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Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its early
detection is critical for preventing complications and optimizing treatment. In
this study, a novel AF prediction method is proposed, which is based on
investigating a subset of the 12-lead ECG data using a recurrent plot and
ParNet-adv model. The minimal subset of ECG leads (II &V1) is determined via
a forward stepwise selection procedure, and the selected 1D ECG data is
transformed into 2D recurrence plot (RP) images as an input to train a shallow
ParNet-adv Network for AF prediction. In this study, the proposed method
achieved F1 score of 0.9763, Precision of 0.9654, Recall of 0.9875, Specificity
of 0.9646, and Accuracy of 0.9760, which significantly outperformed solutions
based on single leads and complete 12 leads. When studying several ECG datasets,
including the CPSC and Georgia ECG databases of the PhysioNet/Computing in
Cardiology Challenge 2020, the new method achieved F1 score of 0.9693 and
0.8660, respectively. The results suggested a good generalization of the proposed
method. Compared with several state-of-art frameworks, the proposed model
with a shallow network of only 12 depths and asymmetric convolutions achieved
the highest average F1 score. Extensive experimental studies proved that the
proposed method has a high potential for AF prediction in clinical and particularly
wearable applications.
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1 Introduction

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia caused by uncoordinated
atrial electrical activation and ineffective atrial contraction (Hindricks et al., 2021). As the
most common cardiac arrhythmia and a major risk factor that can lead to ischemic, the AF
incidence and prevalence have increased over the last 20 years, becoming one of the largest
epidemics and public health challenges (Lippi et al., 2021). The diagnosis of AF at an early
stage is essential for the timely inception of treatment, which is usually realized by analyzing
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Electrocardiogram (ECG) signals. In clinical practice, the body
surface ECG is a powerful tool to reveal the occurrence,
maintenance, and termination of AF. However, manual analysis
of continuous rhythm registrations is time-consuming and needs
cardiologists with expertise in ECG-based diagnosis.

In recent years, automated AF detection based on traditional
methods and neural networks has been actively developed
(Wesselius et al., 2021). Traditional methods mainly focus on
atrial and ventricular signal features obtained from single-lead or
standard 12-lead ECG recordings. The atrial features are primarily
based on the P-wave disappearance or f-waves appearance. Typical
methods include the wavelet energy method (Garcia et al., 2016;
Serhal et al., 2022), the frequency and amplitude features of the
f-wave (Henriksson et al., 2018), and the time between P-waves as a
measure of the atrial rate (Huang et al., 2020). The ventricular
features mainly describe irregularity of intervals between subsequent
R-peaks (R-R intervals). Conventional methods also study wavelet
sample entropy (Serhal et al., 2022), normalized fuzzy entropy (Liu
C. et al., 2018), Shannon entropy (Dharmaprani et al., 2018), R-R
interval features (Lown et al., 2020; Luo et al., 2021), and heart rate
variability analysis (Nguyen et al., 2018). The signal features describe
other characteristics buried in ECG and are related to AF’s clinical
presentation and pathophysiology (e.g., signal quality and frequency
components). A bimodal analysis of physiological time and
frequency components is used to detect AF (Kruger et al., 2019).
The ECG signals are transformed into the frequency domain
(Khadra et al., 2005), time-frequency domain (Asgari et al.,
2015), and phase space (Parvaneh et al., 2018) to predict AF.

The standard 12-lead ECG provides a complete evaluation of
cardiac electrical activity, commonly employed across clinical
settings. Existing neural network studies have mostly addressed
the task of automatic AF classification based on the standard 12-
lead ECG in different ways. For example, Ribeiro et al. presented a
DNN framework to diagnose AF and other five types of rhythms
recordings with an F1 score above 80% (Ribeiro et al., 2020). Yao
et al. developed an attention-based time-incremental convolutional
neural network to detect AF and other arrhythmias from the 12-lead
ECG with varied-length (Yao et al., 2020). Zheng et al. proposed an
optimal multi-stage arrhythmia classification approach to predict
AF and other types at a cardiologist-level accuracy (Zheng et al.,
2020). Many works developed neural network methods based on the
popular dataset from the first China Physiological Signal Challenge
2018 involving AF and other eight types of different rhythms
(Runnan He et al., 2019; Tsai-Min Chen et al., 2020).

However, information redundancy exists in standard 12-lead
ECG signals, which could induce systematic overfitting in deep
learning, causing poor generalization, performance, and
unnecessary computational costs. Thus, some recent studies have
explored the optimal selection of ECG leads for cardiac arrhythmia
classification. Lai et al. proposed a deep learning model using the
optimal 4-lead subset that outperformed the classification
performance of the complete 12-lead ECG on normal and eight
arrhythmias (Lai et al., 2021). References (Jimenez-Serrano et al.,
2022; Xu et al., 2022) used deep learning-based methods to
discriminate multiple cardiac conditions with various lead
combinations, namely six leads (I, II, III, aVR, aVL, aVF), four
leads (I, II, III, V2), three leads (I, II, V2) and two leads (I, II) vs the
standard 12-lead ECG, and the data were provided during the

PhysioNet/Computing in Cardiology Challenge 2021. In our
previous work (Zhang et al., 2021), we addressed the
classification of AF and eight other types of arrhythmias utilizing
RP representation of ECG signals based on the identified optimal
leads (lead II and aVR) via the Inception-ResNet V2 framework in
which general optimal leads were selected for nine types of
arrhythmia classification. These earlier works explored the
optimal ECG-lead subsets on multiple prevalent arrhythmias
classification tasks.

AF prediction has recently been investigated based on single-
lead ECG data. Hannun et al. developed a deep neural network to
classify 12 rhythm classes, including AF and other arrhythmias,
based on single-lead ECG records obtained from an ambulatory
monitor with high diagnostic performance, similar to cardiologists
(Hannun et al., 2019). Ma et al. proposed a multi-step method that
combined the support vector machine classifier and an auto-
encoding network to predict the paroxysmal AF based on single-
lead long-term ECG data from the fourth China Physiological Signal
Challenge (CPSC 2021) database (lead II) and the wearable ECG
database collected by the wearable ECG device (Ma et al., 2022).
Athif et al. proposed an algorithm to discriminate AF from normal
and other arrhythmias based on a short single-lead ECG (lead I),
obtained from the Computing in Cardiology Challenge 2017
(Clifford et al., 2017). Mathunjwa et al. developed an approach to
classify AF from VF, PAC, and PVC arrhythmia in two steps using a
convolutional neural network based on the datasets from the
MITDB, MIT-NIH AFDB, and MIT-BIH VFDB, in which the
data is from the lead II recording channel (Mathunjwa et al., 2021).

Nevertheless, accurate diagnosis of AF using single-lead ECG
data (lead I or II) is still challenging. Despite the above studies
reporting promising AF detection results, one main challenge of
these methods is the loss of certain morphologic features and
patterns only visible in specific leads. For example, the low
amplitudes of the f wave are mainly observable in lead V1 and
aVF, whereas they barely appear in lead I (Cheng et al., 2013).

The clinical diagnosis of cardiac arrhythmia types is often task-
specific. To improve AF detection performance and efficiency, it is
essential to identify a minimal number of leads and which leads
should be included in the analysis. In this work, we developed a
novel method to explore the minimal subset of ECG leads dedicated
to AF prediction. Furthermore, to achieve better classification
results, we use the recurrence plot (RP) technique to represent
ECG signals. The RP technique (Eckmann et al., 1987; Eckmann
et al., 1995) has been widely used to explore the recurrence features
and irregular cyclicities properties of time series dynamic
information in the phase space. It is a visualization method that
transforms the 1D time signals into 2D RP images (Izci et al., 2019).
Zeng et al. developed a recurrence plot-based densely connected
convolutional network to classify the epileptiform based on EEG
(Zeng et al., 2021). Afonso et al. proposed an RP-based approach for
identifying Parkinson’s disease (Afonso et al., 2019). The RPmethod
was also combined with deep learning models for arrhythmias
classification based on ECG (Zbilut et al., 2002; Mathunjwa et al.,
2021; Zhang et al., 2021; Labib and Nahid, 2022).

Moreover, in this work, we attempted to achieve higher AF
prediction performance with “non-deep” neural networks. In our
previous study, we found that the Inception-ResNet V2 could
enhance the diversity of the filter patterns by asymmetric
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convolution splitting, thus improving arrhythmia classification
performance (Zhang et al., 2021). However, it requires training
deep networks involving large-scale sequential processing and
higher computing cost. This is challenging and less suitable for
those applications requiring fast responses. Here, we improved the
non-deep ParNet (Goyal et al., 2021) (Parallel Networks),
combining the asymmetric filters for this RP-based AF
prediction task.

The main contribution of our work is as follows: 1) A novel
neural network method combining the recurrence plot technique

and ParNet-adv model was proposed for AF classification. 2) We
find the minimal subset of ECG leads for AF prediction. 3) We
proposed a shallow network with only 12 depths and asymmetric
convolutions for AF prediction. Our method, combined with a
tailored ECG subset and a light framework, can be used as a
screening tool for automatic and early detection of AF problems,
particularly useful for portable or wearable ECG devices.

The rest of the paper is organized as follows: methods and
materials are described in Section 2, experiments and results are
detailed in Section 3 and 4, validation of the proposed method is
provided in Section 5, a discussion is presented in Section 6, and
conclusions are drawn in Section 7.

2 Methodology and materials

In this work, we develop a novel neural network method for
ECG-based AF prediction. The method selects the minimal subset
ECG leads for AF prediction by combining the light ParNet-adv
architecture and the recurrence features buried in AF and normal
ECG signals. As shown in Figure 1, the system includes three steps:
1D ECG data pre-processing, conversion of 1D ECG into 2D RP
images, and AF prediction.

2.1 ECG database

The dataset Physikalisch-Technische Bundesanstalt (PTB-XL)
(Wagner et al., 2020) was used for training, validation, and testing.
Another two ECG datasets (including CPSC and Georgia) were used
to evaluate the generalization of the proposed approach. The data
source CPSC (Liu F. et al., 2018) is the public training dataset from
the China Physiological Signal Challenge (CPSC 2018). Georgia is a
12-lead ECG Challenge Database, Emory University, Atlanta,
Georgia, United States, representing a large population from the
South-eastern United States. These datasets were publicly accessible
from the PhysioNet/Computing in Cardiology Challenge 2020
(Perez Alday et al., 2021) and detailed in Table 1. Each data
contains 12-lead ECG recordings (I, II, III, aVL, aVR, aVF,
V1–V6) sampled at 500 Hz with the mean duration of 10 s for
PTB_XL and Georgia, and 16.2 s for CPSC.

2.2 Data pre-processing for network input

2.2.1 1D ECG data pre-processing
In the data pre-processing stage, as illustrated in step 1 of

Figure 1A, the data with multi-labels were removed to focus on
the single-labelled AF classification. 16,801 Normal sinus rhythm
(NSR) and 1396 AF in the PTB-XL, 918 NSR and 1000 AF in the
CPSC, and 1000 NSR and 527 AF in Georgia were obtained after
data-pre-processing. The proportion of AF and NSR is
unbalanced in PTB-XL. To balance the data proportion,
1200 AF and NSR data were randomly picked up. Four in five
of the data labelled AF(NSR) were used as the training &
validation dataset, and one in five was used as the test dataset.
Thus, the training & validation set is independent of the testing
set without overlap, usually called inter-patient classification

FIGURE 1
The flow chart of the automatic AF prediction system. ECG,
electrocardiogram; AF, atrial fibrillation; NSR, normal sinus rhythm; 1D,
one dimensional; 2D, two dimensional; RP, recurrence plot. (A) ECG
data pre-processing. (B) ECG data were transformed into RP
images. (C) AF prediction experiments based on 12-lead ECG and
selected the minimal ECG-lead subsets. The validation superiority of
the proposed method and testing the generalization on different extra
databases.
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(Huang et al., 2014). Afterward, each ECG data was split into
12 subsets corresponding with the 12 leads.

Converting 1D ECG signals to 2D Recurrence plot (RP) images.
Cardiac activity has temporal evolutions, including

polarization and depolarization, which can be considered as a
dynamic system (Labib and Nahid, 2022). Using electrodes, ECG
records dynamic features of the cardiac electrical activities in the
form of time-varying voltages, which is not easy to visualize
whole aspects of the system dynamics in the time domain
(Debayle et al., 2018). A recurrence plot (RP) is a widely used
graphical tool to visualize the recurrent behaviors of the time
series in phase space (Eckmann et al., 1995). It enables analyzing
the dynamic recurrence features buried in ECG. The RP is
obtained as follows.

Step 1: A 1D time series X(t) phase space reconstruction is
performed via Takens’ delay coordinate method (Takens, 1981).
One consecutive time series is generated from the original time
series, where τ is a constant delay taken as 1.

Y t( ) � X t − τ( ) (1)

Step 2: The 2D phase space trajectory is constructed fromX and Y.
The constructed vector is generated in the phase space as S1(x1, y1),
S2(x2, y2), . . .. . .Sn−1 (xn−1, yn−1) (Debayle et al., 2018).

Step 3: The distance between Si and Sj on the trajectory can be
formulated as:

Ri,j � θ ε − Si − Sj
���� ����( ), i, j � 1, ...., N (2)

Where N is the length of the time series, ε is a threshold distance,
‖ · ‖ is a norm (e.g., Euclidean norm), and θ (.) is the Heaviside
function and defined as:

θ Ζ( ) � 0, ifZ< 0
1, otherwise

{ (3)

As a result, an RP image is obtained based on the matrix Ri,j,
which is a reconstructed recurrence representation in 2D phase
space. As can be seen from Eq. 2, the RP is a binary matrix because of
the threshold distance ε. This processing may lose some detailed
information. In this work, an un-threshold approach proposed by
(Faria et al., 2016) was adopted to avoid information loss by the
R-matrix binarization, to obtain an RGB image, and to make use of
the color information in RP images. Then the R-matrix can be
defined as:

Ri,j � Si − Sj
���� ����, i, j � 1, ...., N (4)

In the present study, as illustrated in Figure 1B, the 1D ECG
signals were converted to 2D RP images as the input signals of the
2D network for AF prediction.

2.3 ParNet-adv-based AF classification

In this work, we modified the ParNet (Goyal et al., 2021) (Parallel
Networks) as a “non-deep” neural network for this RP-based AFTA
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prediction task. The classification network with a shallow depth and
asymmetric filters is called ParNet-adv. The schematic architecture of
the ParNet-adv used for AF prediction is represented as follows.

As illustrated in Figure 2, the shallow ParNet-adv model with
a depth of 12 layers is a parallel model with three streams,
including four parallel sub-networks (Downsampling, ParNet-
adv Block, Fusion, Avg pool + FC). Downsampling Blocks in
Figure 3A reduce resolution and increase the width to enable
multi-scale processing. For the ParNet-adv Block in Figure 3B,
the key design choice is the use of 1 × 7 and 7 × 1 asymmetric
convolutions. The ParNet has only 3 × 3 convolutions, which is
challenging as the receptive field is somewhat limited. To address
this, we build asymmetric filters inspiring from the Inception-
ResNet V2 design with 1 × 7 and 7 × 1 convolutions providing a
large and diverse reception scale in the proposed ParNet-adv
model. Fusion Blocks in Figure 3C combine information from
multiple resolutions. The Avg pool and FC Blocks perform AF

classification. In addition, one concern is that a non-deep
network may have insufficient non-linearity, limiting its
representational power. Thus, the model replaces the ReLU
activation with SiLU. In this work, we trained our networks
with the cross-entropy loss, a learning rate of 0.001, a batch size
of 64, and the RP input images with a resolution of 299 × 299.

2.4 Performance analysis of the proposed
method

To assess the effectiveness of the proposed method, several
parameters, including Precision, Recall, Specificity, Accuracy and
F1 score are adopted, which are defined as follows.

Precision � TP

TP + FP
(5)

FIGURE 2
The architecture of the ParNet-adv for AF prediction. It consists of three parallel streams and four sub-networks, including ParNet-adv Block,
Downsampling, Fusion, Avg pool + FC. The ParNet-adv model has only 12 depths of layers, the model inputs are RP images, and the outputs are the
predictions of AF and NSR. AF, atrial fibrillation; NSR, normal sinus rhythm.

FIGURE 3
The sub-networks architecture of the ParNet-adv model, including ParNet-adv Block, Downsampling, and Fusion. Conv, convolutional layer; Batch
Norm, batch normalization layers; Global Avg pool, global average pooling layer; Avg pool, intermediate pooling layer; SiLU, sigmoid linear unit activation.
(A) An illustration of the Downsampling block. (B) An illustration of the ParNet-adv block with the key design of 1 × 7 and 7 × 1 asymmetric convolutions.
(C) An illustration of the Fusion block.
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Recall � TP

TP + FN
(6)

Specificity � TN

TN + FP
(7)

Accuracy � TP + TN

TP + TN + FP + FN
(8)

F1 � 2 Precision × Recall( )
Precision + Recall

(9)
Where TP is the number of true positive data; FP is the number of
false positive data; FN is the number of false negative data. Here,
Precision is the fraction of all predicted data that are labelled data;
Recall is the fraction of all labelled data that are successfully detected;
Specificity is the probability of a negative test, conditioned on truly
being negative; and Accuracy is the fraction of correct classifications.
The F1 score among classes is computed to evaluate the model’s final
performance.

3 Experiments

3.1 Experimental design and computing
environment

As illustrated in Figure 1, we designed several experiments,
including the selection of sampling frequency and length of ECG
data, minimal leads selection, and comparison between the
proposed method and conventional 12-leads and other
leads options-based solutions. All experiments were
conducted on Wiener nodes of the University of Queensland
computer cluster with 4 * Nvidia Volta V100 SXM2 connected
GPUs per node. Each node contains 5120 CUDA cores,
640 TensorFlow hardware cores, and 32 GB of HBM2 class
memory. This model was implemented using the TensorFlow
3.6 and Karas deep learning framework. The fivefold cross-
validation was introduced in the training and validation
processing.

3.2 Selection of the sampling frequency and
length of data

In this section, we compared the performance of AF
classification based on different sampling frequencies and
data lengths. Each original data was sampled at 500 Hz with a
mean duration of 10 s. For comparison, we downsampled the

lead II and lead VI of ECG data into 200 Hz, and 300 Hz. In
addition, the data were split into 5 s and 10 s in length at each
sampling frequency, respectively. Regarding the sampling
frequency 200 Hz/300 Hz/500 Hz, we picked up 5 s segment
of the data from first to 1000th/1500th/2500th, and 10 s
segment from 1st to 2000th/3000th/5000th. Each ECG
segment was transformed into the corresponding RP image,
with the z-score normalization of the input signals of the model.
The average F1 score was chosen for performance evaluation.

The results of these experiments are summarized in Table 2. The
results suggest that almost all the performance of AF detection on
10 s data length are better than 5 s in three sampling frequencies,
except the Recall of 500 Hz. Further, the experiment with the 300 Hz
sample frequency and 10 s data length achieved the optimal F1 score
and Accuracy over others. Based on this investigation, we
downsampled the ECG signal to 300 Hz and picked up 10 s data
for each recording to carry out the following AF detection
experiments.

3.3 Selection on minimal ECG-leads subset
for AF detection

In this section, we determine which leads are necessary to keep
and which carry redundant information that can be removed from
the automated AF detection system. The ParNet-adv model was
used to identify AF via analyzing recurrence features of RP images
derived from the complete 12-leads ECG and minimal ECG-leads
subset based on the PTB-XL dataset.

A forward, stepwise minimal subset selection method (James
et al., 2013; Lai et al., 2021) was used to find an minimal ECG-lead
subset for AF detection based on the same ParNet-adv model. In
the first phase, we conduct an AF prediction based on each lead
and find the one achieving the best performance. The selected
lead will be set as the seed one in the minimal subset. In the
second phase, the other 11 leads will individually combine the
seed lead in phase one to undertake another round of AF
prediction, from which we can identify the best two leads with
the best performance. In the next phase, we repeat the search with
the selected two leads from the first two phases. In each
operation, we trained the model and tested the performance
with the addition of each single-lead ECG into the minimal
lead subset until finding that the incorporation of any single-
lead ECG no longer improves the detection performance. We
stop searching if we see further enhancement cannot be achieved.

TABLE 2 Performance of AF classification based on different frequencies and data lengths.

Frequency (Hz) Data length (s) F1 Precision Recall Specificity Accuracy

200 10 0.9738 0.9810 0.9667 0.9813 0.9740

5 0.9625 0.9664 0.9583 0.9667 0.9625

300 10 0.9763 0.9654 0.9875 0.9646 0.9760

5 0.9565 0.9506 0.9625 0.9500 0.9367

500 10 0.9718 0.9748 0.9688 0.9750 0.9719

5 0.9598 0.9491 0.9708 0.9479 0.9594
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We use the fivefold cross-validation to train and test the
classification performance each time. The matric F1 score was
applied to measure AF prediction performance. And we conduct
the two-sample t-test between every two groups’ F1 scores. Our
null hypothesis is that the performance of the two groups is
dependent. And our alternative hypothesis is that the
performance of the two groups is independent. A p-value is
used as a threshold to reject or accept the null hypothesis. In
accordance with the acceptance of statistical significance at a
p-value of 0.05 or 5%, CI is calculated at a confidence level of 95%.
Among all steps, we choose the one that can achieve the optimal
F1 score as the final minimal subset of 12-lead for AF prediction
through the above multiphase searching procedure.

4 Results

This section presents experimental results for AF and NSR
classification. Two different scenarios were designed for the study.
First, the classification experiment based on the complete 12-leads ECG

was performed, and achieved the F1 score of 0.9692, the precision of
0.9721, and the recall of 0.9663, the Specificity of 0.9722 and the
accuracy of 0.9693 for AF detection based on the fivefold cross-
validation experiments. Second, the minimal subset of ECG was
explored for AF discrimination, including three phases. As
illustrated in Figure 4A, in the first phase, the F1 score for AF
detection using single leads ranged from 0.9308 (lead V5) to 0.9729

FIGURE 4
F1 scores—ECG leads bar chart. Show the performance F1 score for our ParNet-adv model on each AF prediction experiment. (A) One-lead AF
prediction and show the lead V1 achieved the optimal performance. (B) Two-leads AF prediction (addition of each single lead to the lead V1) shows the
highest F1 score bar corresponding to the lead V1+ II subset. (C) Three-leads AF prediction (addition of each single-lead to the subset leads V1+II).
(1,2,3,4,5,6,7,8,9,10,11,12 stands for lead I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6).

FIGURE 5
Optimal ECG lead subset selection for AF detection. (A) Lead V1was taken as the base element, and other leadswere considered as candidates. Each
time, a single lead was added to the seed set for training, validation of the model, and testing. (B) Leads V1&II were selected as the base element, and the
other 10 leads were considered as candidates for repeat searching.

TABLE 3 Performance of AF classification based on different ECG leads.

ECG
leads

F1 Precision Recall Specificity Accuracy

I 0.9593 0.93655 0.9833 0.9333 0.9583

II 0.9669 0.9590 0.9750 0.9583 0.9667

V1 0.9729 0.9749 0.9708 0.9750 0.9729

II + V1 0.9763 0.9654 0.9875 0.9646 0.9760

12 leads 0.9692 0.9721 0.9663 0.9722 0.9693
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(lead V1), and the lead V1 obtained the best overall results compared to
other leads, which was statistically significant (p < 0.05). In the
second phase, Figure 5A shows that lead V1 was taken as the base
element, and other leads were considered candidates. As illustrated
in Figure 4B, the subset composed of lead II and lead V1 achieved the
best overall results (F1 score 0.9763) for AF detection over other
combinations. In the third phase, Figure 5B shows that we repeated
searching with selected leads V1 and II, individually combining
every single lead from the other 10 leads. Among each step, the
p-value is less than 0.05 and statistically significant. Therefore, we
reject the null hypothesis and accept the alternative hypothesis that
the performances of each two groups are independent. As illustrated
in Figure 4C, incorporating more lead could not improve AF
detection performance in this phase, and the F1 score of each
experiment decreased. Thus, leads V1 and II were identified as
the minimal subset of 12 leads ECG for AF detection.

5 Validation of the proposed method

5.1 Comparison of performance between
cases with the minimal subset, the 12-lead,
and the single lead (lead I or lead II) ECG
signals

The performance of the minimal subset (leads V1 and II) was
compared with that of other options (complete 12-leads, lead I, and
lead II). Table 3 reports the comparison in terms of Precision, recall,
Specificity, Accuracy and F1 score. Note that the performance with
the minimal subset (F1 score 0.9763) (p-value <0.05) outperformed
the performance based on the complete 12-lead (F1 score 0.9692),
single-lead I (F1 score 0.9593), single-lead II (F1 score 0.9669) and
single-lead V1 (F1 score 0.9729). It is noted that lead I, which is used
in the Apple Watch (Perez et al., 2019), Karadia Mobile (Goldenthal
et al., 2019), and single time point testing (Duarte et al., 2020) for AF
detection; and lead II, which is used as the input signal to predict AF
in (Mathunjwa et al., 2021; Ma et al., 2022), achieved ordinary
performance in our study.

5.2 Comparison with state-of-art models

In this section, we compared the proposed method with several
state-of-art models based on the minimal subset as the input. For a
fair comparison, we have trained the Inception-ResNet V2 (Szegedy
et al., 2017), ParNet (Goyal et al., 2021), and the proposed ParNet-
adv model with the same set of hyperparameters and input data. As
illustrated in Table 4, the proposed method achieved the F1 score of
0.9763, higher than other reference models. In the study, we built the

1 × 7 and 7 × 1 layers based on the asymmetric design, increasing the
receptive field of the ParNet-adv model, thus improving the
performance than that of the ParNet performance with the same
depth. In addition, note that the proposed model effectively reduces
depth while can perform competitively with the deep model, the
Inception-ResNet V2, in AF detection study (Table 4).

5.3 Generalization of the proposed method

In this section, we evaluated the generalization of the proposed
method via testing two different ECG datasets CPSC (Liu F. et al.,
2018) and Georgia (Perez Alday et al., 2021). The detailed
information of these datasets is illustrated in Table 1. For proper
testing, all data were pre-processed and fed into the model training,
validation, and testing in the same way. As shown in Table 5, the
proposed method achieved the F1 score of 0.8660 on CPSC and
0.9693 on Georgia based on the minimal subset of ECG leads (leads
II and V1). These testing results indicate that the new method has a
good generalization ability for AF prediction.

6 Discussion

In this study, we developed a neural network-based system
for automatic AF prediction. The design incorporates several
novel points: 1) it identifies which leads of 12-lead ECG are
necessary for detecting AF features; 2) it uses RP images to train
the neural network instead of 1D ECG data for better capturing
the recurrence features of AF; 3) the neural network employs a
light ParNet-adv structure, suitable for applications demanding a
prompt response.

The results show that using the minimal ECG-lead subset
outperformed the complete 12-lead ECG, supporting our
hypothesis that eliminating the data redundancy can reduce the
overfitting issue and thus improve the prediction performance. Note
that the clinical diagnostic criteria of cardiac arrhythmia types are
often lead-specific. So, the proposed algorithm explicitly seeks the
minimal ECG-lead subset for AF prediction, and the selection is

TABLE 4 Comparison of AF detection based on different models.

Model Depth Kernel size F1 Precision Recall Specificity Accuracy

Inception-ResNet v2 (Szegedy et al., 2017) 164 1 × 7,7 × 1 1 × 3,3 × 1 0.9752 0.9672 0.9833 0.9667 0.9750

ParNet (Goyal et al., 2021) 12 3 × 3 0.9700 0.9630 0.9771 0.9625 0.9698

ParNet-adv 12 1 × 7,7 × 1 0.9763 0.9654 0.9875 0.9646 0.9760

TABLE 5 Performance of AF classification based on the CPSC and Georgia ECG
datasets.

Dataset F1 Precision Recall Specificity Accuracy

CPSC 0.9693 0.9518 0.9875 0.9454 0.9674

Georgia 0.8660 0.8702 0.8619 0.9322 0.9079

PTB-XL 0.9763 0.9654 0.9875 0.9646 0.9760
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performed based on the most common short-time 12-lead ECG in
the clinical setting. As demonstrated in Section 4, a minimal subset
ECG lead (leads II & V1) can interpret AF rhythm with a significant
increase of F1 score compared with the complete 12-leads ECG and
other options.

The minimal lead subset obtained by this data-driven
approach provides valuable insights for recurrence features in
this automatic AF detection protocol. As a 2-lead subset, it
consists of the limb lead II and the other unipolar lead V1,
providing assessments in the horizontal plane from the vantage
points of the septal surface. These two quasi-orthogonal leads
(leads II & V1) play a vital role in AF prediction. This is
consistent with clinical practice: Lead II, favored among the
12 leads by physicians for a quick exam of an ECG recording
due to its clearest signal, has decent overall performance in
predicting AF. Lead V1 is used in the clinic to detect
fibrillatory waves, which can be either fine or coarse. Of the
12 ECG leads, the lead V1 electrode is considered closest to the
right atrium. It was obvious that lead V1 electrode position is
right in front of the right atrial free wall and that the right atrium
almost entirely conceals the left atrium from a V1 point of view.
The f-waves in all patients were most dominant in this lead
(Holm et al., 1998; Hsu et al., 2008).

Figure 6 shows the ECG time series and corresponding RP
images. (A) is a normal ECG, the temporal waveform contains
normal P waves, regular rhythm, and R-R interval, and the RP
pattern shows the regular image texture. (B) represents an AF
case, having features of missing the P waves and irregular RR
intervals. The RP features were considered good predictors of AF
(Huang et al., 2020), as they reflect the non-linear and non-
stationary nature of the ECG signals. It has shown high efficiency
in arrhythmia classification from the ECG signals, as
demonstrated in our previous work (Zhang et al., 2021). In

this study, we only extract recurrence features of a subset of
RPs for AF detection. Note that fibrillatory waves are observable
and present either fine or coarse, corresponding to irregular and
cluttered textures in the RP of lead V1, as shown in Figure 6B.
This corresponds well to the variation of f-waves recorded in lead
V1 (see Figure 6A).

Regarding the feature extraction model, we introduced a
novel shallow ParNet-adv network that integrated a non-deep
ParNet with large and asymmetric filters of Inception-ResNet, to
automatically extract high-quality recurrence structure features
of RP images based on ECG leads. Therefore, our ParNet-adv
model, integrated complementary advantages of these two
networks (Table 4), is efficient for feature extraction and has
achieved promising performance in AF detection. Thus, the
ParNet-adv-like models have the potential to create an
incredibly light recognition system for wearable applications.
We also note that the study of ECG datasets of the PhysioNet/
Computing in Cardiology Challenge 2020 has well demonstrated
the generalization ability of the proposed method.

7 Conclusion

We have developed a novel neural network-based system for
automatic AF prediction in this paper. The proposed method offers
three main advantages. First, unlike most previous work, mainly
based on single-lead ECG or standard 12-lead ECG data, this work
performs AF detection with a minimal subset of leads (lead II &V1),
thus more efficient and easier to implement than existing methods.
Second, the proposed method achieved promising prediction
performance using non-deep neural networks with only
12 depths. Third, the 1D ECG signals were transformed into
2DRPs for extracting structural topographies in images, beyond

FIGURE 6
ECG time-series (up) and corresponding RP (below) images of Normal and AF. (A)Normal (B) AF. R, the R peak of the ECG; P, the P peak of the ECG; f,
the f wave of the ECG.
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processing original time series. This solution is demonstrated
useful for extracting signal dynamical features and better
detecting AF. The benefits of the proposed method have been
validated with extensive experiments; we hope this new method
can be further improved for AF detection in clinical and wearable
applications.
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