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Visual feedback that reinforces accurate movements may motivate skill acquisition
by promoting self-confidence. This study investigated neuromuscular adaptations
to visuomotor training with visual feedback with virtual error reduction. Twenty-
eight young adults (24.6 ± 1.6 years) were assigned to error reduction (ER) (n = 14)
and control (n = 14) groups to train on a bi-rhythmic force task. The ER group
received visual feedback and the displayed errors were 50% of the real errors in size.
The control group was trained with visual feedback with no reduction in errors.
Training-related differences in task accuracy, force behaviors, and motor unit
discharge were contrasted between the two groups. The tracking error of the
control group progressively declined, whereas the tracking error of the ER group
was not evidently reduced in the practice sessions. In the post-test, only the control
group exhibited significant task improvements with smaller error size (p = .015) and
force enhancement at the target frequencies (p= .001). Themotor unit discharge of
the control group was training-modulated, as indicated by a reduction of the mean
inter-spike interval (p = .018) and smaller low-frequency discharge fluctuations (p =
.017) with enhanced firing at the target frequencies of the force task (p = .002). In
contrast, the ER group showed no training-related modulation of motor unit
behaviors. In conclusion, for young adults, ER feedback does not induce
neuromuscular adaptations to the trained visuomotor task, which is conceptually
attributable to intrinsic error dead-zones.
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1 Introduction

A visuomotor task requires the coupling of visual targets to effector motor behaviors with
error-based negative feedback (Taylor et al., 2014). Visual feedback sensitivity could affect
effector motor behaviors, including changes in common synaptic inputs and discharge
patterns of spinal motor neurons (Laine et al., 2014; Farina et al., 2017). In addition to the
error-based negative feedback, a reward-based action-selection process can reinforce positive
aspects of movement execution to advance motor learning. The basal ganglia (Kim et al.,
2017) and parietal cortex (Mutha et al., 2011) are primarily involved in reward processing.
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Researchers have shown that errorless practice in the early stage of
skill acquisition fosters implicit learning (White et al., 2014; Kal
et al., 2018), and motor skills are more resistant to degradation in a
pressure situation (Lee et al., 2016). There is a critical balance of
error making and error avoidance to optimize motor learning
(Kelley, 1969; Krakauer and Mazzoni, 2011; Lee et al., 2016).

Variations in the error size of feedback can develop a new
calibration process for performance adjustments. Regardless of the
feedback form, virtually signaling a worse outcome (or a greater error
size) than the real performance is known as error amplification (EA)
feedback (Kao et al., 2013; Abdollahi et al., 2014; Chen et al., 2017a).
EA could tax the limited attention resources for processing
exaggerated error information (Milanese et al., 2016; Marchal-
Crespo et al., 2017; Milanese et al., 2017). In contrast, error
reduction (ER) feedback displays smaller execution errors than
actual performance feedback does (Hwang et al., 2017; Hwang
et al., 2020). ER is associated with some behavioral advantages: It
positively reinforces task success and reduces stress from committing
errors, such as by enhancing motivation and self-efficacy during task
completion (Hwang et al., 2020). Conceptually, ER is a trade-off
between the error-based adaptation and reward-based action-
selection processes. Central control of motor units in a static force
task could vary with the use of ER; such variation would manifest as
the less coherent discharge of motor units with higher recruitment
thresholds (Hwang et al., 2017). Although ER seems to temporarily
undermine task performance in skilled subjects (Hwang et al., 2017), it
might improve task performance by reducing performance stress
during the early stages of skill acquisition (Ong et al., 2010).

To our knowledge, no previous studies have investigated the
effect of visuomotor training with ER for young adults from the
aspects of force dynamics and motor unit behaviors. For virtual
minimization of execution errors, ER could reinforce correct
schemas for less performance stress in the initial skill acquisition
(Ong et al., 2010; Hwang et al., 2020). Hence, the subjects could be
better motivated and thus achieve a superior learning effect after
training (Chiviacowsky and Wulf, 2007; Saemi et al., 2012). For
potential perception-induced motor facilitation, the purpose of this
study was to contrast behavioral and neurophysiological
mechanisms underlying short-term training with and without ER
for a bi-rhythmic force task. Namely, the participants learned to
couple a force trajectory to a target signal of combined sinusoidal
waves of two different frequencies, with half of participants receiving
ER feedback. We hypothesized that ER training would result in a
better performance than would training with feedback with no
reduction in errors, based on our previous results that showed
potential immediate effect of visual ER for older adults (Hwang
et al., 2020). Regarding the potential benefit of visual ER, ER training
was hypothesized to increase coherent discharge at the target
frequencies and reduce the discharge variability of motor units
for young adults during a bi-rhythmic force task.

2 Methods

2.1 Participants

Twenty-eight healthy adults were randomly assigned to one of
two groups: an error reduction (ER) group (n = 14; 7 males,

9 females, mean age ±SD = 24.6 ± 1.6 years) and a control group
(n = 14; 8 males, 8 females, mean age ±SD = 25.2 ± 1.8 years). They
were self-reported to be right-hand dominant without known
history of neuromuscular disease. The subjects visited the
laboratory on 3 occasions (pre-test, training visits, and post-test)
scheduled on three successive days. The study was approved by the
Chung-Shan Medical University Hospital Institutional Review
Board (No.CS2-16072), and all subjects provided written
informed consent for the experiment.

2.2 Experimental design and experimental
system

This study used a randomized, repeated measures, between-
groups, parallel design. The participants visited the laboratory
3 times at 1-day intervals (Figure 1). During the first visit for the
pre-test (Day 1), maximal voluntary contraction (MVC) of isometric
index abduction was defined as the highest value of three successive
MVC tests of 3 s, which were separated by 3-min rest periods. Three
trials of a bi-rhythmic force task under visual feedback were assessed
during the pre-test visit. The participants were seated 60 cm in front
of a computer monitor, with the forearm of the dominant limb
resting and restrained on a thermoplastic splint. They exerted the
isometric force by index abduction of the dominant hand to couple a
target signal on a computer screen. The target signal comprised a 3-s
latent period, a 3-s ramp-up/ramp-down phase to 30% MVC, and
3 s of the static level of 30% MVC at the beginning and end of the
contraction. In the window of interest (9th–35th seconds), the bi-
rhythmic force tasks required the participants to exert combined
sinusoidal forces of 0.2 Hz and 0.5 Hz that fluctuated around 30% ±
2% MVC (Figure 1, lower left). Each contraction trial was 44 s. Rest
periods of at least 2 min were allowed between the experimental
trials in the pre-test. The particular forms of contraction were
designed for EMG decomposition using a previous proof-of-
algorithm. In addition, the bi-rhythmic force task was expected
to add task difficulty and performance stress, unlike the static and
mono-rhythmic force tasks used in the previous studies, which
manipulated the error size in the visual feedback (Chen et al.,
2017a; Chen et al., 2017b; Chen et al., 2017c; Hwang et al.,
2020). On Day 2, the practice session contained 15 contraction
trials of the same task scheme used on Day 1. Rest periods of 1 min
were allowed between training trials. During the final visit for the
post-test (Day 3), the participants completed three trials of the bi-
rhythmic force task identical to the pre-test.

The subjects in the ER and control groups received different
forms of visual feedback when they practiced the bi-rhythmic force
tasks. Subjects in the ER group received feedback that was reduced to
half the size of the no reduction in errors during training. The force
output displayed on the monitor (visualized force, VF) was equal to
the sum of half of the real force (RF) plus half of the target signal (T)
(VF = 0.5*RF + 0.5*T) (Chen et al., 2017b; Hwang et al., 2017). The
size of the visualized tracking error (VE) was reduced so that the
participant saw only half of the real error (RE) of the force-tracking
task (VE = 0.5*RE) (Figure 1, lower right). The control group was
trained with visual feedback that guided force-tracking with
feedback with no reduction in errors. On Day 1 and Day 3, the
ER and control groups performed bi-rhythmic force-tracking
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visually guided with feedback with no reduction in errors in the pre-
test and post-test.

A force transducer (Model: MB-100, Interface Inc., United States of
America) was used to measure the force at the dominant index finger.
The force signal was sampled at 1 kHz with an analog-to-digital
converter (model USB6251; National Instruments, Austin,
United States of America) controlled by a custom program on a
LabVIEW platform (LabVIEW v.8.5, National Instruments Inc.,
Austin, TX, United States of America). A multi-electrode surface
EMG with 5 surface pin sensors (0.5 mm diameter) at the corners
of a 5 × 5 mm square (Bagnoli sEMG system, Delsys Inc., United States
of America) was synchronized to detect the muscle activity of the first
dorsal interosseous (FDI) muscle. The electrode position in the pre-test
was replicated at every visit to confirm consistent electrode placement
in the pre-test and post-test. The EMG signals from each pin sensor
were amplified (gain = 1,000) and band-pass filtered (cut-off
frequencies of 20 Hz and 450 Hz), followed by a digitization process
at a rate of 20 kHz (De Luca et al., 2015a). EMG data were recorded
with EMG works v.4.1 (Delsys Inc., United States of America).

2.3 Data analysis and signal processing

The force signal was first low-pass filtered (cut-off frequency:
6 Hz) to preclude high-frequency noises and center on the effects of
visuo-motor processes on force outputs in the 0–4 Hz band. Only the
force output in the window of interest (9th–35th seconds) was
analyzed. For the pre-test, training session, and post-test, task error
in the time domain was denoted as the root mean square (RMS) of the
mismatch between the target signal and filtered force output (ErrRMS).
During the practice session, the task errors of the 1st–15th trials were
standardized with task errors of the first trial (or normalized task
error). Estimated with the FFT-basedWelchmethod (segment length:

3.25 s, overlapping time segment: 25% window length), task accuracy
in the spectral domain was represented with a summated peak
amplitude of the target frequencies (0.2 Hz and 0.5 Hz) (P0.2+0.5Hz)
in the amplitude-normalized power spectra of the tracking force. The
spectral resolution was 0.002 Hz.

With the Precision Decomposition III algorithm (version 1.1,
Delsys, Inc., Natick, MA, United States of America) (De Luca et al.,
2006; Nawab et al., 2010), multi-channel surface EMG signals were
decomposed to the action potential “templates” of motor unit action
potential trains (MUAPTs). The decomposition algorithm is
reported to reliably detect motor unit activities during rhythmic
contractions, rendering motor unit (MU) spike trains having values
of 0 or 1 (De Luca et al., 2015a). Only MUs with decomposition
accuracy rates higher than 90%were further analyzed (De Luca et al.,
2006; Nawab et al., 2010), according to the results of the
Decomposition–Synthesis–Decomposition–Compare (DSDC) test.
The discharge variables of the motor units in the time window of
interest were determined from the whole decomposed EMG data.
ISImean was the mean value of all inter-spike intervals for an
individual MUAPT, and M-ISIGAV was the averaged value of the
ISImean for all motor units. The temporal variability of a single MU
was determined using the coefficient of variation of ISI (CV-ISI) in
one MUAPT, and CV-ISIGAV was the mean value of CV-ISI for all
MUs in an experimental trial. The cumulative discharge rate was
characterized by the convolution of the cumulative spike trains of
properly-identified motor units with a Hanning window of 400 ms
(Figure 2). The cumulative discharge rate was divided by the number
of properly-identified MUs in an experimental trial to obtain the
mean discharge trace (MDT), which highlights the low-frequency
neural drive to a muscle by suppressing independent synaptic noises
(Farina and Negro, 2015; Farina et al., 2016; Hwang et al., 2019). The
power spectrum of the MDT was estimated with a fast Fourier
transform and the same Welch method with the same parametric

FIGURE 1
Experimental training protocol. The pre-test (Day1) and post-test (Day 3) consisted of a bi-rhythmic force task to contrast the short-term training
effect using feedback with no reduction in errors (control) and error reduction (ER) feedback. The bi-rhythmic task required the subjects to track a visual
target that combined sinusoidal waves of 0.2 Hz and 0.5 Hz fluctuating around 30% ± 2% MVC (subplot in the lower left). With simple mathematical
transformation (subplot in the lower right), the subject perceived errors reduced by 50% with error reduction feedback during training. The force
output displayed on themonitor (visualized force, VF) was equal to the sum of half of the real force (RF) plus half of the target signal (T) (VF = 0.5*(RF + T)).
Hence, the size of the visualized tracking error was half of the real error (RE) of the force-tracking task (VE = T-VF = T-0.5*(RF + T) = 0.5*(T-RF) = 0.5*RE).
The training task in Day 2 was the same bi-rhythmic force task.
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settings was used for the force data. The summated peak amplitudes
of target frequencies at 0.2 Hz and 0.5 Hz (P0.2+0.5 Hz) in the MDT
were also determined.

2.4 Statistics

Hotelling’s T-squared statistics were used to examine the group
differences (ER vs control) in behavioral performances, including
the task accuracy (ErrRMS and P0.2+0.5 Hz of force output). Hotelling’s
T-squared statistics were also used to examine the group differences
(ER vs control) in the discharge variables of individual motor units
(M-ISIGAV and CV-ISIGAV) and the characteristics of the mean
discharge trace (RMS and P0.2+0.5 Hz). The post-hoc test was the
Simes test, which would not produce over-correction with the
Bonferroni test. For all post-hoc hypotheses (H � ∩m

i�1), the
Simes test did not reject elementary Hi if pi ≤ i*0.05/m for
ordered unadjusted p values (p1 ≤. ≤ pm). The type 1 error rate
using the Simes test proved to be exactly 0.05. During the practice
sessions, the paired t-test was used to contrast absolute task error of
the last trial (the 15th trial) with that of the first trial for both groups.
The effect size was determined by partial eta squared (ηp

2). All
statistical analyses were performed in IBM SPSS Statistics (v19). The
level of significance was 0.05.

3 Results

3.1 Task performance

The left plot of Figure 3 contrasts evolutional changes in
normalized task errors (task errors of the 2nd–15th trials relative

to the task error in the first trial) between the ER and control groups
during the training sessions. For the control group, normalized task
errors showed a decreasing trend with training sessions. The
normalized task errors of the control group after the fourth
practice trial were visibly smaller than the 95% confidence
interval (CI), estimated from the task errors of the pre-test of the
control group. In contrast, normalized task errors of the ER group
were less susceptible to visuomotor practice. The normalized task
errors of all practice sessions of the ER group were not evidently
smaller than the 95% CI of pre-test errors. For the control group, the
results of paired t-test revealed that absolute task error of the 15th
trial (.694% ± .211%MVC) was significantly smaller than that of the
first trial (.972% ± .359% MVC) (t13 = 5.108; p < .001). For the ER
group, absolute task error of the 15th trial (.984% ± .346%MVC) did
not significantly differ from that of the first trial (1.001% ± .316%
MVC) (t13 = .243; p = .811). All fourteen participants (14/14) in the
control group consistently exhibited reductions in absolute task
errors of the last practice trial (Figure 3, the right lower plot), as
compared with that in the first practice trial. In contrast, the task
errors of eight of the fourteen participants (8/14) in the ER group
increased in the last practice trial (Figure 3, the right upper plot).

With respect to the training benefits, task accuracies in the time
and frequency domains of the pre-test and post-test were indexed
with the RMS values of the mismatches between the target and force
signal (ErrRMS) and the combined peak amplitudes of the target
frequencies (P0.2+0.5 Hz) in the force output, respectively. Figure 4
shows a typical example of pooled power spectra of tracking force in
the pre-test and post-test for the ER and control groups; Table 1
shows the results of Hotelling’s T-squared statistics, which contrast
the task accuracies in the time and frequency domains between the
pre-test and post-test for the ER and control groups. Task accuracies
between the pre-test and post-test were significantly different in the

FIGURE 2
Decomposition results of surface electromyography (EMG) and acquisition of mean discharge trace (MDT) from the cumulative spike train. The
smoothing process was performed by convolution of the cumulative spike trains of all identifiable motor units with a Hanning window of 400 ms in
duration. Root mean square and spectrum analysis were applied to the MDT in the pre-test and post-test.
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control group (p = .015, ηp
2 = .505) but not in the ER group (p =

.150). In the control group, ErrRMS was smaller (p = .002, ηp
2 = .539)

and P0.2+0.5 Hz (p = .001, ηp
2 = .555) was greater in the post-test than

in the pre-test.

3.2 EMG and motor units

Across individuals, the average numbers of MUs accurately
decomposed in each experimental trial in the pre-test for the ER and
control groups were 23.6 ± 3.3 (range: 17.3–27.7) and 24.3 ± 4.8 (range:
18.0–29.3), respectively. In the post-test, those numbers were 26.3 ± 3.6

(range: 17.7–32.3) and 26.0 ± 3.9 (range: 17.3–30.0), respectively.
Modulation in motor unit behaviors was assessed with changes in
discharge patterns (M-ISIGAV and CV-ISIGAV) of motor units and
the characteristics of the mean discharge trace (RMS, P0.2+0.5 Hz) after
training. Hotelling’s T-squared statistics were used to examine the
training-related change in MU discharge pattern, and the results are
summarized in Table 2(A). Only the control group showed a significant
modulation of discharge variables of MUs (p = .003, ηp

2 = .630); the ER
group did not (p= .294). For the control group,M-ISIGAV in the post-test
was greater thanM-ISIGAV in the pre-test (p = .018, ηp

2 = .360). Figure 5
shows the pooled power spectra of the pooled discharge trace in the pre-
test and post-test from representative subjects in the ER and control

FIGURE 3
Evolutional changes in normalized task errors during the training session for the ER and control groups. The control group showed a decreasing
trend of normalized errors across training sessions. Absolute task error was denoted as the RMS value of the mismatches between the target and tracking
force (% MVC). (95% CI: 95% confidence interval of the pre-test task error normalized with task error of the first trial).

FIGURE 4
The contrast of pooled normalized power spectra of force tracking between the pre-test and post-test from representative subjects in the ER and
control groups.
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groups, respectively. It was evident that the target frequencies (0.2Hz and
0.5 Hz) in the pooled discharge trace of the representative subject in the
control groupwere enhanced after training.Unlike training in the control
group (p = .001, ηp

2 = .667), training in the ER group did not modulate
the mean discharge trace (p = .397, ηp

2 = .143) (Table 2 (B)). Post-hoc
analysis revealed that the RMS and P0.2+0.5 Hz of themean discharge trace
of the control group were tuned to the training effect. Compared with
those in the pre-test, RMSwas smaller (p= .017, ηp

2= .367) but P0.2+0.5 Hz
was greater (p = .002, ηp

2 = .550) in the post-test, respectively.

4 Discussion

Contrary to expectations, ER training on a bi-rhythmic force
task did not result in significant skill improvements in the post-test.
The reduction in task errors with ER was not evident in the training

session. There was no evident training-related modulation of motor
unit behaviors with ER. In contrast, training with feedback with no
reduction in errors brought about significant task improvement,
together with a greater inter-spike interval, smaller fluctuations of
the pooled discharge rate, and enhanced MU discharges at the target
frequencies.

4.1 Performance gain and force structures

It was surprising to find lack of task improvement after practice
with ER for the young adults. The practice curve clearly showed a
tendency of performance decline across all practice trials for the ER
group, as compared with the control counterpart (Figure 3).
Temporary ER-induced decline in performance was previously
reported in static (Hwang et al., 2017) and rhythmic (Chen et al.,

TABLE 1 Means and standard errors of task accuracies in the time/spectral domains in the pre-test and post-test for the ER and control groups. (ErrRMS: root mean
square of the task error; P0.2+0.5Hz: combined amplitudes of 0.2 Hz and 0.5 Hz spectral peaks in the force output).

Task Accuracy Pre-test Post-test Statistics

ER ErrRMS (% MVC) .992 ± .247 .910 ± .265 Wilks’ Λ = .687, p = .150, ηp2 = .313

P0.2+0.5 Hz (*10
-2) .814 ± .171 .837 ± .241

Control ErrRMS (% MVC) .942 ± .307 .690 ± .176a Wilks’ Λ = .495, p = .015, ηp2 = .505

P0.2+0.5 Hz (*10
-2) .819 ± .273 1.041 ± .215b ErrRMS: t13 =3.895, p = .002, ηp2 = .539

P0.2+0.5 Hz: t13 = -4.023, p = .001, ηp2 = .555

The bold values highlight values with significant differences.
aPost-test < Pre-test, p < .005.
bPost-test > Pre-test, p < .005.

TABLE 2 Means and standard errors of variables of inter-spike interval (ISI) (A) and mean discharge trace (MDT) (B) in the pre-test and post-test for the ER and
control groups. (M-ISIGAV = the averaged value of the mean inter-spike interval for all motor units; CV-ISI: the coefficient of variation of ISI; CV-ISIGAV: the mean
value of the coefficient of variation of inter-spike intervals for all MUs; RMS: root mean square; P0.2+0.5Hz: the combined amplitudes of the 0.2 Hz and 0.5 Hz
spectral peaks). (A).

ISI Variables Pre-test Post-test Statistics

ER M-ISIGAV (ms) 60.66 ± 10.12 58.54 ± 12.92 Wilks’ Λ= .815, p = .294, ηp2 = .185

CV-ISIGAV .211 ± .011 .205 ± .019

Control M-ISIGAV (ms) 61.12 ± 9.34 64.25 ± 11.24a Wilks’ Λ= .370, p = .003, ηp2 = .630

CV-ISIGAV .216 ± .010 .214 ± .014 M-ISI: t13= -2.701, p = .018, ηp2 = .360

ISI-CV: t13 = .969, p = .350, ηp2 = .067

Mean Discharge Trace Pre-test Post-test Statistics

ER RMS .815 ± .149 .868 ± .196 Wilks’ Λ = .857, p = .397, ηp2 = .143

P0.2+0.5 Hz .065 ± .011 .064 ± .013

Control RMS .831 ± .151 .766 ± .124b Wilks’ Λ = .333, p = .001, ηp2 = .667

P0.2+0.5 Hz .057 ± .011 .074 ± .009c RMS: t13 = 2.745, p = .017, ηp2 = .367

P0.2+0.5 Hz: t13 = -3.988, p = .002, ηp2 = .550

The bold values highlight values with significant differences.
aPost-test > Pre-test, p < .025.
bPost-test < Pre-test, p < .025.
cPost-test > Pre-test, p < .00
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2017b) force tracking. In healthy young adults, ER feedback tended
to oversimplify visuomotor control with a premature feedforward
process for a false impression of task success (Chen et al., 2017b).
In the initial stage of motor learning, visual error feedback can
guide the subjects the way to effectively minimize committed
errors by trying various movement solutions. The control group
with full-size of error feedback improved their tracking
performance after the third practice trial (Figure 3). However,
the ER group did not reduce their task errors, except in the eighth
and 10th practice trials, and their task performance had not
improved at the end of the training. For the first few practice
trials of the ER group, the expected beneficial effect of perceived
improvement in performance might have been undermined by the
destructive oversimplification strategy. This observation speaks for
the existence of an intrinsic error dead-zone in the visual or
sensorimotor system, as proposed by Wolpert et al. (1992). An
error dead-zone indicates that error detection is a magnitude-
dependent process. Only an error of at least one magnitude above
the detection threshold is meaningful to a control system
incorporating a feedback loop. No new corrective movements
can be launched, as the control system does not respond to the
range of error inputs smaller than the error dead-zone (Miall et al.,
1993). However, to date, the actual size of the error dead-zone
remains unclear. On average, it was at least 0.45 times the size of
the execution error in the first trial. The subjects who received ER
were incapable of correcting errors smaller than 0.9 times the
normalized error; meanwhile, they visually perceived the execution
errors at only 0.5 times their size. That is, the subjects could hardly
correct the visual errors that fell into the error dead-zone
(0.9*0.5 of the error size of the first trial). For the young adults,
virtual perception of small errors below the dead-zone led to a false
impression of task success, which led to reductions in the
awareness and cognitive involvement necessary for context
updating and refinement of the bi-rhythmic force tracking
(Seidler et al., 2012). They prematurely finalize movement
strategy without adequate corrective attempts for stratifying
with the “right” performance in the latter practice trials (Chen
et al., 2017b).

4.2 Rate coding of motor units

In line with the lack of significant practice-related changes in
performance gain and force structures, ER training did not mediate
MU discharge to improve their performance in the motor task in the
post-test. Unlike those of the control group, motor unit behaviors
did not significantly adapt to short-term ER training for mastery of
the designated bi-rhythmic force task (Figures 4, 5). The skill
improvement in the participants trained with the full error size
was associated with the potentiated P0.2 + 0.5 Hz of the pooled
discharge rate in the post-test (Table 2(B)). The scenario suggested
the enhanced rate coding of motor units at the target frequency
during the bi-rhythmic isometric force task (Knight and Kamen,
2007). The rhythmic discharges of motor units in unison are
believed to be regulated by a neural drive of central origin (Iyer
et al., 1994; De Luca et al., 2015a). Another issue pertinent to task
performance is steady force control around the baseline force at 30%
MVC. As force outputs are averaged twitch force of the active motor
units, force variability (or unfused twitch forces) can be estimated
experimentally from the size of fluctuations for summated motor
unit discharge trains (Farina and Negro, 2015). Previous researches
show a high resemblance between force fluctuations and cumulative
series of discharge race (or MDT) (Farina and Negro, 2015; Farina
et al., 2016). Based on this perspective, force variability of the
baseline force can be characterized by the size of low frequency
oscillations in motor unit discharge patterns under 4 Hz, or RMS
value of MDT (Table 2(B)) (Vaillancourt et al., 2003; Negro et al.,
2009; Castronovo et al., 2018). Unlike the control group, it is worth
noting that the ER group did not demonstrate a training-related
reduction in MDT size. This fact probably reflects the trained group
could not add to force accuracy due to fluctuations of the baseline
force level. Finally, the trained control group demonstrated a greater
inter-spike interval (M_ISIGAV) in the post-test, rather than the ER
group (Table 2(A)). This result suggested that the visuomotor
training improved the efficiency of muscle activation in the
control group, replicating the finding of a previous work on
training-induced decline in EMG activity (Moore and Marteniuk,
1986; Lay et al., 2002; Brueckner et al., 2019). The improvement of

FIGURE 5
The contrast of pooled normalized power spectra ofmean discharge trace (MDT) between the pre-test and post-test from representative subjects in
the ER and control groups.
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the muscle activation efficiency can likely be attributed to a
reduction in muscle coactivation for enhanced short-latency
reciprocal inhibition during skill acquisition (Suzuki et al., 2012;
Floeter et al., 2013). Unfortunately, ER training failed to develop
effective neural strategies for a trained bi-rhythmic force task. After
ER training, the young adults did not present either enhancement of
coherent discharge at the target frequency or reduction in variability
of motor unit discharge.

4.3 Methodological concerns

The primary concerns of this study were the inter-day reliability
and variations in themotor units at different experimental visits, despite
the electrode placement being carefully tracked across days. Several
previous studies have consistently provided evidence of high intra- and
inter-day absolute and relative reliability for motor unit characteristics
(ICCs >0.77–0.93) with decomposition-based surface EMG across a
range of submaximal contraction intensities (De Luca et al., 2015a;
Martinez-Valdes et al., 2016; Colquhoun et al., 2018). Hence,motor unit
variables were recommended for monitoring adaptations in a longer-
term intervention study (Hoshizaki et al., 2020). In addition, the validity
of EMG decomposition is another issue of debate (Farina and Enoka,
2011; De Luca et al., 2015b). We cannot completely deny the likelihood
of small decomposition errors (Piotrkiewicz and Türker, 2017). To be
rigorous, we applied the decompose-synthesize-decompose-compare
(DSDC) test (Nawab et al., 2010; De Luca et al., 2015b) to ensure the
accuracy of the decomposition results. Although the accuracy of the
EMG decomposition results in this study was not independently
validated, the use of the DSDC test for accuracy assessment of
surface EMG decomposition was highly compatible with the results
of intramuscular EMG decomposed in EMGlab software (McGill et al.,
2005; Hu et al., 2014). Finally, this work did not analyze motor unit
recruitment strategies between groups, acknowledging that the firing
rate of a motor unit is a function of its recruitment threshold. However,
this limitation is unlikely to affect the conclusions of the present work,
as the force levels in both experiment groups were identical.
Presumably, the recruitment thresholds of decomposed motor units
were not group dependent.

5 Conclusion

The healthy young adults who receive error reduction feedback
did not improve their performance in a rhythmic motor task after
training and did not increase the modulation of their motor unit
discharges at the target frequencies. In addition, visuomotor training
with error reduction does not improve the efficiency of motor
production for force generation, in light of the lack of adaptive
reduction in the inter-spike intervals of motor units. Failure to
improve visuomotor performance with error reduction associates

with insignificant modulation of low-frequency neural drives to
motor units. The present findings emphasize the role of sufficient
visual error perception in learning to master human–machine
interfaces.
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