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The renin–angiotensin system (RAS) plays a pivotal role in blood pressure
regulation. In some cases, this steering mechanism is affected by various
deleterious factors (mainly via the overactivation of the RAS) causing
cardiovascular damage, including coronary heart disease (CHD) that can
ultimately lead to chronic heart failure (CHF). This not only causes
cardiovascular disability and absenteeism from work but also imposes
significant healthcare costs globally. The incidence of cardiovascular diseases
has escalated exponentially over the years with the major outcome in the form of
CHD, stroke, and CHF. The involvement of the RAS in various diseases has been
extensively researched with significant limelight on CHD. The RAS may trigger a
cascade of events that lead to atherosclerotic mayhem, which causes CHD and
related aggravation by damaging the endothelial lining of blood vessels via various
inflammatory and oxidative stress pathways. Although there are various diagnostic
tests and treatments available in the market, there is a constant need for the
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development of procedures and therapeutic strategies that increase patient
compliance and reduce the associated side effects. This review highlights the
advances in the diagnostic and treatment domains for CHD, which would help in
subjugating the side effects caused by conventional therapy.
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renin–angiotensin system, coronary heart disease (CAD), oxidative stress, diagnostic
biomarkers, treatment of coronary heart disease

Introduction

Cardiovascular diseases (CVDs) are characterized by
multifaceted abnormalities represented by the inability of the
heart to pump sufficient blood to meet different biological/
biochemical and oxygen needs of the body at rest or during
exercise. The renin–angiotensin–aldosterone system (RAAS) plays
an important role in regulating the systolic and diastolic blood
pressure in the body, whereas its overactivity leads to a cascade of
deleterious changes in the cardiovascular and renal system and
causes endothelial dysfunction of the arterial blood vessels. Several
pathological conditions such as atherosclerosis, hypertension,
diabetes, severe anemia, and anti-cancer drug therapy culminate
in causing cardiac dysfunction leading to coronary heart disease
(CHD), chronic heart failure associated with pressure overload,
volume overload or myocardial infarction (MI), and ischemic
heart disease (Perazella and Setaro, 2003). The various clinical
signs of a failing heart include shortness of breath, lung
congestion, fluid retention, exercise intolerance, weakness, fatigue,
and peripheral edema, which are used for the diagnosis of heart
failure. It should be emphasized that a wide variety of mechanisms
are also associated with it (McIlvennan and Allen, 2016).

CVDs continue to remain the leading cause of morbidity and
mortality all over the world. A wide array of mechanisms are
associated with CVDs, such as atherosclerosis, hypertension,
valvular heart disease, coronary heart disease (CHD),
thrombogenesis, stroke, and chronic heart failure. The treatment
of CVDs imposes an excessive economic burden on the society and
healthcare systems globally (Thomas et al., 2018). The conventional
risk factors of CVDs consist of atherosclerosis, hypertension,
hyperlipidemia, hyperglycemia, and obesity. The lifestyle factors
including tobacco smoking, a sedentary lifestyle and lack of exercise,
unhealthy dietary habits, and a low socioeconomic status contribute
heavily to the development of obesity, diabetes mellitus, and CVDs
in children and adults. Sugar-loaded beverages and excessively salted
foods are also potential risk factors. Atherosclerosis and
atherosclerotic plaque formation, hypertension, obesity, and
diabetes are the main cardiovascular risk factors that are directly
correlated with unhealthy dietary practices and lifestyle (Francula-
Zaninovic and Nola, 2018). It is now recognized that the best cost-
effective methods for maintaining good cardiovascular health are
heart healthy diets and an active lifestyle. Scientific research has
established a strong link between antioxidant and anti-inflammation
food choices, exercise, and smoking cessation in the maintenance of
a healthy cardiovascular function (Yu et al., 2016). The early
diagnosis of atherosclerosis and CVDs with the help of different
diagnostic biomarkers assists in the prevention of CVDs, and
management with drugs, dietary interventions and plant-derived

therapies, regular exercise (30 min/day), and smoking cessation is
the main issue discussed in this review.

Different types of CVDs and risk factors involved in the
progression of CHD are depicted in Figure 1. The various risk
factors include genetics (Khera and Kathiresan, 2017), age
(Madhavan et al., 2018), gender (Davies and Rier, 2018), poor
dietary habits (Willett, 2012), environmental toxicants
(Bhatnagar, 2017), ethnicity (Gaziano et al., 2010), and pre-
existing co-morbidities.

Atherosclerosis and thrombosis in the coronary arteries are the
most frequent causes of ischemic heart disease. Atherosclerosis
involves the deposition of LDL-cholesterol, foam cells, and the
infiltration of macrophages and white blood cells in the
endothelium of arterial blood vessels. Atherosclerosis-induced
stiffness of coronary blood vessels leads to hypoxia and reduced
oxygen and nutrient supply to the myocardium. The progressive
narrowing and stiffening of the coronary arteries, subsequently,
provokes myocardial ischemia and the imbalance between the blood
supply and energy demand to the myocardium (King, 1959).
Epidemiological data collected from 1990 to 2017 showed that
over 126 million people died worldwide as a result of CHD-
related illnesses (Willett, 2012; Davies and Rier, 2018). If CHD is
not diagnosed and treated on time, it could develop into acute heart
failure (HF) or chronic heart failure (CHF), low cardiac output, and
complex conditions in the kidney and other vital organs of the body.

The role of the
renin–angiotensin–aldosterone system

The RAAS is a blood pressure regulatory system within the
cardiorenal unit, with direct action to the arterioles (arterial blood
pressure) and additional action to the adrenal cortex (vascular
volume + arterial blood pressure). The renin–angiotensin system
(RAS), as part of the RAAS without the effect of aldosterone, plays a
central regulatory mechanism, amongst others, of the extracellular
volume and cardiovascular system. Apart from the normal
physiological functions of the renin–angiotensin system (Wong,
2021), its overactivation leads to a cascade of inflammatory and
oxidative stress processes, as illustrated in Figure 2, both of which
contribute to cardiovascular diseases (Poznyak et al., 2021).

Furthermore, the inappropriate activation of the RAS has many
deleterious effects, such as the pro-atherogenic potential, endothelial
injury, insulin resistance, pro-thrombotic effect, and vascular
smooth muscle cell and monocyte proliferation. The RAS
promotes the progression of CHD by its interplay with
angiotensin-II, which acts on vascular cells via direct and indirect
mechanisms and on the upregulation of reactive oxygen species
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(ROS) and the concomitant downregulation of endothelial nitric
oxide (NO) (Sheppard and Schiffrin, 2013) (Husain et al., 2015).
Due to numerous drug-related adverse effects (Institute for Quality
and Efficiency in Health Care (IQWiG), 2017) and gut dysbiosis
(Weersma et al., 2020), the existing techniques for treating CHD
caused by a hyperactive RAS have considerable disadvantages. As a
result, novel, safe, and effective therapeutic pharmacotherapies
targeting the RAS and the discovery of molecular biomarkers to
detect the course of CHD in its early stages are required. Moreover, if
CHD has been diagnosed, its progression should be followed in
order to prevent and/or treat secondary HF. Here, the prevention
usually contains medication effective in the RAAS, e.g., ACEi, ARB,
or aldosterone antagonists, by which the development of CHF can be
delayed.

Diagnostic biomarkers

As the early detection of cardiovascular alterations offers a
greater chance to effective interventions, the diagnostics play a
crucial role in proper therapy. There are several diagnostic
techniques to discover threatening tendencies in physiological
parameters. One of them is a group of biological markers, whose
research is still a hot topic (Dhingra and Vasan, 2017) (Jacob and
Khan, 2018). Novel biomarkers for diagnosing CHD have
become essential in the wake of non-specific biomarkers
leading to delays in the exact diagnosis and subsequent
mishap in the correct treatment regimen. Notably, the early

diagnosis of CHD and its treatment provide a chance to prevent
HF. Therefore, newer and specific biomarkers need to be studied
for an early and accurate disease diagnosis. Along with the
specificity, these biomarkers should be reliable, reproducible,
and quantifiable. The upcoming biomarkers studied for CHD
have been listed as follows:

A. Fibroblast growth factor 23 (FGF23)—It is a protein that aids in
the metabolism of vitamin D and phosphate and sodium and
calcium reabsorption from the kidney (Erben, 2018). Recent
studies have co-related this protein with CHD. In a meta-
analysis of eight studies, including 16,702 patients conducted
by Zheng et al. points to a potential role of adverse
cardiovascular outcomes in CHD patients (Zheng et al.,
2022). A study by Hu et al. not only throws light on the
independent co-relation of FGF23 with CHD but also gives
an indication about the number of stenotic vessels proportional
to FGF23 serum levels (Hu et al., 2015), which is in line with the
studies of Xiao and collaborators (Xiao et al., 2013).
Furthermore, greater serum concentrations of FGF23 were
found to be linearly associated with the total atherosclerosis
burden (Mirza et al., 2009), heart failure, and also, an all-cause
mortality (Udell et al., 2014) (Parker et al., 2010).

B. Trimethylamine N-oxide (TMAO)—TMAO produced by the
gut microbiota in body has been directly co-related with
atherosclerotic heart disease (Wassenaar et al., 2021)
(Schiattarella et al., 2017) (Stubbs et al., 2016). It is known to
increase vascular inflammation by activating NF-κB (Seldin

FIGURE 1
Risk factors that can accelerate the development of coronary heart disease via the overactivated RAS.
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et al., 2016) and ROS–TXNIP–NLRP3 inflammasome (Sun et al.,
2016) signaling pathways. It causes reverse cholesterol transport
inhibition, variation in the bile acid, aggravates the inflammation
of fat tissues, and changes the macrophage characteristics by
downregulating the expression of the CYP7A1 enzyme necessary
for bile acid synthesis and cholesterol breakdown and for the
upregulation of the scavenger receptor A and CD36 (Liu et al.,
2019). All these processes together contribute to the formation of
foam cells (Geng et al., 2018).

C. MicroRNA (miRNA)—This small non-coding RNA regulates
gene expression by identifying a defective mRNA and causing its
downregulation when it is detected at the cell transcription level
(Jungers and Djuranovic, 2021). Many miRNAs have been
observed to have been modified during CHD, and miRNA-21
(Economou et al., 2015), miRNA-92a (Loyer et al., 2014),
miRNA-106a-5p (Hu et al., 2020), miRNA-451a (Wang et al.,
2021), miRNA-100 (Soeki et al., 2015), and miRNA-126 (Wang
et al., 2017) are just a few of the many known miRNAs whose
levels are disrupted during CHD.

D. Pentraxin 3 (PTX3)—Compared to the C-reactive protein, it is an
independent biomarker and is expressed early in the endothelial
vasculature inflammation making it a better and reliable biomarker
forCHD(Wang et al., 2014) (Chu et al., 2019). It has also been known
to increase the oxidation of LDL molecules, thereby causing
accumulation (Casula et al., 2017). It is also known to cause
oxidative insults to the endothelium by generating reactive oxygen
species (Zlibut et al., 2019). The Bruneck Study confirmed the role of

PTX3 in the late stages of atherosclerosis but not in acute phase
reactions (Knoflach et al., 2012).

E. Myeloperoxidase—It is synthesized by macrophages only after
there is an inflammatory insult and local cytokine activation in
conditions such as atherosclerotic CHD. This inflammatory
insult causes the increased transcription of the
myeloperoxidase gene (Kumar et al., 2004) (Nauseef, 2018).
Myeloperoxidase-containing macrophages were also found in
susceptible and ruptured atherosclerotic plaques (Sugiyama
et al., 2001). It destabilizes the plaque by the formation of
oxLDL, which through a cascade of events decreases NO
production and increases VCAM-1 recruitment via the
modified HDL, which together cause endothelial injury
(Ndrepepa, 2019).

Therapeutic options

The guidelines on coronary artery disease recommend disease-
specific combination therapies with the attention on concomitant
diseases such as hypertension, dyslipidemia, diabetes, and kidney
injury (Nakano et al., 2022) (Arnett et al., 2019). In case of
hypertension, RAS-inhibitors are the leading drugs.

Pharmacological agents
The inhibition of the overactivated RAS results in the lowering

of the blood pressure. Today, this is the most used group of

FIGURE 2
Renin–angiotensin system in the pathophysiology of coronary heart disease [overactivated renin–angiotensin system causes the activation of
various harmful signaling pathways of inflammation and/or oxidative stress, or the harmful lipid molecules cause endothelial dysfunction, which
exacerbates the process of coronary heart disease].
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antihypertensive products. The RAS-inhibition therapy can,
currently, be divided into four ways according to their
mechanism of action (Table 1). They are given in brief as follows:

i. The decrease of the renin release from the kidneys (e.g., beta-
blockers)

ii. The inhibition of the effect of renin on angiotensin-I production
(direct renin inhibitors, such as aliskiren)

iii. The inhibition of the effective angiotensin-II production from
the inactive angiotensin-I (angiotensin-converting enzyme
inhibitors (ACEis), such as enalapril)

iv. The inhibition of the binding of angiotensin-II to the
angiotensin-II receptor (angiotensin-II receptor antagonists
(ARBs), such as losartan)

In addition to RAS-inhibitors, neprilysin inhibitors that block
both the neprilysin (the zinc-metalloprotein enzyme that inhibits
the degradation of the three vasodilator natriuretic peptides) and
angiotensin-II breakdown are used alone or in combination with
RAS-inhibitors (ARNI = angiotensin receptor–neprilysin inhibitor,
e.g., omapatril as the non-registered single molecule and the more
successful sacubitril–valsartan as a registered combination). This
type of therapy reduces the blood pressure and heart failure
hospitalization (Sutanto et al., 2021).

Table 1 depicts the various adverse effects of synthetic
therapeutics; therefore, natural remedies are a topic of research
interest. Table 2 provides an insight into various natural therapies
that are, currently, under research as potential cardiovascular drugs
or drug adjuncts.

B. Dietary foods—The diet of people in everyday life is the biggest
source of medicine provided the correct food type and
optimum amounts are consumed. Therefore, exploring
healthy options is the need of the hour and designing a
nutrient rich diet is required to keep diseases at bay.

B1. Pomegranate—All the components such as seeds, flowers,
fruits, and leaves possess various pharmacological properties.
Pomegranate juice has been shown to reduce cellular oxidation
and increase paraoxonase 2 activities in the peritoneal

macrophage (Rosenblat et al., 2015). In the context of the
topic of review, the juice at a concentration of 100 mg/kg/day
and 300 mg/kg/day in Wistar rats was also found to inhibit ACE
rendering it non-active alongside the antioxidant activity to
counter the angiotensin-II activity (Mohan et al., 2010).The
dry skin extract also showed significant improvements in
endothelial dysfunction with the activation of the protein
kinase B/eNOS signaling and reducing vasculitis (Vilahur
et al., 2015). Another hydroethanolic extract of the peel
showed improvement in the plaque necrosis phase of CHD
along with improvements in harmful lipid parameters and
systemic inflammation (Manickam et al., 2022).
B2. Dark chocolate—Studies have shown the improvement of
endothelial dysfunction via the inhibition of LDL-cholesterol,
oxLDL, and triglycerides, while increasing the HDL-cholesterol.
It leads to a significant inhibition of ACE after 3 h of
consumption (Persson et al., 2011).
B3. Artichoke—A study by Lupattelli et al. showed the positive
effects of artichoke juice on imbalanced cholesterol levels and
humoral markers such as LDL, total cholesterol, VCAM-1, and
ICAM-1, respectively, which are the causal agents of endothelial
dysfunction (Lupattelli et al., 2004). In another study by
Küçükgergin et al., the artichoke leaf extract also provided the
same results as the artichoke juice along with good antioxidant
activities (Küçükgergin et al., 2009).
B4. Garlic—It reduces the total LDL, total cholesterol, and
triglyceride with an effect on HDL and creatine kinase; it
protects eNOS from being degraded by the protein kinase B
signaling pathway, thus protecting the endothelial lining from the
oxLDL insult. It also slows the progression of the necrotic plaque
area with foam cells (Knox and Gaster, 2007) (Lei et al., 2010)
(Sobenin et al., 2019). The aqueous extract showed reversed effects
on increased ACE levels, which might lead to the expression of the
protective angiotensin (Perazella and Setaro, 2003; McIlvennan and
Allen, 2016; Yu et al., 2016; Khera and Kathiresan, 2017; Francula-
Zaninovic and Nola, 2018; Madhavan et al., 2018; Thomas et al.,
2018) (Mahmoud et al., 2014).

C. Antioxidants—These molecules assist in trapping reactive
oxygen species and reducing the amount of free radicals in

TABLE 1 Synthetic drugs affecting the renin–angiotensin system and adverse effects caused by the prophylactic treatment leading to reduced patient compliance.

Type of
drug

Main effect Main adverse effect

Beta-blocker Inhibition of renin release Bradycardia

Decreases the sympathetic tone of CNS Increases LDL-C level and decreases HDL-C level

Reduces cardiac volume Rebounds hypertension

Ri Blocks the angiotensinogen (AG) receptor, which inhibits the angiotensin-I (AT-I)
conversion by blocking the binding of renin to AG

Persistent cough, hyperkalemia, severe hypotension,
angioedema, arthralgia, and diarrhea

ACEi Decreases the blood and tissue concentration of angiotensin-II by blocking angiotensin-1
for angiotensin-2 conversion

Cough due to the bradykinin and substance-P release;
contraindicated in pregnancy

ARB Selectively blocks angiotensin-2 receptors resulting in the inhibition of vasoconstriction Hyperkalemia

NEPi Blocks the decomposition of natriuretic peptides Angioedema and arrhythmia

RAS, renin–angiotensin system; CNS, central nervous system; LDL-C, low-density lipoprotein fraction of cholesterine; HDL-C, high-density lipoprotein fraction of cholesterine; Ri, renin

inhibitor; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin-II receptor blocker; NEPi, neprilysin inhibitor.
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TABLE 2 Natural products (dietary foods, phytotherapeutics, and antioxidants) as therapeutic strategies to target various inflammatory and oxidative stress parameters of coronary heart disease.

Category Name Major bioactive molecule Source

Dietary foods Pomegranate

Dark chocolate

Artichoke

Antioxidants Catechins

Black tea and green tea

Vitamin E

Almond

(Continued on following page)
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TABLE 2 (Continued) Natural products (dietary foods, phytotherapeutics, and antioxidants) as therapeutic strategies to target various inflammatory and oxidative stress parameters of coronary heart disease.

Category Name Major bioactive molecule Source

Alpha lipoic acid

Broccoli

Lycopene

Tomato

Phytotherapies Allicin

Garlic

Colchicine

Colchicum autumnale

Betalains

Beetroot

Resveratrol

Apple
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the body to protect macromolecules such as VLDL and LDL
from causing damage, thereby reducing endothelial
dysfunction. A lot of publications revealed a very close
correlation between oxidative stress and the RAS
overexpression (Fanelli and Zatz, 2011). The increase of
ROS levels and NADPH oxidase expression can be
prevented by the administration of, e.g., angiotensin-1
receptor antagonists. Thus, the role of the RAS in this
regard and the reason for attacking its pathways is clear.

C1. Catechins—Tea beverages have been consumed since ages.
Green tea catechins have been shown to decrease cholesterol and
triglyceride levels and increase fat excretion, which synergistically
downregulates the plaque formation (Khan and Mukhtar, 2013). It
also led to the AMPK pathway activation and the PKA-dependent
pathway, which led to the upregulation of fatty acid oxidation and
lipolysis, respectively (Chen et al., 2020). In addition to lipid levels, a
study by Tu et al. has been shown to decrease inflammatorymarkers
such as TNF-α, C-reactive protein, and IL-6 (Tu et al., 2018).
Additionally, black tea contains a very potent renin inhibitor
named theasinensin B (Li et al., 2013), and a thorough literature
search revealed no further testing of this compound in any particular
cardiovascular complications, thereby making it a potential
candidate for testing.
C2. Vitamin E—Vitamin E administered in combination with
vitamin C has shown to mitigate risk factors associated with
atherosclerotic progression. It has shown little effect on
endothelium-dependent vasodilation to improve blood flow in
obstructive CHD (Uzun et al., 2013). It prevented HDL
remodeling, improved antioxidant activity, and reduced the
total cholesterol, triglyceride, and TNF-α level (Contreras-
Duarte et al., 2018).
C3. Alpha lipoic acid (ALA)—It is a molecule causing the free
radicals to become inactivated, while the reduced form binds
ROS (Packer and Cadenas, 2011). This is highlighted by various
studies proving the antioxidant potential of this molecule by
decreased serum levels of malondialdehyde and increased
superoxide dismutase levels (Han et al., 2018). Additionally, it
is also proved to be a prospective hypolipidemic by reducing the
levels of triglycerides in the body (Agathos et al., 2018). It also
modulates the NF-κB signaling pathway (Gomes and Negrato,
2014), improves endothelial dysfunction (Wray et al., 2012), and
inhibits atherosclerotic plaque formation (Ying et al., 2010).
C4. Lycopene—It is suggested to prevent the formation of oxLDL
at the early stages, which might help in slowing the progression of
CHD (Pennathur et al., 2010) (Zuorro et al., 2013). It is a
powerful singlet oxygen quencher and downregulator of ROS
as proved in the studies by Liu and others using angiotensin-II as
the inducer (Liu et al., 2015). It is also known to inhibit TNF-
induced NF-κB activation (Prasad et al., 2014) and reduce
VCAM-1 and LDL concentrations (Sanajou et al., 2018).

D. Phytotherapies—The bioactive compounds from fruits,
vegetables, and medicinal and aromatic plants are the main
acting functional moieties that have led to extensive research to
exploit their therapeutic uses for different diseases.

D1. Allicin—It has been shown to decrease homocysteine levels,
which is an important risk factor for CHD. It also improves the
impaired endothelial function due to hyperhomocysteinemia and
decreases total cholesterol and triglyceride levels, which are under

tight control of the RAS (Esse et al., 2019) (Li et al., 2020) (Liu et al.,
2017). It also has been shown to have attenuated angiotensin-II
levels in a rat CKD model making it a useful treatment adjunct
(García-Trejo et al., 2016). A study by Oktaviono et al. showed that
allicin combined with vitamin C shows a dose dependent increase in
the migration of endothelial progenitor cells, which are responsible
in repairing the endothelial dysfunction caused by various stresses to
the membrane (Oktaviono et al., 2020) and the RAS (Amraei and
Rahimi, 2020).
D2. Colchicine—A rat model of atrial fibrillation revealed the
action of colchicine on renin inhibition, indicating its potential
use in CHD treatment (Yue et al., 2019). It has also been shown to
inhibit the NLRP3 inflammasome pathway, decrease
thromboxane A2, leukotriene B4, and cyclo-oxygenase
2 levels, and increase prostaglandin E2 production (Butt et al.,
2021). Colchicine is a potent antagonist of the RAS and has the
potential to become a new standard therapy for the prevention of
CHD (Yong et al., 2022). A meta-analysis by Abrantes et al. also
pointed toward the adverse gastrointestinal effects of daily
colchicine consumption in addition to the cardioprotective
effects (Abrantes et al., 2021), making it necessary to
administer the gastroprotective adjunct along with colchicine.
D3. Betalain—Betalain supplementation decreases the
concentration of the total cholesterol, triglyceride, and LDL-
cholesterol, which slows atherosclerotic plaque formation. As
angiotensin-2 induces plaque formation at an early stage, betalain
may antagonize this type of progression. It also reduces
intercellular and vascular cell adhesion molecules along with
interleukin 6, TNF-α, and endothelial-leukocyte adhesion
molecule 1 (Rahimi et al., 2019a) (Rahimi et al., 2019b). Even
with these findings, the exact effects of betalain (both betacyanin
and betaxanthin) need further mechanistic studies of the exact
effects on the RAS.
D4. Resveratrol—Mice studies have shown protective effects of
resveratrol by its various actions on RAS components such as the
increased eNOS and AT2R/Ang 1–7/MasR axis expression and
ACE2 levels with a simultaneous decrease in ACE, angiotensin-II,
and AT1R. Certain inflammatory and oxidative stress parameters
were suppressed (Jang et al., 2018). A plausible mechanism of its
protective action is that it is mediated by the antioxidant enzyme
heme oxygenase-1 and NO. It also inhibits cardiac cell death and
increases the production of the vascular endothelial growth factor.
Preclinical research suggests a large dose to avoid necrotic region
expansion and improve heart function. Clinical investigations have
shown that increasing adiponectin and inhibiting the thrombogenic
plasminogen activator inhibitor type 1 protects the heart (Pagliaro
et al., 2015) (Salehi et al., 2018) (Buttar et al., 2005).

Concluding remarks and future
strategies

The focus of this review was to evaluate the deleterious effects of
the overactive RAS on the cardiovascular system and how it
influences the occurrence of CHD and chronic heart failure when
underdiagnosed and left untreated. The conventional synthetic
therapeutics are known to cause adverse outcomes in long-term
prophylaxis leading to patient discomfort and reduced compliance.
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The discovery of cost-effective new therapies is driven by the need to
eliminate these adverse consequences associated with current
treatment options. More emphasis is being placed on naturally
derived remedies, which can help prevent undesirable side effects
in most cases. Such alternative treatments also relieve the medical
community of a significant amount of burden, provided they are
prescribed as a part of routine practice. As a result of these combined
benefits, the patient compliance improves. Therefore, exploring new
breakthrough therapies is mandatory to control the number of
mortalities and morbidities associated with cardiovascular
complications and prevent CHD to progress to fatal chronic
heart failure and negate the harmful effects of the RAS. This
review has tried to bridge some of the gaps associated with the
unawareness of natural remedies, which have been successfully
studied and can be used as alternatives to conventional therapies.

The results of epidemiological, experimental, and clinical studies
have unequivocally demonstrated the positive impact of physical
activity, antioxidant/anti-inflammation dietary interventions (e.g.,
intake of fresh fruits, vegetables, probiotics, fibrous foods, and
omega-3 polyunsaturated fatty acids), obesity and diabetes
reduction, and the cessation of cigarette smoking for improving
the cardiovascular health and prevention of CVDs. The prophylactic
measures must be dealt with collectively because there is
overwhelming evidence that the occurrence of CVDs can be
reduced by approximately 80% by making lifestyle modifications.
Furthermore, the preventive strategies against CVDs must be
targeted at the primary health promotion level before some of
the important underlying causes of CVDs seriously afflict a
person or a population at large. Such cost-effective preventive
approaches will help in reducing not only CVDs and employee
absenteeism but also the hospital and drug costs burdening
healthcare systems of both developed and developing countries.
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