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Purpose: To quantify the impact of image noise on CT-based lung ventilation
biomarkers calculated using Jacobian determinant techniques.
Methods: Five mechanically ventilated swine were imaged on a multi-row CT
scanner with acquisition parameters of 120 kVp and 0.6 mm slice thickness in
static and 4-dimensional CT (4DCT) modes with respective pitches of 1 and 0.09.
A range of tube current time product (mAs) values were used to vary image dose.
On two dates, subjects received two 4DCTs: one with 10 mAs/rotation (low-
dose, high-noise) and one with CT simulation standard of care 100 mAs/rotation
(high-dose, low-noise). Additionally, 10 intermediate noise level breath-hold
(BHCT) scans were acquired with inspiratory and expiratory lung volumes.
Images were reconstructed with and without iterative reconstruction (IR) using
1 mm slice thickness. The Jacobian determinant of an estimated transformation
from a B-spline deformable image registration was used to create CT-ventilation
biomarkers estimating lung tissue expansion. 24 CT-ventilation maps were
generated per subject per scan date: four 4DCT ventilation maps (two noise
levels each with and without IR) and 20 BHCT ventilation maps (10 noise levels
each with and without IR). Biomarkers derived from reduced dose scans were
registered to the reference full dose scan for comparison. Evaluation metrics
were gamma pass rate (Γ) with 2 mm distance-to-agreement and 6% intensity
criterion, voxel-wise Spearman correlation (ρ) and Jacobian ratio coefficient of
variation (CoVJR).
Results: Comparing biomarkers derived from low (CTDIvol = 6.07 mGy) and
high (CTDIvol = 60.7 mGy) dose 4DCT scans, mean Γ, ρ and CoVJR values
were 93%±3%, 0.88±0.03 and 0.04±0.009, respectively. With IR applied,
those values were 93%±4%, 0.90±0.04 and 0.03±0.003. Similarly, comparisons
between BHCT-based biomarkers with variable dose (CTDIvol = 1.35–7.95 mGy)
hadmean Γ, ρ andCoVJR of 93%±4%, 0.97±0.02 and 0.03±0.006without IR and
93%±4%, 0.97±0.03 and 0.03±0.007 with IR. Applying IR did not significantly
change any metrics (p>0.05).
Discussion: This work demonstrated that CT-ventilation, calculated using
the Jacobian determinant of an estimated transformation from a B-spline
deformable image registration, is invariant to Hounsfield Unit (HU) variation
caused by image noise. This advantageous finding may be leveraged clinically
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with potential applications including dose reduction and/or acquiring repeated
low-dose acquisitions for improved ventilation characterization.
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1 Introduction

Functional lung biomarkers identify regional variation in
lung function, including ventilation and/or perfusion. Ventilation
biomarkers have been generated from several medical imaging
modalities, including computed tomography (CT) (Simon, 2000;
Guerrero et al., 2005; Reinhardt et al., 2008; Kipritidis et al., 2014;
Kipritidis et al., 2016; Eslick et al., 2018; Castillo et al., 2019;
Shao et al., 2020; Cazoulat et al., 2021). Several methods to derive
ventilation information from CT scans have been developed
using multiple image acquisition and post-processing techniques.
CT-ventilation biomarkers are commonly derived with patient
breathing maneuvers of breath-hold CT (BHCT) or free-breathing
through four-dimensional CT (4DCT) acquisition. The two
primary post-processing techniques that have been implemented
are calculating CT-ventilation directly from Hounsfield Units
(HU) (Kipritidis et al., 2016) or using the Jacobian determinant
of deformable image registration (Reinhardt et al., 2008; Shao et al.,
2020). The various methods for calculating regional ventilation
from CT scans have been previously reviewed in detail,
including descriptions of their uncertainties, validation results and
shortcomings (Vinogradskiy, 2019).

One application of ventilation biomarkers is in functional
avoidance radiation therapy (RT) in which dose distributions
are optimized to reduce dose to functioning lung. Currently
being investigated in multiple clinical trials [NCT0252894225
(Yamamoto et al., 2016), NCT0230870926 (Vinogradskiy et al.,
2015), NCT0284356827 (Bayouth, 2016)], the goal of functional
avoidance RT is to preserve post-RT lung function and mitigate
post-RT toxicities. CT-based ventilation biomarkers are particularly
advantageous for applications in RT sinceCT-simulation is routinely
acquired for RT treatment planning (Ettinger et al., 2012) and CT
has high spatial and temporal resolution. However, CT-ventilation
biomarkers have the disadvantage of associated radiation dose,
increasing risk to patients (Bagherzadeh et al., 2018). Since there
is a direct tradeoff between image dose and image noise in CT
imaging, generating biomarkers minimally impacted by image
noise would allow for potential dose reduction, broadening clinical
applications of the biomarkers. Understanding the relationship
between biomarkers and image noise is also critical for evaluating
their robustness.

For the purpose of evaluating the impact of image noise
on CT-ventilation biomarkers, mitigating the effect of other
contributing uncertainties is critical. Mechanically ventilated non-
human subjects offer a precisely controlled environment relative
to human patients, as demonstrated in previous work (Du et al.,
2012; Du et al., 2013; Mistry et al., 2013). Additionally, performing
CT imaging in non-human subjects allows greater latitude for
increased imaging dose from repeat imaging. Swine models share
similarities in genetics, anatomy and bodily function with humans

(Schomberg et al., 2016). The novel Wisconsin Miniature Swine
(WMS) breed was developed to model human physiology more
accurately than conventional breeds (Schomberg et al., 2016). With
similar weight and size to humans, WMS are an ideal model for
evaluating the relationship between image noise and derived CT-
ventilation values.The purpose of this work is to quantify the impact
of image noise on CT-ventilation biomarkers calculated using the
Jacobian determinant computed directly from the deformable image
registration transformation.

2 Materials and methods

2.1 CT imaging

All CT scanswere acquired on a Siemens SOMATOMDefinition
Edge CT scanner (Siemens Healthineers, Erlangen, Germany) at the
University of Wisconsin-Madison (UW-Madison, Madison, WI).
First, repeated CT acquisitions of a uniform phantomwere acquired
with varying image noise levels. Next, quantified image noise from
phantom imagingwas used to guide selection of relevant image noise
levels for acquiring CT scans in mechanically ventilated WMS.

For phantom and WMS scans, static (for BHCT) and 4DCT
scans were acquired with constant scan parameters currently use in
standard of care CT-simulation at UW-Madison.The corresponding
parameter values are 120 kV, 0.5 s tube rotation time, 76.8 mm
beam collimation and 128 detector rows. Image noise was varied by
changing only the tube current time product between acquisitions.
The tube current is measured in units of milliamps (mA) and
tube rotation time is measured in seconds (s), giving their product
units of mA×s or mAs. The tube current time product variable,
commonly referred to asmAs, has an inverse relationshipwith image
noise [defined by the standard deviation of Hounsfield Units (HU)],
denoted in Eq. 1, and is proportional to image dose (Eq. 2).

Noise∝ (mAs)−0.5 (1)

Dose∝mAs (2)

2.1.1 Uniform phantom scans
The uniformity region (Module CTP486) of a CATPHAN 504

phantom (ThePhantomLaboratory, Salem,NY)was imaged in static
and 4DCT acquisitionmodes. Figure 1 shows the phantom setup on
the CT table and an axial image of the uniformity region. Repeated
helical 4DCT scans with a pitch of 0.09 and static scans with a pitch
of 1 were acquired with mAs values ranging from 10 to 100 mAs
(corresponding to 20–200 mA with 0.5 s); 10 mAs is the minimum
mAs value the scanner allows when a 0.5 s rotation time is used
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FIGURE 1
The CATPHAN 504 imaged in this study is shown (A) setup on the CT table and (B) with an axial CT image of the uniformity region.

and 100 mAs is the current mAs value used in standard of care
CT-simulation 4DCT scans at UW-Madison.

2.1.2 Image noise calculation and mAs parameter
selection

In this work, image noise was calculated as the standard
deviation of HU in a centrally-placed circular region of interest
(ROI) in axial phantom images acquired with each mAs value.
All mAs and corresponding image noise values were fit to an
exponential using Microsoft Excel (Microsoft, Inc., Redmond,
WA) power-law curve-fitting to identify the relationship between
image noise and mAs values with constant scan parameters listed
previously for both static and 4DCT acquisitions. Equation 3 shows
the general relationship between image noise and 4DCT mAs
(mAs4D) with constants A4D and B4D. Similarly, the relationship
between BHCT image noise and mAs (mAsBH) is given in Eq. 4
(with constants ABH and BBH). Based on the theoretical relationship
between image noise and mAs (Eq. 1), exponential constants B4D
and BBH are unitless and expected to have numerical values near 0.5.
Since noise is expressed in units of HU, A4D and ABH have units of
HU ×√mAs.

Noise4DCT = A4D × (mAs4D)−B4D [units =HU] (3)

NoiseBHCT = ABH × (mAsBH)−BBH [units =HU] (4)

At UW-Madison, 4DCTs are currently used for CT-simulation
andCT-ventilation calculation.With a lowpitch of 0.09, 4DCT scans
are time-consuming to acquire and have high associated dose; these
aspects limited feasibility of acquiring several consecutive 4DCTs
with unique image noise levels. To address this challenge, 4DCTs
were acquired at two noise levels and BHCT scans were acquired
at multiple intermediate noise levels. With a pitch of 1, BHCT scans
require less dose and time than 4DCT acquisitions. Including BHCT
imaging has the added benefit of expanding applicability of the study,
since BHCT scans are commonly used forCT-ventilation calculation
and the further reduced dose broadens potential clinical uses.

To ensure clinically relevant image noise levels were selected for
BHCT imaging,mAsBH valueswith image noise at and above current
practice (mAs4D = 100 mAs/rotation) were chosen. Appropriate
mAsBH values were determined by setting Eqs 3, 4 equal to discern
mAsBH with an equivalent noise level tomAs4D, as listed in Eq. 5. For
WMS imaging, 4DCTs were acquired with reduced (10 mAs) and
standard of care (100 mAs)mAs values. BHCT imageswere acquired
at intermediate noise levels equivalent to 4DCTs with 15, 20, 25, 30,
35, 40, 60, 70, 80 and 100 mAs according to Eq. 5. Tighter sampling
was used at lower equivalent mAs values (15–40 mAs) since the low
noise region is the steepest portion of the exponential curve relating
image noise and mAs.

mAsBH = (
ABH

A4D
× (mAs4D)B4D)

1
BBH (5)

Beyond varying mAs values, application of iterative
reconstruction (IR) was used to evaluate the impact of image
noise; IR is commonly used for noise reduction. The commercially
available Siemens IR algorithm, SAFIRE, was applied with strength
three (out of possible strengths 1–5). All 4DCT and BHCT phantom
scans used for noise calculation were reconstructed with 512 mm
extended field of view (FOV), 1 mm slice thickness, a medium
smooth kernel (Br51f) and both with and without SAFIRE3 IR.

2.1.3 Image dose
Image dose for scans at each mAs level was quantified through

the CT dose index volume (CTDIvol) for the 32 cm phantom in units
of milligray (mGy). For the scan parameters used in this work, 10
and 100 mAs 4DCT scans had corresponding CTDIvol of 6.07 and
60.7 mGy, respectively. Therefore, 4DCT comparisons between 10
and 100 mAs scans represent differences for dose being reduced by
10 times from current standard of care. Since BHCT acquisitions
used a higher pitch, they had reduced dose compared to 4DCTs.
As stated in the previous section, BHCT mAs values were selected
to match image noise, not dose. BHCT CTDIvol values ranged from
1.3 to 7.9 mGy; hence, the lowest dose BHCT scans (1.3 mGy) were
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acquired with six times less dose than the highest dose BHCT scans
(7.9 mGy).

2.1.4 WMS scans
In order to evaluate how image noise affects CT-ventilation

biomarkers, CT scans were acquired in live WMS subjects.
Schomberg et al. (2016) has detailed the anatomical and
physiological similarities between this specific porcine breed and
human subjects, including strong respiratory system similarities.
For the present study, WMS in early adulthood were used with
weight and lung size matching that of human adults. Subject weights
ranged from 70 to 100 kg. Our group has previously used WMS
for pre-clinical studies (Wallat et al., 2021; Wuschner et al., 2021;
Wuschner et al., 2022a; Wuschner et al., 2022b).

Following phantom imaging, five WMS subjects were each
imaged on two separate scan dates with breathing precisely
controlled by mechanical ventilators and while under general
anesthesia, minimizing in-scan subject motion. The animal
study was reviewed and approved by the Institutional Animal
Care and Use Committee (IACUC). Supplementary Material
provides details of WMS subject management throughout the
imaging study; drug and anesthesia administration methods
were approved by the American Veterinary Medical Association
(AVMA).

For all subjects on each of the two scan dates, repeated 4DCT
and BHCT scans with different levels of image noise were acquired
of each subject. Two consecutive 4DCTs were acquired; the first
4DCT was acquired using 100 mAs and the second 4DCT was
acquired with 10 mAs, as shown in the top row of Figure 2. During
4DCT acquisitions, subjects were ventilated at 15 breaths perminute
(BPM) with a 1,000 cubic centimeter (cc) tidal volume (TV). The
Varian Real-Time Position Management (RPM) system (Varian
Medical Systems, Inc., Palo Alto, CA) was used to track subjects’
chest positions during 4DCT acquisitions. RPM respiratory traces
were used to reconstruct 4DCT image data into 10 breathing phases
classified by their inspiratory (IN) or expiratory (EX) percentage
(0EX, 20IN, 40IN, 60IN, 80IN, 100IN, 80EX, 60EX, 40EX, 20EX),
as previously described (Han et al., 2011).

BHCTs were also acquired on each scan date at 10 intermediate
mAs levels (ranging from equivalent noise to 15–100 mAs 4DCTs).
Coronal BHCT images acquired with highest (equivalent to
15 mAs4D) and lowest (equivalent to 100 mAs4D) noise levels are
shown in the bottom row of Figure 2. BHCT scans were acquired
at three distinct lung volumes: maximum expiration (MEBH),
maximum inspiration (MIBH) and 80% inspiration (80%Insp)
which are analogous to 4DCT 0EX, 100IN and 80IN, respectively.
The two different inspiratory volumes (80%Insp and MIBH) were
imaged to allow multiple TV options to facilitate equivalent TV
(ETV) matching since Jacobian ventilation values are volume
dependent (Du et al., 2013). For each of the three BH volumes,
the subject held constant pressure to maintain the volume while
alternating craniocaudal and caudocranial scans were acquired with
decreasing mAs values. This BHCT image acquisition method has
been previously described in detail (Flakus et al., 2020). Scans were
always acquired in order from highest to lowest dose. All scans were
reconstructed with the same parameters used for phantom scans,
including both with and without SAFIRE3 IR. Figure 3 shows an

example 10 mAs 4DCT reconstructed with and without IR applied
for noise reduction.

2.2 CT-ventilation calculation

CT-Ventilation maps were calculated using the Jacobian
determinant of the transformation between inhale and exhale
volumes to estimate local tissue expansion as a surrogate for
ventilation, as previously described (Reinhardt et al., 2008).
The Jacobian-based technique uses image registration between
inhale and exhale lung volume images to calculate tissue
expansion. Regions of high expansion indicate regions of
increased ventilation. Prior to calculating Jacobian values, a
deep-learning lung masking segmentation algorithm was used
to mask lung volumes (Hofmanninger et al., 2020). Next, all
BH and 4DCT breathing phase volumes were calculated from
the lung masks. TV were calculated as the difference between
inhale volumes and the end exhale volume (MEBH or 0EX)
and were used to select ETV between compared scans for effort
correction.

When a subject receives consecutive 4DCT scans, their TV may
differ, which affects derived CT-ventilation biomarkers. In order
to account for this volume effect, effort correction is implemented
by selecting inhale phases with the closest matching TV (also
referred to as equivalent TV—ETV) between compared scans. As an
example, if a subject receives two consecutive 4DCTs and has amuch
larger full inhale volume on the second scan, the overall TV (i.e.,
100IN-0EX) will not match between the two scans. By excluding the
full inhale volume of the second scan, the new TV (80IN-0EX) may
more closely match the TV of the first scan and be used for ensuing
calculation of CT-ventilation biomarkers. Selecting inhale volumes
to achieve ETV between scans accommodates for differences in
breathing effort that affect lung volumes; this method of effort
correction has previously been described in depth (Wallat et al.,
2020).

Du et al. (2013) has previously highlighted the importance of
effort correction when comparing volume-dependent Jacobian
values. Registration of expiratory and ETV-selected inspiratory
volumes was achieved using a B-spline deformable image
registration with a sum of squared tissue volume differences
(SSTVD) metric to account for lung density changes between
different volumes (Cao et al., 2012).

For BHCT acquisitions, the ETV-selected inspiratory image
(80%Insp or MIBH) was registered to the MEBH image.
The Jacobian determinant was calculated directly from the
corresponding transformation matrix. Each voxel-level Jacobian
value estimates local lung tissue expansion between exhale and
inhale BH volumes as a surrogate for ventilation.

For 4DCT acquisitions, the LER-N Jacobian-based ventilation
calculation method, initially introduced by Shao et al. (2020), was
used to generate ventilation maps. This method involves registering
multiple breathing phases included in the ETV to the full expiration
phase (0EX). Jacobian determinants are then calculated from all
the registrations and combined to determine maximal expansion
throughout the breathing cycle. Using image data from more than
two breathing phases in LER-N accounts for out-of-phase regions
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FIGURE 2
Coronal images of scans acquired at multiple dose levels are shown. The top row shows 4DCTs acquired with low dose (CTDIvol = 6.07 mGy) on the
left and high dose (CTDIvol = 60.7 mGy) on the right. Similarly, the bottom row shows 4DCTs acquired with low dose (CTDIvol = 1.3 mGy) on the left and
high dose (CTDIvol = 7.9 mGy) on the right. Qualitatively, the lower dose images in the left column show increased image noise relative to the high dose
images of the right column. All four displayed images were reconstructed without IR applied.

FIGURE 3
Coronal WMS images reconstructed without (left) and with (right) iterative reconstruction (IR) are shown. The image with IR applied demonstrates
noise reduction when compared to the image without IR. Both images were acquired with the same image acquisition technique (10 mAs 4DCT).

that do not expand and contract in conjunction with the global lung
volume. Previouswork has reported that 7.6% ofWMS subjects’ lung
volume is out-of-phase on average (Flakus et al., 2020).

Ventilation maps were generated from scans acquired at all
noise levels with and without IR applied. Therefore, 24 CT-
ventilation maps were generated per subject per scan date; four
4DCT ventilation maps included two image noise levels each with
and without IR and 20 BHCT ventilation maps included 10 image
noise levels each with and without IR.

2.3 Quantitative comparison

Comparison of CT-ventilation derived from scans acquired
with differing image noise levels was facilitated through deformable
image registration (Cao et al., 2012). For each subject, ventilation
maps were only compared between those with the same acquisition
type (BHCT or 4DCT) acquired on the same day. All reduced mAs
(increasednoise/decreased dose) scanswere registered to the highest
mAs (decreased noise/increased dose) scans in order to compare
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CT-ventilation maps in the reference frame of the higher mAs scan.
Acquisitions with and without IR were compared separately.

Similarity between CT-ventilation biomarkers with different
amounts of image noise was quantified using metrics of gamma
pass rate (Γ), Spearman correlation coefficient (ρ) and coefficient
of variation (CoVJR) of the Jacobian ratio (JR). Higher Γ and ρ
values correspond to better consistency between compared CT-
ventilation; on the contrary, lower CoVJR values correspond to
better consistency. Eqs 6, 8 define two of the three metrics for
comparing CT-ventilation values from high and low mAs Jacobians
J1 and J2, respectively. Γ, defined in Eq. 6 (Low et al., 1998), was
evaluated locally with 2 mm distance-to-agreement (DTA) and
6% Jacobian intensity (JI) criterion (C) as has been reported
previously in evaluation of CT-ventilation biomarkers (Wallat et al.,
2020; Flakus et al., 2020) because it is the standard deviation of
Jacobian values when evaluatedwith repeat scans in human subjects.
Spearman correlation was calculated at the voxel level and classified
as strong if ρ ≥ 0.8, following guidelines initially proposed by
Zou et al. (2003). Voxel-wise JR is defined in Eq. 7. CoVJR is then
calculated from the mean (μJR) and standard deviation (σJR) of JR,
shown in Eq. 8.

γ (x1) =min
x2

[[

[

√(
x2 − x1
CDTA
)
2
+(

J2 (x2) − J1 (x1)
CJI/100%× J1 (x1)

)
2]]

]

∀x2
{{{
{{{
{

passes if γ ≤ 1

fails if γ > 1
(6)

JR =
J2
J1

(7)

CoVJR =
σJR
μJR

(8)

Since Γ and CoVJR directly compare ventilation values, these
metrics are sensitive to significant TVdifferences between compared
scans. To best isolate the effect of image noise, any scans with TV
differences > 100 cc were excluded from Γ and CoVJR analysis;
this exclusion is consistent with previously reported findings
(Reinhardt et al., 2008) regarding volume matching between
compared ventilation maps. Since ρ only compares the CT-
ventilation magnitude and not direct values, no data was excluded
from Spearman correlation analysis.

3 Results

3.1 Image noise relationship to mAs

Based on image noise values calculated from uniform phantom
scans, the relationships between image noise and mAs for both
4DCT and BHCT acquisition types are given in Eqs 9, 10. Both fits
had R2 values greater than 0.99. Substituting numerical values for
constants A4D, B4D, ABH and BBH fromEqs 9, 10 intoEq. 5 yields
Eq. 11 with the numerical relationship between 4DCT and BHCT
mAs values that produce the same level of image noise. The right
side of Eq. 11 shows an order of magnitude estimate that using
approximately 60% of the mAs used in a 4DCT would lead to an
equivalent noise level for BHCT scans. This relationship between

TABLE 1 TenmAsBH used in this work are listed. mAsBH were selected using
Eq. 11 to find equivalent noise (with units of HU).

mAsBH Equivalent noise [HU] mAs4D

10 15

12 20

15 25

18 30

21 35

24 40

36 60

41 70

47 80

59 100

mAs4D andmAsBH is expected due to a nuance of 4DCT acquisition.
For the scanner used in this work, 4DCTs were reconstructed from
limited CT angle projections (180°+ fan angle) as opposed to the full
360° used for BHCT reconstructions (Rietzel et al., 2005; Han et al.,
2011). Since reduced projection angles leads to increased image
noise in CT (Gong et al., 2019) and 4DCTs were acquired with fewer
projections than BHCT scans, 4DCTs had higher noise levels than
BHCTswhen using the samemAs values.Therefore, to achieve equal
noise, BHCT scans needed lower mAs values than 4DCT scans. The
left side of Eq. 11 was used to calculate BHCT mAs values used to
image WMS.

Noise4DCT = 405.4× (mAs4D)−0.487 R2 > 0.99 (9)

NoiseBHCT = 325.5× (mAsBH)−0.497 R2 > 0.99 (10)

The 10 mAsBH values used in this work are listed in Table 1
along with mAs4D that produce images with the same image noise
level when evaluated in a uniform phantom. Noise levels (with
and without IR applied) for all scans acquired in WMS subjects
are shown in Figure 4. For 4DCT acquisitions without IR, highest
and lowest dose acquisitions had image noise values of 133 and 43
HU, respectively. This corresponds to a 209% image noise increase
between acquisitions. For BHCTs, highest and lowest noise values
were 103 and 43 HU, corresponding to a 142% increase in image
noise.

mAsBH = (0.8× (mAs4D)0.487)
1

0.497 ≈ 0.6×mAs4D (11)

3.2 Breathing parameter control

The impact of image noise was studied in mechanically
ventilated WMS in part for the ability to tightly control their
breathing parameters affecting ventilation. For 4DCT acquisition,
TV differences between scans acquired on the same day had mean
[range] values of 5± 3 [2 13] cc. The 4DCT breathing period had
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FIGURE 4
Noise levels of scans acquired in WMS.

average coefficient of variation of 0.010± 0.009where a smaller value
indicates better agreement. Figure 5 shows an example of breathing
traces between 10 and 100 mAs 4DCTs, demonstrating a highly
reproducible breathing pattern while on mechanical ventilation.

Breathing parameter control for BHCT scans was dictated by
how consistently subjects held pressure at a given volume. Figure 6
shows two examples of BHCT volume control: one with consistent
volumes across scans and a second showing volume drifting between
acquired scans. The volume drift shown on the right in Figure 6
demonstrates that while uncertainties associated with breathing
variability are reduced in WMS imaging, they are not completely
eliminated. These examples can be used to contextualize the effect
volume differences had on results. For scans on the left plot of
Figure 6 had an average gamma pass rate of 91.5% compared to
89.7% for the scans of the right plot. Specifically, scans with TV
differences < 100 cc had average Γ of 94.1% but scans with TV
differences > 100 cc had average Γ of 87.5%. Since scans were
always acquired in order of lowest to highest dose, any instances
of volume drift disproportionately affected low mAs CT-ventilation
comparison to full mAs values. Due to volume drift, BHCT TV
differences were larger than those of 4DCT with averages of 54± 32
cc (range: 1–99) when excluding scans with TV difference > 100 cc
and 72± 51 cc (range: 1–212) without exclusions.

3.3 4DCT robustness to image noise

For one subject on one scan date, all four CT-ventilation maps
generated from 4DCT are shown in the first two columns of
Figure 7. In these maps, Jacobian values (range 1–1.6) provide an
estimation of relative tissue expansion. Values > 1 indicates tissue
expansion, which is used as a surrogate for local ventilation in
this work. Although non-linear, a Jacobian value of 1.1 roughly
corresponds to 10% tissue expansion. Qualitatively, all ventilation
maps showed strong similarity, generally identifying the same lung
regions as being high or low ventilating. Gamma analysis comparing
reduced and standard of care mAs 4DCT biomarkers are shown
in the rightmost column of Figure 7. Blue-shaded regions passed
the analysis, while regions in warm colors (corresponding to γ > 1)

failed the analysis. Γmaps for comparisonswith andwithout IR show
spatial similarity. Without IR, 95% of the lung volume passed the Γ
analysis between low and high dose 4DCTs for this subject. With IR,
the pass rate improved to 96%.

For the same subject and scan date shown in Figure 7, visual
representations of voxel-wise ρ and CoVJR metrics between low and
high dose 4DCTs is shown in Figure 8. In the voxel-wise heat map
between high and low dose 4DCT Jacobians, voxels are clustered
around the y = x diagonal. This clustering shows that the majority
of voxels directly agree and many very closely agree. Similarly, the
voxel-wise Jacobian ratio (JR) distribution in Figure 8 has a mean
value of nearly one, which would indicate perfect agreement. JR
values primarily range from 0.9 to 1.1, indicating that most high and
low dose ventilation values agree within 10% at the voxel-level. The
JR distribution with IR applied is slightly tighter than without IR,
but did not meaningfully change the CoVJR value for the subject.

Average and standard deviation of Γ, ρ and CoVJR values
between 10 and 100 mAs 4DCT acquisitions are shown in Table 2.
The first column of data quantifies similarity when IR was not
applied. The second column lists values when comparing CT-
ventilation maps from images with IR applied. The listed p-values
in the final column are from two-sided student’s t-tests comparing
results with and without IR applied. IR did not make a significant
difference for any metric (p>0.05), indicating that noise reduction
through IR did not increase similarity between derived ventilation
maps.

3.4 BHCT robustness to image noise

Since BHCT scans were acquired with 10 different mAs values,
biomarker comparison entailed comparing nine reduced dose levels
(corresponding to 10–47 mAs) to the full dose level (corresponding
to 59 mAs).These comparisons weremade bothwith andwithout IR
applied. Figure 9 shows all ρ values for BHCT biomarkers between
full and reduced dose scans without IR as a function of percent
increase in image noise. As demonstrated in the plot, no clear
correlation was identified between increased image noise and the
Spearman correlation coefficient between full and reduced dose
BHCT biomarkers. Summary results combining all reduced dose
levels are given in Table 3. Similar to 4DCT results, IR application
did not significantly affect results (p>0.05). When comparing 4DCT
and BHCT results, Γ and CoVJR were not significantly different
(p>0.05) but ρ were (p<0.001).

4 Discussion

4.1 WMS model

To our knowledge, this is the first work reporting and
quantifying the impact of image noise on CT-ventilation
biomarkers. Similar lung size, weight and other physiological
attributes between WMS and humans increase the applicability of
the results toward clinical implementation. These commonalities
suggest that WMS CT-ventilation response to image noise is
representative of how CT-ventilation biomarkers derived in humans
will be affected. Unlike humans, imaging inWMS allowed reduction
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FIGURE 5
RPM breathing traces for consecutively acquired 4DCTs are shown.

FIGURE 6
BHCT volume control is shown through two examples. In panel (A), volumes remained relatively consistent across all ten scans of all three volumes. In
panel (B), clear volume drift is seen across scans. Scans were always acquired in decreasing 59–10 mAs order, so volume drift typically had a larger
impact on comparisons involving low mAs biomarkers.

of uncertainties like in-scan subject motion and erratic breathing
patterns. Figures 5, 6 visually demonstrate small breathing-related
uncertainties that remain when imaging WMS, but overall tight
control of parameters. WMS also better facilitated the investigation
of a wide range of image noise levels due to tolerance of increased
CT dose from consecutive scanning.

4.2 Robustness to image noise

Quantitative results presented in Tables 2, 3 show overall strong
agreement between full and reduced dose biomarkers. Without
IR, low and high noise 4DCT scans had corresponding noise
values of 43 and 133 HU. When comparing these biomarkers with
three times more noise, average Γ and ρ were 93% and 0.88. All
Spearman correlations satisfied ρ > 0.8, indicating strong agreement
as detailed by Zou et al. (2003) Our group previously reported

CT-ventilation repeatability in WMS with average Γ and ρ of
89% and 0.92, respectively (Flakus et al., 2020). Those repeatability
values compared consecutively acquired 100 mAs 4DCTs with no
parameter changes between scans. Of note, breathing parameters
affecting ventilation were more tightly controlled in the present
study than the previous repeatability study. In that work, 4DCT
breathing period CoV and TV differences were 0.004 and 25 cc
on average (Flakus et al., 2020), compared to 0.001 and 5 cc in
this work. Similar Γ and ρ values from the two studies indicate
that image noise is not a driving factor when comparing Jacobian
CT-ventilation biomarkers.

BHCT biomarker comparisons between different noise levels
also show similar levels of agreement between reduced dose
comparisons in the present study (average Γ = 93%, ρ = 0.97) and
repeatability comparisons in a previous study (average Γ = 83%,
ρ = 0.97) (Flakus et al., 2020). Increased Γ values in this study are
consistent with the improved TV control. BHCT scans were used
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FIGURE 7
For one subject on one scan date, Jacobian values for all four CT-ventilation maps (10 and 100 mAs with and without IR) are shown in the two leftmost
columns. On the right, gamma maps are shown for comparing the first two columns without (top) and with (bottom) IR applied. Blue-shaded voxels
passed the Γ analysis, which was 95%–96% of the lung volume in this example.

FIGURE 8
In panel (A) on the left shows, a heat map comparing low and high dose 4DCT Jacobian values for one subject on one scan date is shown. The
colorbar indicates the number of voxels in each Jacobian value bin. In panel (B) on the right shows, voxel-wise Jacobian ratios with and without IR are
shown. Mean and full width half maximum values are shown as dotted lines to highlight how CoVJR was calculated.

to evaluate several intermediate image noise levels; from Figure 9,
there is not a clear trendwith the amount of image noise increase and
the agreement between biomarkers. All Spearman values are labelled
as strong (ρ > 0.8) (Zou et al., 2003), with all but two values above 0.9
andmost values above 0.94.With noise levels ranging from 43 to 103
HU these results show the effect of increasing noise by up to almost
two and a half times.This consistency across nine image noise levels
further supports the finding that the Jacobian-basedmethod used in
this work is invariant to HU variations caused by image noise.

Theminimal impact of image noise on Jacobian values is further
validated by the results of comparing biomarkers with IR applied.
Although IR reduced image noise (Figure 3), its application did
not significantly change resultant quantitative metrics (Tables 2, 3).
Figure 7 also shows how closely biomarkers generated from scans

with and without IR agree spatially. Since increasing noise through
reducing themAs did not drastically reduce biomarker agreement, it
is consistent that decreasing noise by applying IR did not drastically
improve biomarker agreement. Maintaining consistent ventilation
values in the presence of increased image noise highlights overall
robustness of Jacobian-based CT-ventilation biomarkers.

4.3 Dose reduction

Since image noise and dose are inversely related, tolerance of
increased image noise indicates a potential for dose reduction. In
this work, biomarkers from standard of care 4DCTs were compared
to biomarkers from scans with 10 times less dose (60.7 vs. 6.07 mGy
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TABLE 2 Quantitativemetrics for similarity between ventilationmaps
derived for 4DCT scans with different noise levels are listed. Results with
and without IR are listed separately and were compared using a student’s
t-test and have p-values listed in the right most column.

Metric No iterative
reconstruction

Iterative
reconstruction

p-value

Γ 92.6%± 2.8% 93.4%± 4.1% 0.65

ρ 0.88± 0.03 0.90± 0.04 0.12

CoVJR 0.039± 0.009 0.034± 0.003 0.13

CTDIvol). For BHCTs, doses ranged from 1.3 to 7.9 mGy CTDIvol,
allowing for up to six times dose reduction between the highest
and lowest dose scans. 4DCTs require higher doses than BHCTs but
the value of 4DCT versus BHCT based ventilation is application
dependent. Whether acquiring 4DCT or BHCT scans, substantial
dose reduction can be realized without sacrificing CT-ventilation
quality when using the Jacobian determinant computed directly
from the deformable image registration transformation matrix.

4.4 Jacobian-based CT-ventilation

This work focused on a single CT-ventilation post-processing
technique, namely computing the Jacobian determinant directly
from deformable image registration transformation matrices
between inhale and exhale volumes. The robustness to image
noise presented here is an advantage of Jacobian-based biomarkers
specifically, and does not necessarily apply to other CT-ventilation
derivation methods. For example, the commonly used technique of
estimating ventilation directly from HU would likely become less
reproducible in the presence of increased HU variation.

As a common alternative to the Jacobian-based method
presented in this work, HU-based CT-ventilation calculation

TABLE 3 Summary quantitativemetrics comparing nine reduced dose
BHCT biomarkers to full dose biomarkers are given. IR application was
compared using a student’s t-test and did not show a significant difference
for anymetric (p>0.05).

Metric No iterative
reconstruction

Iterative
reconstruction

p-value

Γ 92.9%± 4.3% 92.8%± 4.4% 0.55

ρ 0.97± 0.02 0.97± 0.03 0.74

CoVJR 0.034± 0.007 0.033± 0.006 0.13

assumes that HU change between inspiratory and expiratory
images is solely due to the addition of air, changing the HU
value as air is inhaled throughout the breathing cycle. Regional
ventilation is calculated using the difference between voxel-wise
inhale and exhaleHUvalues (Kipritidis et al., 2016).Theuncertainty
in the CT-ventilation value for this method is therefore dependent
on the uncertainty of HU values. Based on the standard error
propagation formula, the variance of HU-based CT-ventilation is
directly proportional to the variance of HU values. Images with
increased noise have a larger HU standard deviation (and therefore
variance). Figure 4 shows the standard deviation of HU and how it
increases in high noise (and correspondingly low dose) scans.When
calculating CT-ventilation using establishedHUmethods, increased
image noise would then lead directly to increased uncertainty
of derived ventilation biomarkers. Based on the results of this
work, invariance to image noise is one advantage that Jacobian-
based biomarkers have over those that are directly HU-based. For
other CT-ventilation calculation methods beyond using Jacobian
determinant or HU-based methods, experiments would need to be
performed to quantify image noise dependence.

Since Jacobian-based CT-ventilation can be calculated from
4DCT and BHCT acquisitions, both were evaluated in this work.
Both acquisition methods showed similar quantitative agreement

FIGURE 9
All Spearman correlation coefficients between full and reduced dose BHCT biomarkers without IR are plotted. Points are plotted based on the
percentage increase in image noise of the reduced dose scan. Compared to 59 mAs, reduced dose scans of 10–47 mAs had increases in image noise
of 12%–142%.
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between high and low noise based biomarkers. From Tables 2, 3,
Γ and CoVJR agree and were not statistically different while ρ was
higher for BHCT than 4DCT biomarkers and showed a significant
difference. One of three metrics shows that BHCT biomarkers may
have stronger agreement in the presence of increased noise; however,
both acquisition types showed agreement on par with baseline
biomarker repeatability. Whether derived from 4DCT or BHCT
scans, Jacobian-based CT-ventilation is advantageously robust to
image noise.

4.5 Potential clinical applications

This work identified robustness to image noise as an advantage
of Jacobian-based CT-ventilation biomarkers; further consideration
is needed to determine how this advantage can be leveraged to be
clinically impactful. One way of utilizing this advantage would be to
reduce the necessary dose for deriving CT-ventilation biomarkers
by acquiring reduced mAs CT scans. In current CT-ventilation
uses, this dose reduction would mitigate patient risk associated
with CT imaging dose. Additionally, dose reduction may allow CT-
ventilation usage in more applications. As a viable low dose option
for providing spatial distribution of patients’ ventilation, they may
be valuable compared to standard of care pulmonary function tests
(PFTs); while PFTs have no associated dose, they are only a global
measure and have high variance. Diagnostically, spatial ventilation
information is relevant in evaluating conditions such as chronic
obstructive pulmonary disease (COPD) and emphysema.

For RT applications, reduced imaging dose is minimally
meaningful relative to doses delivered during RT. However, the
results presented in this work still have potential therapeutic
applications. For example, using CT-ventilation to quantify
radiation-induced lung damage is an active research area. Acquiring
repeated low dose 4DCTs may be advantageous for this application
since artifact-ridden 4DCTs often impede the ability to evaluate
ventilation changes in response to treatment and/or cause patients
to be excluded from clinical studies. Multiple low dose acquisitions
can also be valuable for improved characterization of ventilation
variance. Further consideration is needed to identify more clinical
situations inwhich the noise invariance advantage of Jacobian-based
biomarkers can be best leveraged.
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