016/j.hrthm.2020.11.030
https://doi.org/10.1016/j.hrthm.2020.11.030
https://doi.org/10.1016/j.joa.2017.08.001
https://doi.org/10.1161/CIRCEP.117.005897
https://doi.org/10.1161/CIRCULATIONAHA.113.003862
https://doi.org/10.1088/0967-3334/30/12/002
https://doi.org/10.1093/europace/eul079
https://doi.org/10.3389/fphys.2019.00564
https://doi.org/10.1038/32164
https://doi.org/10.1093/cvr/cvab138
https://doi.org/10.1093/cvr/cvab138
https://doi.org/10.1111/jce.13331
https://doi.org/10.1016/j.jacep.2017.05.005
https://doi.org/10.1016/j.compbiomed.2018.07.014
https://doi.org/10.1016/j.compbiomed.2018.07.014
https://doi.org/10.1046/j.1540.8167.90308.x
https://doi.org/10.23919/cinc53138.2021.9662759
https://doi.org/10.23919/cinc53138.2021.9662759
https://doi.org/10.1002/jhm.445
https://doi.org/10.1016/j.jacep.2015.09.017
https://doi.org/10.3389/fphys.2020.00869
https://doi.org/10.3389/fphys.2020.00869
https://doi.org/10.1161/CIRCEP.116.004724
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1074527


anatomical and functional reentries and may cause imaginary phase singularities - a
computational study. Comput. Biol. Med. 108, 276–287. doi:10.1016/j.compbiomed.
2019.02.022

Masse, S., Downar, E., Chauhan, V., Sevaptsidis, E., and Nanthakumar, K. (2007).
Ventricular fibrillation in myopathic human hearts: Mechanistic insights from in vivo
global endocardial and epicardial mapping. Am. J. Physiol. Heart Circ. Physiol. 292 (6),
H2589–H2597. doi:10.1152/ajpheart.01336.2006

McDowell, K. S., Zahid, S., Vadakkumpadan, F., Blauer, J., MacLeod, R. S., and
Trayanova, N. A. (2015). Virtual electrophysiological study of atrial fibrillation in
fibrotic remodeling. PLoS One 10 (2), e0117110. doi:10.1371/journal.pone.0117110

Mirams, G. R., Arthurs, C. J., Bernabeu, M. O., Bordas, R., Cooper, J., Corrias, A., et al.
(2013). Chaste: An open source C++ library for computational physiology and biology.
PLoS Comput. Biol. 9 (3), e1002970. doi:10.1371/journal.pcbi.1002970

Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., et al. (1998).
Mathematical model of an adult human atrial cell: The role of K+ currents in
repolarization. Circ. Res. 82 (1), 63–81. doi:10.1161/01.res.82.1.63

Oesterlein, T., Frisch, D., Loewe, A., Seemann, G., Schmitt, C., Dössel, O., et al. (2016).
Basket-type catheters: Diagnostic pitfalls caused by deformation and limited coverage.
Biomed. Res. Int. 2016, 5340574. doi:10.1155/2016/5340574

Pathmanathan, P., and Gray, R. A. (2015). Filament dynamics during simulated
ventricular fibrillation in a high-resolution rabbit heart. Biomed. Res. Int. 2015, 720575.
doi:10.1155/2015/720575

Podziemski, P., Zeemering, S., Kuklik, P., van Hunnik, A., Maesen, B., Maessen, J.,
et al. (2018). Rotors detected by phase analysis of filtered, epicardial atrial fibrillation
electrograms colocalize with regions of conduction block. Circ. Arrhythm.
Electrophysiol. 11 (10), e005858. doi:10.1161/CIRCEP.117.005858

Rolf, S., Schoene, K., Kircher, S., Dinov, B., Bertagnolli, L., Bollmann, A., et al. (2019).
Catheter ablation of atrial fibrillation with nonfluoroscopic catheter visualization-a

prospective randomized comparison. J. Interv. Card. Electrophysiol. 54 (1), 35–42.
doi:10.1007/s10840-018-0446-8

Roney, C. H., Cantwell, C. D., Bayer, J. D., Qureshi, N. A., Lim, P. B., Tweedy, J. H., et al.
(2017). Spatial resolution requirements for accurate identification of drivers of atrial fibrillation.
Circ. Arrhythm. Electrophysiol. 10 (5), e004899. doi:10.1161/CIRCEP.116.004899

Roney, C. H., Cantwell, C. D., Qureshi, N. A., Chowdhury, R. A., Dupont, E., Lim, P.
B., et al. (2017). Rotor tracking using phase of electrograms recorded during atrial
fibrillation. Ann. Biomed. Eng. 45 (4), 910–923. doi:10.1007/s10439-016-1766-4

Roney, C. H., Wit, A. L., and Peters, N. S. (2020). Challenges associated with
interpreting mechanisms of AF. Arrhythmia Electrophysiol. Rev. 8 (4), 273–284.
doi:10.15420/aer.2019.08

Rotter, M., Jaïs, P., Sanders, P., Takahashi, Y., Rostock, T., Sacher, F., et al. (2005).
Echocardiographic advances in atrial fibrillation and supraventricular arrhythmias.
Minerva Cardioangiol. 53 (2), 109–115.

Schotten, U., Lee, S., Zeemering, S., and Waldo, A. L. (2021). Paradigm shifts in
electrophysiological mechanisms of atrial fibrillation. Europace 23 (23), ii9–ii13. doi:10.
1093/europace/euaa384

Si, H. (2015). TetGen, a delaunay-based quality tetrahedral mesh generator. ACM
Trans. Math. Softw. 41, 11–36. doi:10.1145/2629697

Swerdlow, M., Tamboli, M., Alhusseini, M. I., Moosvi, N., Rogers, A. J., Leef, G., et al.
(2019). Comparing phase and electrographic flow mapping for persistent atrial
fibrillation. Pacing Clin. Electrophysiol. 42 (5), 499–507. doi:10.1111/pace.13649

Umapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., et al. (2010).
Phase mapping of cardiac fibrillation. Circ. Arrhythm. Electrophysiol. 3 (1), 105–114.
doi:10.1161/CIRCEP.110.853804

Unger, L. A., Oesterlein, T. G., Loewe, A., and Dossel, O. (2019). “Noise quantification
and noise reduction for unipolar and bipolar electrograms,” in 2019 Computing in
Cardiology, Singapore, 08-11 September 2019.

Frontiers in Physiology frontiersin.org14

Galappaththige et al. 10.3389/fphys.2023.1074527

https://doi.org/10.1016/j.compbiomed.2019.02.022
https://doi.org/10.1016/j.compbiomed.2019.02.022
https://doi.org/10.1152/ajpheart.01336.2006
https://doi.org/10.1371/journal.pone.0117110
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.1161/01.res.82.1.63
https://doi.org/10.1155/2016/5340574
https://doi.org/10.1155/2015/720575
https://doi.org/10.1161/CIRCEP.117.005858
https://doi.org/10.1007/s10840-018-0446-8
https://doi.org/10.1161/CIRCEP.116.004899
https://doi.org/10.1007/s10439-016-1766-4
https://doi.org/10.15420/aer.2019.08
https://doi.org/10.1093/europace/euaa384
https://doi.org/10.1093/europace/euaa384
https://doi.org/10.1145/2629697
https://doi.org/10.1111/pace.13649
https://doi.org/10.1161/CIRCEP.110.853804
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1074527

	A computational modeling framework for pre-clinical evaluation of cardiac mapping systems
	1 Introduction
	2 Methods
	2.1 Overview of proposed Mapping System Evaluation Framework (MSEF)
	2.2 Pilot study to demonstrate the feasibility of MSEF
	2.3 Simulations
	2.4 Electrode configurations and electrograms
	2.5 Algorithms
	2.6 Addition of noise
	2.7 Performance analysis

	3 Results
	3.1 High-resolution simulations
	3.2 Comparison of mapping system output and simulation results

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Author disclaimer
	Supplementary material
	References


