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Non-responders to Cardiac Resynchronization Therapy (CRT) represent a high-risk,
and difficult to treat population of heart failure patients. Studies have shown that
these patients have a lower quality of life and reduced life expectancy compared to
those who respond to CRT. Whilst the first-line treatment for dyssynchronous heart
failure is “conventional” biventricular epicardial CRT, a range of novel pacing
interventions have emerged as potential alternatives. This has raised the question
whether these new treatments may be useful as a second-line pacing intervention
for treating non-responders, or indeed, whether some patients may benefit from
these as a first-line option. In this review, we will examine the current evidence for
four pacing interventions in the context of treatment of conventional CRT non-
responders: CRT optimization; multisite left ventricular pacing; left ventricular
endocardial pacing and conduction system pacing.
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Introduction

Cardiac Resynchronization Therapy (CRT), in addition to optimal medical therapy, is a
widespread and successful treatment for patients with dyssynchronous heart failure (HF)
(Glikson et al., 2021). Conventionally, CRT involves transvenous systems delivering
biventricular (BiV) pacing from leads in the right ventricle (RV), and a cardiac vein via the
coronary sinus (CS) to achieve epicardial left ventricular (LV) stimulation. There is strong
evidence that CRT improves HF symptoms whilst reducing HF hospitalisations and improving
mortality in indicated patients (McAlister et al., 2007).

Unfortunately, there is a subgroup of high-risk patients who have a poor therapeutic
response to CRT, so-called “CRT non-responders” representing between 30% and 50% of CRT
patients (Young et al., 2003). Several factors have been proposed to contribute to this limited
efficacy. Cardiac venous anatomy significantly restricts the pacing location of the LV lead,
which may lead to difficulty in targeting optimal sites, and avoiding areas of transmural scar
(Wouters et al., 2021). LV scar is present in up to 40% of CRT candidates, and predicts poor
response (BLEEKER et al., 2006; Chalil et al., 2007; Leyva et al., 2011; Wong et al., 2013). In
addition, modelling studies demonstrate that conventional CRT does not replicate physiological
activation across the endocardium and in some instances may be pro-arrhythmic (Mendonca
Costa et al., 2019).

Treatment of CRT non-responders is extremely difficult, and this cohort of patients is
known to have poor outcomes (Vijayaraman et al., 2022a). In recent years, several novel pacing
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interventions have been investigated to assess whether these therapies
can provide benefit when clinical improvement does not occur despite
BiV or when conventional transvenous implantation was not
successfully achieved. These interventions include: optimisation of
atrioventricular (AV) and interventricular (VV) delays; multisite LV
pacing; LV endocardial pacing and conduction system pacing (CSP).

In this review, we will examine the current data for these four
pacing interventions in the treatment of CRT non-responders, discuss
the limitations of the current body of evidence, and provide opinions
on future directions in this field.

Optimisation of atrioventricular (AV) and
interventricular (VV) delays

Delay optimisation has been the subject of investigation since the
advent of CRT, arising from the theory that optimisation of both
passive and active filling will maximise cardiac output, thereby
improving outcomes. Observational studies have reported acute
haemodynamic and electrical benefits of AV/VV optimisation in
patients receiving CRT (Jansen et al., 2006; AlTurki et al., 2019),
however, clinical trials have not consistently reported long term
benefits (Brabham and Gold, 2013). The SMART-AV (Ellenbogen
et al., 2010) trial which randomised 980 patients in a 1:1:1 ratio to CRT
with an empirical AV delay of 120 ms, echocardiographically
optimised AV delay, or AV delay optimised with SmartDelay, an
electrogram-based algorithm. This study demonstrated no significant
improvements in either AV optimisation arm over empirical settings
based on LV end systolic volume improvement or clinical
improvement at 6 months.

There are several reasons why acute mechanistic data examining
haemodynamic benefits of AV delay optimisation do not translate to
improve outcomes in clinical trials. The intrinsic PR interval is
variable, especially in response to factors such as autonomic tone
and exercise (Lee et al., 1995). As such, the optimal AV delay
programmed in clinic may not reflect the patient’s real-world
physiology.

Another reason that AV optimisation has not shown significant
positive results may be because the majority of patients respond very
well to empirical BiV pacing. Thus, the beneficial effect will likely be
small in an unselected CRT population. There may however be a role
for optimisation in a selected CRT non-responder group. Brown et al.
reported that in 32 echocardiographic CRT non-responders, CRT
optimization significantly improved LV ejection fraction from 31.8% ±
4.7% to 36.3% ± 5.9% (p < .001) and LV end-systolic volume from
108.5 ± 37.6 to 98.0 ± 37.5 mL (p = .009). Additionally, speckle-
tracking measures of LV strain significantly improved by 2.4% ± 4.5%
(transverse; p = .002) and 1.0% ± 2.6% (longitudinal; p = .017) and
aortic to pulmonic valve opening time, a measure of interventricular
dyssynchrony, significantly (p = .040) decreased by 14.9 ± 39.4 ms
(Brown et al., 2022). Similar conclusions were reached by Naqvi et al.,
who reported improved echo-derived strain measures of
dyssynchrony in a series of 8 clinical non-responders receiving AV
and VV optimisation (Naqvi et al., 2006). Whilst these results appear
promising, they have not been consistently replicated. Another small
study, in 8 patients classified as both echocardiographic and clinical
non-responders, reported no improvements in echo outcomes after
receiving CRT optimisation (Sepši et al., 2013). Larger randomised
studies specifically targeting a non-responder population are needed

to provide more definitive answers to this potentially practice
changing intervention.

Multi-point and multi-lead pacing

Multi-point pacing (MPP) and multi-lead pacing, such as
“triventricular” (TriV) pacing is a well-studied area in the field of
CRT non-response. Pacing the LV from multiple locations is an
attractive concept as it potentially addresses the problems caused
by ischaemic scar or other areas of slow conduction velocity that
reduce the efficacy of CRT by affecting the LV paced wavefront.
Several studies testing the efficacy of these interventions have been
performed in non-responder populations. In the SMART-MSP trial,
102 patients who had an unchanged or worsened clinical composite
score, (composed of all-cause mortality; HF events; patient global

FIGURE 1
(A) Anteroposterior and (B) Lateral chest radiograph views 1 day
post implant of triventricular CRT system with one LV lead in
posterolateral vein and another in a lateral vein. Reproduced from
reference 23, Gould et al., with permission.
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assessment; and NYHA HF classification) at 6 months post-CRT had
LV MPP turned on (Saba et al., 2022). They found that 51% of these
patients became clinical responders at 12 months follow up, and
concluded that LV MPP is beneficial in the treatment of non-
responders. However, this trial did not include any
echocardiographic data, as such the primary endpoint was a
subjective measure. Furthermore, a criticism of this study was the
lack of a control group, in particular, that a significant proportion of
CRT non-responders at 6 months may have become responders at
12 months even in the absence of MPP. Indeed, this was demonstrated
in Phase 1 of the MORE-CRT trial (Leclercq et al., 2019), which
randomised 467 non-responders at 6 months post CRT to MPP-ON
or MPP-OFF. This trial reported no significant difference in echo
response between the groups at 12 months follow-up as evaluated in a
blinded echo core lab. In both the MPP-ON (31.8%) and MPP-OFF
(33.8%) groups a subset of non-responders converted into responders
at follow-up. The authors suggested that there may be a delayed
response to biventricular pacing beyond the initial 6 months owing to
a myocardial substrate that needs more time to fully undergo reverse
remodelling, or heart failure medication that continues to be up
titrated-whether that be with MPP, MSP, or conventional CRT. A
recently published meta-analysis by Mehta et al. reported that in
randomised studies, there is no difference between MPP and
conventional CRT (Mehta et al., 2021).

Multi-lead pacing, that is, the placement of an additional lead,
most commonly in the LV to provide Triventricular (TriV) pacing
(Figure 1), has also been evaluated in randomised control trials. The
V3 trial (Bordachar et al., 2018) and STRIVE-CRT (Gould et al., 2022)
are important negative trials which showed no significant difference in
clinical or echocardiographic outcomes between standard of care and
multi-lead pacing in unselected CRT populations. A meta-analysis of
415 patients by Elliott et al. (Elliott et al., 2022a) again reported no
difference between TriV pacing and conventional BiV pacing.

Acute haemodynamic studies in both animals (Ploux et al., 2014;
Heckman et al., 2020) and humans (Sohal et al., 2015) have reported
that LV multi-lead pacing may provide acute haemodynamic benefits
over BiV CRT in subjects who are “acute haemodynamic non-
responders” to conventional CRT. These studies have yet to be
replicated on a larger scale with robust outcome data. Until such
time, it cannot be extrapolated that there is a significant benefit of
implanting an additional LV lead in non-responders.

Left ventricular endocardial pacing

Endocardial pacing provides more physiological activation than
epicardial pacing (Bordachar et al., 2012), and importantly, gives the
benefit of unrestricted LV pacing locations, which can be vital in
patients with factors including ischaemic scar or lack of suitable
cardiac venous targets, through unfavourable anatomical
characteristics such as difficult coronary sinus os access, a
persistent left sided subclavian vein, or tributaries which are too
small to support a lead. The emergence of LV endocardial pacing
as a potential treatment for conventional CRT non-responders has
been driven primarily by mechanistic studies which have consistently
reported acute haemodynamic benefits for endocardial pacing versus
conventional CRT (Derval et al., 2010; Ginks et al., 2012; Shetty et al.,
2014; Sohal et al., 2014; Behar et al., 2016). The optimal LV pacing
locations reported were highly variable, but in these studies, the

endocardial site with the largest improvement in acute
haemodynamic response (AHR) was consistently superior to
conventional BiV pacing. Behar et al. (Behar et al., 2016) reported
from a total of 135 sites tested in 8 patients that AHR was significantly
greater when temporary pacing the same myocardial segment
endocardially versus epicardially (15.2 ± 10.7% vs. 7.6 ± 6.3%; p =
0.014) and resulted in a shorter paced QRS duration (137 ± 22 ms vs.
166 ± 30 ms; p < 0.001). Interestingly, Sohal et al. (Sohal et al., 2014)
reported an acute haemodynamic study of 10 patients with
biventricular CRT devices. The optimal LV endocardial pacing site
was at the same location as the existing epicardial LV lead in only four
patients. An acute haemodynamic study performed by Padeletti et al.
in 11 subjects also demonstrated that the optimal LV endocardial site
in each patient significantly improved LV performance compared to
conventional epicardial LV stimulation (Padeletti et al., 2012).

Mechanistic studies have also provided insight into which patients
may benefit from endocardial pacing rather than epicardial LV pacing.
Ginks et al. (Ginks et al., 2012) performed electroanatomical mapping
to determine the intrinsic LV activation pattern and a haemodynamic
study in 10 patients with LBBB referred for CRT. The authors reported
that the majority (71%) of patients with non-ischemic heart failure and
a line of conduction block causing LBBB responded to conventional
CRT. In contrast, those with myocardial scar, and the absence of a line
of conduction block, i.e. where LBBB was caused by homogenously
slow conduction from the LV septum to the lateral wall, often required
endocardial or multisite pacing to achieve CRT response. Non-
responders have also specifically been studied in this setting.
Gelder et al. (van Gelder et al., 2016) performed an acute
haemodynamic study in 24 clinical CRT non-responders. They
found that the initially implanted system generated an AHR ≥15%
in five patients after A-V and V-V optimisation. Among these 5, three
with posterolateral transvenous epicardial leads had no significant
AHR increase with LV endocardial pacing. One of the two other
patients with transvenous apical epicardial leads had an AHR rise from
19.7% to 66% with LV endocardial pacing. Nine of the 19 remaining
patients had an increase in AHR to ≥15% at the optimal endocardial
LV pacing position.

Initial systems delivering permanent LV endocardial pacing were
lead-based. ALSYNC (Morgan et al., 2016) was a prospective clinical
investigation of 118 patients who received a trans-septal (inter-atrial)
LV endocardial pacing lead. Ninety patients (76.2%) had a failed
epicardial lead or suboptimal cardiac venous anatomy and 28 (23.8%)
were non-responders to previous CRT. At 6 months, the New York
Heart Association (NYHA) class improved in 59% of patients, and
55% had LV end-systolic volume (LVESV) reduction of 15% or
greater. Those patients enrolled after CRT non-response showed
similar improvement, with 47% of patients having an improvement
in LVESV of ≥15%, and 5% having an improvement ≥30%.
Unfortunately in this study, 14 transient ischaemic attacks
(9 patients, 6.8%) and five non-disabling strokes (5 patients, 3.8%)
were observed. This prohibitively high embolic risk and the
requirement for lifelong anticoagulation has motivated the
development of novel leadless LV endocardial pacing systems.

Delivering CRT via leadless LV endocardial pacing has several
potential advantages compared to lead-based systems. Complete
device endothelialisation reduces the stroke risk and
anticoagulation requirement (Echt et al., 2010), and devices can be
implanted in patients where venous access or infection issues preclude
both conventional and lead-based endocardial CRT. (Gamble et al.,
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2016). In addition, leadless pacing can avoid the numerous long-term
complications associated with transvenous leads including: insulation
breach, fracture (1%–4%); venous obstruction (8%–21%); and
infection (1%–2%) (Bernard, 2016) which often result in the need
for high risk extraction procedures.

The WiSE-CRT system (EBR Systems Inc., Sunnyvale CA) is the
only commercially available leadless LV pacing system (Auricchio
et al., 2014). The system consists of a battery connected to an
ultrasound transmitter, which is implanted subcutaneously at the
4th, 5th, or 6th intercostal place, and the receiver electrode, which
is implanted in the LV cavity via aortic or trans-septal access
(Figure 2). The system requires the patient to have a “co-implant”
in situ capable of producing continuous RV pacing, which can be
either a conventional device, such as a pacemaker or implantable
cardiac defibrillator (ICD), or a leadless pacemaker such as MICRA™
(Medtronic, Minneapolis MN). The transmitter and battery detect an
RV pacing pulse emitted by the co-implant. Within 10 ms of detection
of the RV pacing spike, the transmitter emits a number of ultrasound
pulses to locate the receiver electrode. Once the transmitter is
electronically optimally aligned, a longer ultrasound wave is
emitted, which is detected and converted to a pacing stimulus by
the receiver electrode. This results in LV pacing, and thereby BiV
pacing.

Several observational studies have demonstrated that treatment
with WiSE-CRT can deliver echocardiographic CRT response
(Auricchio et al., 2014; Reddy et al., 2017; Sieniewicz et al., 2020;

Okabe et al., 2022). A recent meta-analysis of these studies (Wijesuriya
et al., 2022a) reported that in a total of 181 patients, there was a mean
increase in LVEF of 6.3% (Mean difference 6.3, 95% Confidence
Interval (4.35, 8.19) p < 0.001, with low heterogeneity (p = 0.84,
I2 < 0.001%). The echocardiographic response rate (variably defined
between studies as either a reduction in LVESV of >15%, an
improvement in LVEF>5%, or an improvement in LVEF>10%)
was 54% in a population where 22% were non-responders to
conventional CRT.

A sub-analysis of the non-responder population of the WiSE-CRT
registry was performed by Sidhu et al. (2020) The authors reported
that in 18 patients, endocardial pacing resulted in a significant
reduction in QRS duration compared with intrinsic QRS duration
(26.6 ± 24.4 ms; p = .002) and improvement in left ventricular ejection
fraction (LVEF) (4.7 ± 7.9%; p = .021). Overall, 55.6% of patients had
improvement in their clinical composite score (consisting of number
of hospitalizations with decompensated heart failure; survival to
follow-up; improvement of ≥1 NYHA functional class; or
improvement in their global assessment) and 66.7% had a
reduction in LVESV ≥15% and/or absolute improvement in
LVEF ≥5%. These results, albeit in a small patient cohort, provide
preliminary favourable feasibility data of WiSE-CRT in treatment of
non-responders. The ongoing SOLVE-CRT trial (NCT02922036)
(Singh et al., 2021), a multicentre interventional study, will provide
further valuable information about the efficacy of this new treatment
modality.

FIGURE 2
Components of the WiSE-CRT System. Reproduced from reference 64, Elliott et al., with permission.

Frontiers in Physiology frontiersin.org04

Wijesuriya et al. 10.3389/fphys.2023.1054095

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1054095


Conduction system pacing

Conduction system pacing (CSP) is an area of rapidly growing
interest, built upon the attractive concept of restoring completely
physiological ventricular activation. Initial studies in lead-based CSP
focused on His Bundle Pacing (HBP). HBP achieves excellent cardiac
resynchronization, but implantation can be difficult with success rates
varying from 56%–95% (Bhatt et al., 2018; Sharma et al., 2018;
Vijayaraman et al., 2018). Concerns about ventricular under-
sensing and rising thresholds have emerged during long-term
follow up (Lustgarten et al., 2019; Zanon et al., 2019). Left Bundle
Branch Area Pacing (LBBAP) is a novel form of CSP which involves
screwing a pacing lead deep into the interventricular septum from the
RV in order to capture the left bundle system (Huang et al., 2019;
Zhang et al., 2019). This technique has produced encouraging results
from observational studies, with reported success rates of 80%–94%,
(Padala and Ellenbogen, 2020), and significant improvements in LV
systolic function (Zhang et al., 2019). Robust data from randomised
control trials, however, is currently lacking. Current evidence,
especially with regards to the role of CSP in non-response, is
limited to in silico studies and observational studies.

Strocchi et al. (2020) performed an in silico study examining
ventricular activation times on 24 four chamber heart meshes in the
presence of simulated left bundle branch block (LBBB). They
simulated BiV epicardial and BiV endocardial pacing, as well as
HBP and LBBAP. They reported that HBP was superior (p < .05)
to BiV endocardial and conventional BiV pacing with regards to
reduction in LV activation time (AT) and interventricular
dyssynchrony, (Figure 3). LBBAP reduced LV activation times but
not interventricular dyssynchrony compared to conventional CRT
and BiV endocardial pacing, due to late RV activation. The RV latest
AT was higher with LBP than with HBP (141.3 ± 10.0 ms vs. 111.8 ±
10.4 ms). Optimizing AV delay during LBP reduced RV latest AT
(104.7 ± 8.7 ms) and led to comparable response to HBP. These results
suggest that CSP provides an electrical benefit over conventional CRT

in unselected LBBB patients. We may extrapolate from this that CSP
might be beneficial in patients who have not responded to
conventional CRT.

Data from observational trials comparing conventional CRT with
CSP in both unselected patients and non-responders has had variable
outcomes. Non-randomised observational studies by Chen et al. and
Vijayaraman et al. (Vijayaraman et al., 2022b; Chen et al., 2022)
demonstrated improvements in QRS duration and echocardiographic
outcomes with CSP compared to conventional BiV pacing in de novo
implant patients, but this has not been consistently replicated
(Upadhyay et al., 2019a; Toding Labi et al., 2022). Interestingly,
Vijayaraman et al. performed a further observational study of
200 patients who underwent LBBAP for either inability to place a
transvenous LV epicardial lead (Group 1, n = 156), or CRT non-
response (Group 2, n = 44) (Vijayaraman et al., 2022a). QRS duration,
LVEF and NYHA class improved in both groups, but more so in group
1. At mean 12 months follow-up the primary endpoint of death or HF
hospitalisations was significantly lower in group 1 than group 2 (13%
vs. 30%; HR 0.357; p = .007). The incidence of clinical and
echocardiographic improvements in Group 1 was similar to those
observed in patients undergoing conventional CRT in clinical trials.
The authors concluded that LBBAP is a reasonable alternative to BiV
CRT but more work is needed to assess its efficacy in non-responders.

An emerging field is the potential improvement in electrical
synchronisation obtained through optimising conventional CRT
with sequential CSP-LV pacing, known as His-Optimised CRT
(HOT-CRT) or LBP-Optimised CRT (LOT-CRT). A mechanistic
study of 11 patients showed that pressure-volume derived stroke
volume was optimal when LV pacing was combined with HBP,
suggesting that sequential CSP-LV activation provides benefit by
preserving intrinsic RV activation (Padeletti et al., 2016). A
25 patient feasibility study of HOT-CRT (Vijayaraman et al., 2019)
demonstrated that QRS duration at baseline was 183 ± 27 ms and
significantly narrowed to 162 ± 17 ms with biventricular pacing (p =
0.003), to 151 ± 24 ms during HBP (p < 0.0001), and further to 120 ±

FIGURE 3
Simulations results using 24 four chamber heart meshes. Boxplots of the change in QRSd, (A) LVAT-95, (B) BIVAT-90, (C) BIV DI (D), and RV LAT (E) from
baseline with BiV-epi pacing at the optimal location, BiV-endo lateral pacing at the optimal location, BiV-endo septal pacing (BiV-endo sept), S- and NS-HBP,
and S- and NS-LBP. Light blue circles represent mean values. Plus symbols represent outliers. BiV, biventricular; BIV DI, biventricular dyssynchronous index;
BIVAT-90, 90% biventricular activation time; endo, endocardial; epi, epicardial; HBP, His-bundle pacing; LAT, lateral; LBP, left bundle pacing; LV, left
ventricle; LVAT-95, 95% left ventricular activation time; NS, non-selective; QRSd, QRS duration; RV LAT, right ventricular latest activation time; S, selective;
sept, septal. Reproduced from reference 55, Strocchi et al., with permission.
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16 ms during HOT-CRT (p < 0.0001). During a mean follow-up of
14 ± 10 months, LV ejection fraction improved from 24 ± 7% to 38 ±
10% (p < 0.0001), and NYHA functional class changed from 3.3 to
2.04. Twenty-one of 25 patients (84%) were clinical responders while
23 of 25 (92%) demonstrated an echocardiographic response. A LOT-
CRT feasibility study (Jastrzębski et al., 2022) reported a clinical
response rate of 76% in 91 patients. Although performed in small
cohorts with no control groups, the high CRT response rates seen in
these studies raise the question of whether addition of CSP to BiV
pacing in CRT non-responders will be efficacious in a significant
number of patients. Larger studies of non-responder patients will of
course be needed in this regard, and it will be important to consider
safety outcomes as well as heart failure outcomes, given both the
additional infection risk associated with upgrade procedures, as well as
long-term risks of lead-lead interaction, thrombosis and tricuspid
regurgitation which increase with implantation of additional
transvenous leads (Bernard, 2016). This is particularly pertinent as
while CSP is becoming more widespread worldwide, (Performance
Reports | Medtronic CRHF, 2022), extraction of CSP leads remains a
low-volume procedure with a very small evidence base (Wijesuriya
et al., 2022b).

Recent advances in WiSE-CRT implantation have brought about
the ability to perform CSP via a leadless LV endocardial approach,
potentially circumventing long-term lead related issues (Elliott et al.,
2021; Elliott et al., 2022b; Wijesuriya et al., 2022c). The endocardial
receiver electrode component of the WiSE-CRT system has
traditionally been implanted at the LV lateral wall using a
retrograde femoral arterial approach, however the emergence of a
trans-septal implant technique gives the operator the ability to find a
stable delivery sheath position on the LV septal wall using deflectable
sheaths such as the FlexCath (Medtronic, Minneapolis MN). Initially
the LV septum is mapped using a decapolar catheter, enabling the
electrode to be targeted to the site of a pre-systolic potential, with the
aim of capturing the His-Purkinje system. In a case series of 8 patients,
the implant success rate was 100% (Elliott et al., 2022b), with a
significant reduction in QRS duration (187.1 ± 33.8 ms vs. 149.5 ±
15.7 ms; p = .009). One of these 8 patients was a CRT non-responder,
with the remainder being transvenous LV epicardial lead failures.
Further data in this regard will come with time-LV septal implants are
projected to increase in view of an improved safety profile of trans-
septal compared to large-bore aortic access, and historically, around
1 in 5 patients receivingWiSE-CRT have been conventional CRT non-
responders (Wijesuriya et al., 2022a). Much work is required before
this are progresses towards randomised trials-in the first instance

electroanatomical mapping data determining the ventricular
activation pattern of a WiSE-CRT septal implant will shed light on
questions such as whether His-Purkinje tissue is captured, and
whether this is electrically superior to LV endocardial pacing from
alternative sites.

Discussion

We now have several new and/or emerging CRT options which all
theoretically have the potential to treat non-responders to
conventional BiV epicardial CRT (Table 1). Whilst there have been
some positive outcomes reported from observational studies, these
have not been consistently replicated in larger trials. We believe that
there are several reasons for these inconsistencies.

The foremost issue is that conventional biventricular CRT is an
excellent treatment option for HF. In appropriately selected
candidates, response rates are 60%–70% (Young et al., 2003).
Observational studies tend to report at most a fairly mild
improvement in indices such as AHR29 44 in head-to-head
comparisons between novel CRT therapies and conventional CRT
in de novo patients. Because of relatively small projected impact on
measurable parameters, it will always be very difficult for the novel
therapies to demonstrate superiority compared to conventional CRT
in an unselected group of patients. In particular, there is generally
attenuation of effect size in larger clinical trials compared to
observational studies. In small single-centre trials, there may be a
degree of recruitment bias, possibly by avoiding subjects with
unfavourable CRT characteristics such as atrial fibrillation or right
bundle branch block. The influence of bias is less likely to be
prominent in larger multicentre studies. As such, therapies which
initially sound promising, such as AV/VV optimisation (Brabham and
Gold, 2013) and multipoint/multi-lead pacing (Elliott et al., 2022a)
have lost momentum due to negative results in clinical trials of
unselected patients. In actuality, their primary benefit could have
been demonstrated by specifically targeting a non-responder
population, where the potentially larger impact on measurable
parameters may be adequate to power randomised trials at a
reasonable sample size.

This brings us to the point of patient selection. Mechanistic studies
have generally shown that there is significant variability in the optimal
pacing site between individuals (Shetty et al., 2014; Sohal et al., 2014;
Behar et al., 2016). This may be due to factors such as scar location,
phenotype of conduction disturbance and aetiology of heart failure.

TABLE 1 Summary of different pacing options for CRT non-responders.

Pacing option Evidence summary for CRT non-responders

AV/VV delay optimisation Small observational studies—conflicting data Jansen et al., 2006; Ellenbogen et al., 2010; Brabham and Gold, (2013); AlTurki et al., 2019

Multi-point pacing (MPP) MORE-CRT RCT—no benefit in MPP Leclercq et al., 2019

Multi-site pacing (MSP) Mechanistic studies—Acute haemodynamic benefit in of MSP in acute haemodynamic non-responders to conventional CRT. Ploux et al.,
2014; Sohal et al., 2015; Heckman et al., 2020 No larger studies as yet.

LV endocardial pacing Small observational studies—Lead-based and leadless endocardial pacing may achieve echocardiographic and clinical response in a
significant proportion of non-responders. (van Gelder et al., 2016; Sidhu et al., 2020 SOLVE-CRT study ongoing

Conduction system pacing Observational studies—HBP, LBP, HOT-CRT and LOT-CRT may give potential improvements in electrical resynchronisation obtained by
preserving intrinsic RV activation, yet to be demonstrated in a non-responder population. Vijayaraman et al., 2019; Vijayaraman et al.,
2022b; Jastrzębski et al., 2022; Toding Labi et al., 2022
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FIGURE 4
Schematic of the proximal conduction system, demonstrating the prevalence of each form of conduction disorder within the cohort (bold) and the
percentage of patients whose QRSd was corrected by HBP (italic). Reproduced from reference 68, Upadhyay et al., with permission.

TABLE 2 Variations in definition of CRT response across trials.

Study Definition of CRT response Intervention

Vijayaraman et al., 2022a CRT non-response was defined as improvement of LVEF <5% and either worsening or unchanged patient functional status LBBAP

Brown et al., 2022 Non-responders had an improvement in LV ejection fraction (LVEF) by <5%, and incomplete responders had an
improvement in LVEF by >5% with final LVEF <40% at least 3 months post-CRT

CRT optimisation

Naqvi et al., 2006 Symptoms of heart failure post-CRT CRT optimisation

Sepši et al., 2013 Patients who have developed increase in LVEF >5% and those who had improvement of NYHA class during follow up were
classified as responders. Patients who have developed drop in LVEF >5%

CRT optimisation

and have decreased the NYHA class during the follow up were classified as non-responders. All between were classified as
unchanged

Saba et al., 2022 Non-response defined as unchanged or worsened clinical composite score at 6 months post-CRT. Multi-site pacing

Leclercq et al., 2019 Response defined as <15% reduction in left ventricular end-systolic volume (LVESV) at 6 months post-CRT. Multisite pacing

Bordachar et al., 2018 Non-response defined as unchanged or worsened clinical composite score 6 months post-CRT. Multisite pacing

van Gelder et al., 2016 Non-response defined as remaining NYHA class 3 or 4 at least 6 months post-CRT. Endocardial pacing

Sidhu et al., 2020 Non-response defines as unchanged or worsening of symptoms or New York Heart Failure (NYHA) functional class after at
least 6 months post-CRT.

Leadless endocardial
pacing

Chun et al., 2020 Decrease in (LV) end-systolic volume > 15% on echocardiography 6 months after implantation Sacubitril-Valsartan

Giaimo et al., 2018 Non-response defined as previously treated with CRT for at least 6 months and remained classified as New York Heart
Association (NYHA) functional class III or IV despite optimal medical therapy; the echocardiographic assessment showed
lack of decrease of the left ventricular end-systolic volume (LVESV) of at least 10% and residual moderate-to-severe or
severe FMR.

Mitraclip
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(Ginks et al., 2012) For example, Upadhyay et al. (Upadhyay et al.,
2019b) demonstrated in a temporary pacing and electroanatomical
mapping study of 72 subjects with LBBB that whilst CSP overcame
proximal block in 64% of patients, 36% of their cohort displayed
“intact Purkinje activation” where conduction disturbance is caused
by more distal diffuse disease (Figure 4). In these patients, the QRS
duration was not corrected by HBP.

Lastly, CRT non-responders are a highly heterogenous group of
patients where failure of conventional CRTmay occur for a number of
reasons. There may be an optimal pacing site for each patient, but
currently, our pre-assessment procedures do not aim to identify this as
part of standard clinical practice. Whilst prediction of optimal pacing
sites has been demonstrated in a research setting (Duckett et al., 2011;
Sieniewicz et al., 2018; Sohal et al., 2021) making this operational in a
non-invasive, cost-effective manner will be more difficult. Further
work involving pre-procedural imaging such as MRI and CT to define
scar may yield positive results in this regard moving forward. Until
such time as this personalised treatment can be delivered, it seems
unlikely that any one alternative pacing modality will demonstrate
superiority over a successful treatment like conventional CRT in larger
clinical trials.

An additional issue in this field is difficulty in interpreting the
current evidence base due to the lack of a standardised definition of
CRT response. The most widely accepted definition involves an
assessment of left ventricular reverse remodelling 6 months after
implantation, with reductions in LV end-systolic volume (LVESV)
of greater than 15% being themost useful measure (Picard et al., 2012).
However, as shown in Table 2, studies examining CRT response use
varied definitions, including echocardiographic (LVESV or LVEF),
and clinical (NYHA class or clinical composite score). These
definitions capture a broad group of patients. The causes of
echocardiographic non-response are likely to be completely
different from the causes of clinical non-response. For example,
whilst sub-optimal LV lead position may lead to echocardiographic
non-response, prevalent issues in heart failure such as anaemia,
arrhythmia and sub-optimal medical therapy can lead to clinical
non-response in the absence of persistent mechanical dyssynchrony
(Sieniewicz et al., 2019). As such, the optimal second-line of treatment
for these individual patients is also likely to vary, thus providing
another cause of the lack of consistency in current studies.

Ultimately, determining the optimal second-line pacing
intervention in CRT will require well designed clinical trials
examining a standardised population of patients, with strict non-
response inclusion criteria. Whilst early studies including WiSE-CRT
(Sieniewicz et al., 2020), HOT-CRT (Vijayaraman et al., 2019) and LOT-
CRT (Jastrzębski et al., 2022) may give us cause for optimism, it is
important to avoid extrapolating these results from an unselected
population to non-responder groups. For example, no studies have
yet shown that the addition of CSP to conventional CRT non-
responders will improve outcomes. Indeed, the observational study
performed by the LBBAP collaborative study group (Vijayaraman
et al., 2022a) suggested that whilst rescue LBBAP was a good
alternative treatment for inability to place an epicardial lead via the
CS, the response rate of LBBAP in CRT non-responders was poor, with
a 30% rate of death or HF hospitalisation within 12 months. It may be
that a significant proportion of non-responders are not patients who are
receiving inadequate CRT, but rather patients who have an aggressive
HF phenotype combined with other co-morbidities, in whom
improvement will be challenging to achieve through novel pacing

therapies alone. Improvements in outcomes for CRT non-responders
have been demonstrated for therapies such as initiation of sacubitril-
valsartan (Chun et al., 2020) and transcatheter mitral valve intervention
for those with residual moderate/severe mitral regurgitation (Giaimo
et al., 2018). These studies highlight the importance of a holistic
approach to treating an unwell and high-risk HF population.

In summary, the heterogeneity of the dyssynchronous HF population
and the high success rates of empirical conventional CRT mean that
generating robust evidence for the optimal pacing alternatives for CRT
non-responders is extremely challenging. There is likely a significant
subgroup of CRT non-responders who have a superior alternative pacing
location, in particular those who have problems with conventional LV
lead implantation, or poor LV lead performance due to issues such as high
capture thresholds and phrenic nerve stimulation. The plethora of novel
therapies including endocardial and conduction system pacing may
enable physicians to deliver tailored CRT for individual patients.
Further study concentrating on patient selection will ultimately pave
the way for this form of precision medicine.
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