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Cardiac magnetic resonance imaging (MRI) segmentation task refers to the
accurate segmentation of ventricle and myocardium, which is a prerequisite for
evaluating the soundness of cardiac function. With the development of deep
learning in medical imaging, more and more heart segmentation methods based
on deep learning have been proposed. Due to the fuzzy boundary and uneven
intensity distribution of cardiac MRI, some existing methods do not make full use of
multi-scale characteristic information and have the problem of ambiguity between
classes. In this paper, we propose a dilated convolution network with edge fusion
block and directional featuremaps for cardiacMRI segmentation. The network uses
feature fusion module to preserve boundary information, and adopts the direction
field module to obtain the feature maps to improve the original segmentation
features. Firstly, multi-scale feature information is obtained and fused through
dilated convolutional layers of different scales while downsampling. Secondly, in
the decoding stage, the edge fusion block integrates the edge features into the
side output of the encoder and concatenates them with the upsampled features.
Finally, the concatenated features utilize the direction field to improve the original
segmentation features and generate the final result. Our proposemethod conducts
comprehensive comparative experiments on the automated cardiac diagnosis
challenge (ACDC) and myocardial pathological segmentation (MyoPS) datasets.
The results show that the proposed cardiac MRI segmentation method has better
performance compared to other existing methods.

KEYWORDS

automatic segmentation method, cardiac MRI, dilated convolution, medical image
processing, deep learning

1 Introduction

Cardiovascular disease has been widely concerned by the medical community because
of its harmfulness Cai et al. (2015). With the development of cardiac imaging technology,
medical staff have been able to further study this disease. Among them, short-axis cardiac
magnetic resonance imaging (MRI) is adopted by medical staff due to its non-invasive
imaging characteristics, and is often used for the diagnosis of cardiovascular diseases
Ripley et al. (2016). In clinical cardiology, clinicians need to distinguish left ventricle (LV), right
ventricle (RV), and myocardium (MYO) from short-axis cardiac MRI. Manually identifying
the parts of the heart is time-consuming, tedious and susceptible to external influences.
Therefore, a great method that can automatically perform cardiac MRI segmentation task is
very necessary. It allows an inexperienced person to easily complete the segmentation job.
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In recent years, with the development of deep convolutional
networks (CNNs), many natural image segmentation (Cheng and
Li, 2021; Aganj and Fischl, 2021) and medical image segmentation
(Pang et al. 2021; Oksuz et al. 2020) methods have been proposed
in the field of computer vision and achieved great success. U-
Net Ronneberger et al. (2015) is one of the seminal works in
medical image segmentation task. It has been demonstrated that
segmentation of cardiac MRI with deep neural network is better
than other traditional computer vision andmachine learningmethods
Bernard et al. (2018). After U-Net was proposed, many works were
improved based on u-shaped network. Most of the best performing
ventricular segmentation algorithms can be roughly divided into 2D
methods and 3D methods. 2D methods take a single 2D slice as
input, while 3Dmethods utilize entire volumes.NnU-Net Isensee et al.
(2019) adopts two different fusion strategies of 2D and 3D to obtain
the best model. Subsequently, Ke et al. (2018) propose a method
that utilizes the optimal neighborhood size of each semantic class
to optimize the adversarial loss in various situations. Dangi et al.
(2019) propose a network that could predict the uncertainties
associated with semantic segmentation and pixel-level distance graph
regression, and the loss of the network is weighted by the reciprocal
of the corresponding uncertainties. Painchaud et al. (2019) propose
an adversarial variational autoencoder that can be adapted to any
heart segmentation method. The encoder can automatically bend an
inaccurate heart shape to a close but correct shape. Oksuz et al. (2020)
propose a network that could automatically correct motion-related
artifacts, and the network achieved good image quality and high
segmentation accuracy in the presence of synthetic motion. Yang et al.
(2021) propose a deep dilated block adversarial network, which uses
the properties of dilated convolution to acquire and connect multi-
scale features.

However, there is still room for improvement in existing methods.
The existing networks (Ronneberger et al., 2015; Cheng et al., 2020)
usually use ordinary convolutional networks. In this way, it is easy
to lose information or add too much information so that the
features can not be fully utilized. Some methods (Dangi et al., 2019;
Painchaud et al., 2019) do not take into account the fuzziness and
inhomogeneity of MRI artifacts, which can easily lead to the problem
of blurring between classes and unclear boundaries. In addition, some
models (Isensee et al., 2019; Zhou et al., 2021) require high memory
and computational costs, making their usefulness limited.

In order to solve the problem that feature information cannot
be fully utilized due to the loss of effective information or the
increase of invalid information, we propose a dilated convolutional
network with directional feature mapping inspired by Wang et al.
(2018); Cheng et al. (2020). The network is based on the U-Net
architecture, which we call DDFN. In DDFN, a dilated convolution
module processes the characteristics of each layer of input in the U-
Net encoder and decoder. The dilated convolution module consists
of three dilated convolution with different dilated rates. Note that
the dilated convolution module does not change the feature size. The
dilated convolution block can extract multi-scale features effectively,
and it is not easy to cause feature information loss. In the decoder, the
features of each layer are up-sampled to the size of the original image
and then concatenated to make full use of the feature information at
different stages. In addition, we propose an edge fusion block (EFB) to
preserve the image boundary. In the decoding phase, EFB integrates
the edge feature into the side output feature of the encoding layer.
Then it is concatenated with the upsampled features in the decoding

layer. Finally, we add a direction field module before the output layer
of U-Net. This module uses the learned direction field to improve
the original segmentation features and serves as the input to the
final output module to get the final segmentation result. Experimental
results show that our proposed model is more competitive than other
models.

The main contributions of this paper are as follows.

1) We propose a deep learning-based cardiac MRI segmentation
network. The network can effectively extract and utilize multi-scale
information, and is not easy to cause loss of feature information or
increase of useless information.

2) We propose an edge fusion block to integrate edge featuremaps into
U-Net. The purpose is to preserve more boundary information for
better cardiac MRI segmentation.

3) The network combines the direction field module to enhance the
differences between classes and the similarity within classes. This
module uses directional feature to improve the original network
features and generate the final segmentation results.

The rest of the article follows. Section 2 describes the related work.
In Section 3, we describe the proposed network structure in detail.The
experimental results are presented and analyzed in section 4. Finally,
the conclusion is drawn in Section 5 and future work is discussed.

2 Related work

In this section, we will outline the related efforts from three
aspects.

2.1 Development of medical image
segmentation

Since 2000, some researchers have been trying to use computers to
automatically divide different parts of the heart. Therefore, the cardiac
segmentationmethod based onmachine learning came into being. For
example, Codella et al. (2008) propose a semi-automatic segmentation
method to segment LV, which utilizes region growing to improve
performance. In order to overcome the influence of nipple muscle on
segmentation effect, Pluempitiwiriyawej et al. (2005) propose a new
stochastic active contour scheme. Zhang et al. (2020) propose a new
external gradient vector manifold flow over manifold. Subsequently,
some scholars propose to use prior probabilistic atlas to obtain more
efficient models Mitchell et al. (2001); Lorenzo-Valdés et al. (2004).
The model can achieve good performance under the premise of
sufficient prior knowledge. Machine learning methods have certain
shortcomings, such as the need for human assistance and the difficulty
of improving accuracy.

With the development of deep learning in the field of computer
vision, some scholars have proposed many automatic segmentation
methods based on deep learning. Shelhamer et al. (2016) propose
the full convolutional machine network (FCN), which has had a
profound impact on the task of semantic segmentation. For medical
image segmentation task, Ronneberger et al. (2015) propose U-Net.
U-Net is also a fully convolutional network, which solves the problem
of small amount of medical image data. It learns feature content
better by connecting features of the same size. Subsequently, for small
training sets, Ngo et al. (2017) propose to combine deep learning
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and level sets to solve the problem. Wang W. et al. (2019) use a
subdivision component and a regression component to solve the
problem caused by different ventricular heights in heart segmentation.
Uslu et al. (2022) propose a multi-task network to generate left atrial
segmentation image and edge mask simultaneously. The network
can segment edge pixels well. In the unsupervised field, Vesal et al.
(2021) propose a new multi-modal MRI segmentation model based
on unsupervised domain adaptation. This party can adapt network
characteristics between source target domains. Wu and Zhuang
(2021) designed two networks based on variational autoencoders
and regularized them to reduce the difference between segmentation
results and ground truth.

All the above methods are based on deep learning, which proves
that deep learning can further improve the segmentation performance.

2.2 Dilated convolution

Holschneider et al. (1990) first propose the concept of dilated
convolution and applied it to wavelet decomposition. Dilated
convolution is to insert different distances between the pixels of
the ordinary convolution kernel to enlarge the receptive field of the
convolution layer. Dilated convolution can effectively extract features
in deep learning without increasing the number of parameters. Yu
and Koltun (2015) propose to introduce dilated convolutions into the
model to aggregate feature information at multiple scales. Chen et al.
(2017) propose a spatial pyramid poolingmodule to obtainmulti-scale
feature information through dilated convolutions of different rates in
parallel. Dilated convolutions can also be applied to computer vision
fields such as object tracking Hsu and Chen (2022), audio generation
Oord et al. (2016), and image super-resolution Song et al. (2022).

2.3 Directional feature

In addition, some scholars try to improve the semantic
segmentation model by using directional information. Wang Y. et al.
(2019) propose a model that could learn image context information,
which can explicitly encode the relative positions of semantically
meaningful entities to better deal with large object portions. Xu et al.
(2019) propose a new text detector for irregular scene text detection,
which uses a full convolutional network to learn the direction field
from the nearest text boundary to each text point. However, semantic
segmentation methods for natural images often produce inaccurate
results for cardiac MRI segmentation tasks. Therefore, it cannot be
directly used in the field of cardiac MRI segmentation. Influenced by
Cheng et al. (2020), we use the directional information to improve
segmentation features to improve the performance of the model.

3 Proposed method

In this section, we will detail the structure of our model.

3.1 Network architecture

As shown in Figure 1, our proposed model follows the U-Net
model architecture.Themodel consists of an encoder, a decoder, EFBs

and a directional field module. First, in the decoder and encoder,
we replace the two consecutive 3 × 3 convolutional layers in the
original U-Net with a more efficient dilated convolutional module.
The purpose is to use dilated convolution to obtain larger receptive
field andmulti-scale feature information. In addition, we propose EFB
to preserve image boundaries. In the decoding stage, EFB embeds
the edge features into the downsampled features of the same size as
the upsampled features, and concatenates them with the upsampled
features. Second, the model upsamples the feature size of each layer of
the decoder to the same size as the original image size. They are then
concatenated and fused through a 1 × 1 convolutional layer. Final, the
fused features are used as the input of the directional field module.
The model uses the directional field to refine the fused features and
generate the final segmentation result. The output segmentation map
has four channels representing the probabilities of LV, RV, MYO and
background.

3.2 Dilated convolutional module

Blurred shadows are created during MRI acquisitions due to
the beating of the heart. To solve this problem effectively, we use
dilated convolution to obtain multi-scale features. This reduces the
impact of blurry shadows and increases prediction accuracy. Because
different receptive fields can obtain different scale features, multi-
scale features can reduce the error caused by heart beating. However,
if large convolution kernels are used to learn large-scale features,
the computational cost and number of parameters will increase
significantly. In limited data sets, this situation can easily lead to
overfitting. Therefore, by using dilated convolution, the acceptance
domain can be extended without adding too many parameters
and computing costs. Therefore, we ended up choosing dilated
convolutions. The definition of dilated convolution is as follows:

D (p) = ∑
s+lt=p

F (s)k (t) , (1)

where F:ℤ2→ℝ represents the input of the dilated convolution. The
convolution kernel of size (2r+ 1)2 is represented by Ωr = [−r, r]2 ∩ℤ2

and k:Ωr→ℝ.D(⋅) represents the output of the convolution operation,
where l represents the dilation rate, s is the stride, and p is an element
of D(⋅).

Figure 2 is a schematic diagram of 3 × 3 dilated convolutions
with different dilation rates. Their receptive fields are 3 × 3 and 7 ×
7, respectively. Note that a dilated convolution with a dilation rate of
one is equivalent to a normal convolution. Compared with the simple
stacked ordinary convolution, the dilated convolution can reduce the
number of convolutional layers while obtaining a larger receptive field.
Therefore, the model employs dilated convolutional blocks to extract
multi-scale features of cardiac MRI.

The structure of the dilated convolution module is shown in
Figure 3, which uses 3 × 3 convolution kernels with different dilation
rates for multi-scale feature extraction, and forms a parallel structure
with the double convolution layer of the original U-Net. The purpose
of the dilated convolution is to extract the multi-scale features of the
image. We set the rates to 1, 2, and 3, respectively. The resulting multi-
scale features are then concatenated and then passed through a 1 ×
1 convolutional layer for feature fusion. Compared with traditional
convolutional layers, dilated convolutions can use fewer parameters to
obtain a larger receptive field. This is very beneficial for data-limited
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FIGURE 1
Overall structure of the proposed DDFN model.

FIGURE 2
Schematic diagram of dilated convolution. The dark blue points represent the convolution kernel, and the light blue area is the receptive field.

FIGURE 3
The structure of the dilated convolution module.
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FIGURE 4
Schematic diagram of the receptive field of the dilated block. The
numbers in the grid represent the number of convolutions.

cardiac MRI segmentation tasks. The receptive field of the Dilated
block in Figure 3 is shown in Figure 4. The numbers in the grid
represent the number of convolutions.

As shown in Figure 1, the overall U-Net infrastructure is adopted.
We replace all double-layer 3 × 3 convolutions in the encoder and
decoder with dilated convolution blocks to extract and fuse multi-
scale features. And in the decoder, we upsample the features produced
by each layer to the original image size, then concatenate them and
perform feature fusion through a 1 × 1 convolution.The feature fusion
layer does not change the size of the input features, but takes the
concatenated features as the input of the 1 × 1 convolution block
to generate the fused features. After this step, the feature fusion is
completed, and the number of channels changes from 512 to 64.

3.3 Edge fusion block

We propose an edge fusion module to effectively utilize edge
features, as shown in Figure 1. First, we use the existing method
Zitnick and Dollár (2014) to extract the edge map and take it as one
of the inputs of DFB. Second, in the decoding stage, EFB embeds
the edge features into the downsampled features of the same size as
the upsampled features, and concatenates them with the upsampled
features. The DFB is a two-step process. First, the edge map passes
through four convolution layers of size 3× 3 to generate conditional
features. Second, in order to make better use of the edge features,
EFB outputs two independent branch features (γ,β) based on the
conditional features. We use (γ,β) to transform the feature Xec in
the encoding stage into a feature Xes with edge sensing capability as
follows:

EFB(Xes ∣ γ,β) = Xec ⊙ γ+ β, (2)

where ⊙ and + represent the element-wise product operation and
the element-wise addition operation, respectively. The EFB performs
spatial transformations as well as feature operations. As shown in
Figure 1, our model uses four EFBs to integrate edge features.

3.4 Directional field module

We use a direction field module composed of 1 × 1 convolution
to learn the direction field. Its input is the final output feature of the
model decoder, and the output is the direction field with channel
number of two. The background pixel of the direction field is (0, 0),
which is defined as follows:

F (a) =

{{{{{
{{{{{
{

ba→
|ba→|

a ∈ foreground

(0,0) otherwise.

, (3)

where a represents the foreground pixel, b represents the pixel where
a is located closest to the border of the cardiac tissue, and ba→ is the
direction vector between b and a, which we normalize by distance.

The direction field module provides a direction vector for each
pixel to point to the central region, which predicts the relationship
between pixels. After generating the direction field, the model uses
the generated direction field F ∈ ℝ2×H×W to improve the output feature
M0 ∈ ℝC×H×W to obtain the improved feature MN ∈ ℝC×H×W. The
features in the central region are error corrected forM0 ∈ ℝC×H×W, and
each pixel is updated iteratively. The operation is defined as follows:

∀a ∈Ω,Mk (p) =M(k−1) (ax + F(a)x,ay + F(a)y) , (4)

where Ω is the image domain, k represents the kth step, N is the
total number of iterations, and px and py represent the x and y
coordinates of pixel a, respectively. Subsequently, MN ∈ ℝC×H×W and
M0 ∈ ℝC×H×W are concatenated as the input of the final classifier to
generate segmentation results.

3.5 Loss function

The loss function involved in this method includes the
segmentation LiCE with U-Net as the architecture, the segmentation
L f
CE after the direction field, and the direction field module LF . The

segmentation model based on U-Net uses cross-entropy LCE as the
segmentation loss. LCE is defined as follows

LCE = −∑
i
pi log2 (qi) , (5)

where pi is the ground truth and qi is the predicted value. Then the
model selects L2-norm distance and angle distance as the loss for
direction field learning

LF = ∑
a∈Ω

w (a) (‖F (a) − F̂ (a)‖2

+α× ‖cos−1⟨F (a) , F̂ (a)⟩‖2) , (6)

where F and F̂ are the ground truth and the corresponding predicted
direction field respectively. The hyperparameter α is set to one to
balance L2-norm distance and angular distance. The weight on pixel
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FIGURE 5
Overall structure of the proposed DDFN model.

a is represented by w(a), which is defined as

w (a) =

{{{{{{
{{{{{{
{

∑Ncls

i=1
|Ci|

Ncls ⋅ |Ci|
a ∈ Ci

1 otherwise

, (7)

where |Ci| is the total number of pixels with label i, and Ncls is the
number of classes. The total loss Lall contains LCE and LF , where the
balance factor λ = one

Lall = L
i
CE + L

f
CE + λLF. (8)

The training loss of the model is shown in Figure 5. The loss function
value decreases significantly in the first 20 epochs and then becomes
slow. At the 60th epoch, the model’s loss cannot continue to decrease.

4 Experiment and analysis

In this section, we describe the processing of the dataset and the
experimental environment. Then, we conduct ablation experiments
to demonstrate the effectiveness of the model and analyze it. Finally,
we compare our method with other methods on ACDC and MyoPS
datasets.

4.1 Datasets

In this section, we introduce three different datasets: ACDC, MS-
CMRSeg, andMyoPS.Thedatasets are all derived fromchallenges, and
all data labels are done by experts in the relevant fields.

ACDC 2017: The ACDC dataset Bernard et al. (2018) contains
100 training images. These data included groups for normal cases,

heart failure with infarction, dilated cardiomyopathy, hypertrophic
cardiomyopathy, and right ventricular abnormalities. The dataset
provides LV, RV, and MYO labels.

MS-CMRSeg 2019:Multi-sequence cardiacmr segmentation (MS-
CMRSeg) Zhuang (2016); Zhuang (2018) dataset contains data of 45
cases. This dataset provides cardiac MRI images with three different
sequences: bSSFP, LGE and T2. The sFFPS MRI is an equilibrium
steady state free precession sequence. The LGE MRI is a T1-
weighted gradient echo sequence. The T2 MRI is a T2-weighted, black
blood spectral presaturation attenuated inversion-recovery (SPAIR)
sequence. The dataset provides LV, RV, and MYO labels.

MyoPS 2020: The myocardial pathological segmentation (MyoPS)
Zhuang (2016); Zhuang (2018) dataset provides 25 labelled MRI data.
MyoPS is similar to theMS-CMRSeg dataset in that it provides cardiac
MRI images with three different sequences. This dataset includes left
ventricular blood pool, left ventricular blood pool, left ventricular
normal myocardium, left ventricular myocardial edema, and left
ventricular myocardial scar.

We use the ACDC dataset as the model training dataset and part
of it as the test set. Due to the similarity and small size of MS-CMRSeg
and MyoPS datasets, we take MS-CMRSeg as the training set and
MyoPS as the test set. Since only LV, RV, and Myo were labeled in the
MS-CMRSeg dataset, myocardial scarring and myocardial edema in
the MyoPS dataset were included in the MYO classification. For the
ACDC dataset, we use one-fifth of the training images as validation
images and perform experiments with 5-fold cross-validation. In the
validation set, we use the dice coefficient and hausdorff distance (HD)
to evaluate the model. The formula of the Dice and HD evaluation
index is as follows

Dice =
2 |R∩RG|
|R| + |RG|

, (9)

where, RG represents the ground truth and R represents the
segmentation result. The formula of the HD evaluation index is as
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TABLE 1 Hyper-parameter setting of themodel.

Hyper-parameter —

Input size 256

Batch_size 8

Max_epoch 300

Early_stop_epoch 15

Initial learning rate 0.0001

Decay of learning rate 0.00001

follows

HD =MAX(MAXX⊂OR
MINX⊂OG

d (x,y) ,

MAXX⊂OG
MINX⊂OR

d (x,y)) , (10)

where, OR and OG represent the contour of segmentation result and
ground truth respectively, and d represents the Euclidean distance
between two points.

4.2 Implementation details

The thickness of slices in MRI is large, which easily leads to
insufficient connectivity information between slices Jang et al. (2017).
Therefore, the cardiacMRI was first converted into a two-dimensional
image through slices. Then, in order to make better use of the batch
processingmechanism, all imageswith awidth and height greater than
256 are cropped to 256× 256. For images less than this size, we fill them
with the minimum gray value of each image.

The proposed model is trained on Nvidia RTX3090Ti GPU. We
adopt Adam optimizer Kingma and Ba (2014) to assist training,
and the initial learning rate is set to 10−4. We set up an early stop
mechanism. Within 15 epochs, the evaluation dice index on the
validation set does not increase by more than 0.1%, then the training
is stopped, and the best model on the validation set is saved. HD can
assess the difference between two sets of points. The smaller the HD
value, the better the effect of the model.

The hyperparameter Settings of the model are shown in Table 1.
Where, max_epoch represents the maximum number of training
epochs, and early_stop_epoch represents the stop of training when
loss does not decrease during continuous training for 15 epochs.

4.3 The overall performance of the
proposed method

Table 2 and Figure 6 shows the performance of the proposed
cardiac MRI segmentation algorithm on the ACDC and MyoPS
datasets. As shown in Table 2, the average dice index and average
HD index of LV, RV and MYO all reach a relatively good standard.
In the ACDC dataset, the dice index of LV reaches 0.947, showing
good a performance of the model. For the three different parts of
the heart, the LV segmentation accuracy is the highest, while the
MYO segmentation accuracy is lower. This is due to the presence of
some diseases (such as myocardial infarction) in MYO, which cause
changes in its appearance, which in turn increases the difficulty of

segmentation. However, our proposed method still achieves a decent
accuracy. The MYO value in the average HD index is larger, and it is
speculated that the segmentation difficulty was increased due to the
low contrast of cardiac MRI and the large change in MYO size. For
the MyoPS dataset, the segmentation results are different due to the
different intensity distributions of three different sequences of MRI.
The intensity distribution of LGE sequence images is similar to that
of bSSFP sequence images, so the variation trend of experimental
results is the same. Among the segmentation results of these two
sequences, the LV segmentation task achieved the highest Dice score
and the lowest HD score. Among the segmentation results of T2-
SPAIR sequence, LV segmentation results obtained the highest Dice
score, but RV was relatively low.

4.4 Network structure analysis

In this section, we perform ablation experiments on the proposed
model for detailed analysis. Our model design is based on U-Net,
which is a popular network for medical image segmentation tasks.
Therefore, in the ablation experiments, we use U-Net as the baseline
comparison model.

4.4.1 Study on the dilated convolution module
The proposed model adopts a dilated convolution module to

expand the receptive field and obtain multi-scale feature information.
To demonstrate the effectiveness of the dilated convolution block, we
change the module to the U-Net initial double convolution module
and keep other configurations unchanged. It is then compared with
the original model. Table 3 shows the comparison results on the
ACDC dataset. As can be seen from the table, the performance of
the model after removing the dilated convolution block is significantly
degraded. Dice’s mean decreased from 0.918 to 0.900, while HD’s
mean increased from 9.892 to 10.494. This is because the dilated
convolution module can effectively expand the receptive field and
extract multi-scale feature information.

In addition, we also conduct ablation experiments for the effect
of different dilated rates on the experimental results. In the dilated
convolution module, we set the dilated rate to three groups of
{1,2,3}, {1,2,5}, {1,3,5} respectively for comparison.The experimental
results are shown inTable 4.The results show that themodel performs
the best when the dilated rate is set to (1, 2, 3). Therefore, we apply this
setting to our model.

4.4.2 Study on the multi-scale fusion module
To demonstrate the effectiveness of themulti-scale fusionmodule,

we remove the entire multi-scale module and keep other processing
steps unchanged. The experimental results on the ACDC dataset are
shown in Table 3. The Dice and HD values of the model using multi-
scalemodules have been improved.Therefore, the experimental results
can prove that multi-scale fusion module is beneficial to cardiac MRI
segmentation task. This is because the multi-scale fusion module can
fully utilize the features of each layer of the decoder.

4.4.3 Study on the edge fusion block
The role of the EFB is to use edge features for more accurate

segmentation of MRI. To demonstrate the effectiveness of the EFB, we
performed an ablation experiment on the EFB. The ablation results
of EFB are shown in Table 3. We deleted the EFB and kept the other

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphys.2023.1027076
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2023.1027076

TABLE 2 Overall performance of the proposedmethod.

Dataset Dice HD

LV RV MYO Mean LV RV MYO Mean

ACDC 0.947 0.908 0.899 0.918 8.314 10.281 11.014 9.892

MyoPS(bSSFP) 0.830 0.818 0.794 0.814 7.456 7.299 11.481 8.745

MyoPS(LGE) 0.849 0.803 0.831 0.827 6.991 6.915 11.248 8.384

MyoPS(T2-SPAIR) 0.861 0.708 0.817 0.793 6.501 8.824 10.672 8.665

FIGURE 6
In order to obtain better visual effects, the segmentation parts and evaluation indexes are displayed in the form of three-dimensional bar charts. Dice’s
score is on the left and HD’s score is on the right.

FIGURE 7
The variation of loss.
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TABLE 3 Dice/HD of our methods on ACDC dataset.

Methods Dice HD

LV MYO RV Mean LV MYO RV Mean

DDFN(Ours) — 0.947 0.899 0.908 0.918 8.314 11.014 10.281 9.892

DDFN w/o dilated convolution
module

0.932 0.881 0.889 0.900 8.914 11.881 10.712 10.494

DDFN w/o multi-scale feature
fusion

0.940 0.891 0.899 0.910 8.901 11.323 10.587 10.270

DDFN w/o direction field module 0.939 0.886 0.896 0.905 9.257 12.104 11.951 11.104

DDFN w/o edge fusion block 0.938 0.885 0.893 0.904 8.502 11.357 10.417 10.092

TABLE 4 Ablation experiments with different dilation rate settings.

Settings Dice

LV MYO RV Mean

(1, 2, 3) 0.947 0.899 0.908 0.918

(1, 2, 5) 0.942 0.883 0.890 0.905

(1, 3, 5) 0.939 0.890 0.889 0.906

procedures unchanged for comparison. As can be seen from the table,
both Dice and HD values have been improved. The results show that
themodule effectively uses edge features, which is conducive to cardiac
MRI segmentation.

4.4.4 Study on the direction field module
Our method utilizes the direction field module to learn a

direction field, which represents the direction relationship between
each pixel. Its function is to improve the segmentation feature map. To
demonstrate the effectiveness of this module, we analyze the impact
of the direction field module on the segmentation task. In ablation
experiments, we remove the direction field module of DFFN and
keep other settings unchanged. It can be seen from Table 2 that
the precision of the model decreases significantly after the direction
field module is removed. In particular, the average of HD increased
from 9.892 to 11.104. This proves that the direction field module
can effectively improve the output features and obtain better cardiac
segmentation results.

4.5 Comparison with existing methods

In this section, the proposed cardiac MRI segmentation method
is compared with other mainstream networks. Including U-Net
Ronneberger et al. (2015), U-Net++ Zhou et al. (2018), DeeplabV3+
Chen et al. (2018), Segnet Badrinarayanan et al. (2017), Distance Map
Regularized (DMR) Dangi et al. (2019) and SK-Unet Wang et al.
(2021). The above methods are encoder - decoder structure. U-Net
is a very classical model in medical image segmentation, while Segnet
is one of the earliest multi-pixel segmentation models. DeeplabV3+
is a conventional semantic segmentation method and has achieved
very good results in VOC2012 dataset. U-Net ++ is an improvement
on the basis of U-Net, which alleviates the unknown network depth

through effective integration of features of different depths. CE-Net
integrates dense convolution and residual structure into the model
to improve the segmentation performance. DMR is a distance graph
regularized image segmentation model. SK-Unet utilizes the selection
kernel module and residual module to improve the U-Net model.
This section compares the above methods with our proposed ones.
To be fair, the parameter settings are all the same as the proposed
method.

4.5.1 Experiments on ACDC dataset
Table 5 shows the comparison results of all methods on the ACDC

dataset. Experimental results show that comparedwith othermethods,
our proposed method has certain advantages and dice value has
been significantly improved. Among them, DeeplabV3+ performs
poorly, and it can be seen that it is not suitable for medical image
segmentation. As a baselinemodel, U-Net has better performance, but
there is still room for improvement. U-Net++ has achieved obvious
results after improving U-Net, and the Dice value has increased
from 0.912 to 0.928. DMR and SK-Unet are very effective as recent
cardiac segmentation methods. Compared with these methods, the
average dice value and average HD value of our method reached
0.918 and 9.892. Among them, the dice value of LV reached 0.947,
the RV reached 0.908, and the segmentation of MYO is difficult
due to heart disease, which is 0.899. Overall, our method achieves
competitive results for segmentation of various parts of the heart. This
is because our model can effectively extract and utilize multi-scale
information without causing the loss of feature information or the
increase of useless information. In addition, themodel retains the edge
information to make the results more accurate.

Figure 7 presents a visual comparison of the proposed cardiac
MRI segmentation method against other methods. We select the
segmentation results of three different slices for comparative display.
Among them, U-Net can accurately segment LV parts, but cannot
segment RV and MYO well. The remaining other models can segment
the three parts of the heart well, but there are still some shortcomings.
The segmentation results of DMR are prone to omissions, and SK-
Unet is prone to over-segmentation. Our segmentation result is the
closest to ground truth. However, for some very fine edge structures,
our method still falls short. With the deepening of the layer number of
convolutional network, the edge information is easy to be gradually
blurred. Briefly, the deep convoluted layer cannot obtain better
boundary information. Therefore, fine edges are not easy to recover.
These fine edge structures are difficult to segment manually even for
experienced experts.
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TABLE 5 Dice and HD of different segmentationmodels on ACDC dataset are compared quantitatively.

U-net DeeplabV3+ Segnet U-net++ DMR SK-unet Ours

Dice LV 0.912 0.824 0.919 0.928 0.929 0.932 0.947

RV 0.857 0.711 0.861 0.874 0.884 0.882 0.908

MYO 0.813 0.756 0.823 0.842 0.853 0.873 0.899

— Mean 0.861 0.764 0.868 0.881 0.888 0.895 0.918

HD LV 9.318 19.554 9.813 9.051 9.248 8.898 8.314

RV 11.899 24.158 12.015 11.459 11.548 10.945 10.281

MYO 14.176 27.456 14.991 13.546 14.354 12.458 11.014

— Mean 11.797 23.722 12.273 11.352 11.716 10.767 9.892

The values in bold are the best results.

TABLE 6 Dice and HD of different segmentationmodels onMyoPS dataset are compared quantitatively.

bSSFP MRI

— — U-net DeeplabV3+ Segnet U-net++ DMR SK-unet Ours

Dice LV 0.812 0.734 0.821 0.820 0.822 0.825 0.830

RV 0.797 0.691 0.792 0.809 0.811 0.814 0.818

MYO 0.783 0.695 0.806 0.789 0.790 0.791 0.794

HD LV 7.618 12.798 7.583 7.499 7.491 7.477 7.456

RV 7.576 13.186 7.491 7.545 7.557 7.348 7.299

MYO 11.971 20.854 11.815 11.713 11.706 11.648 11.481

LGE MRI

— — U-Net DeeplabV3+ Segnet U-Net++ DMR SK-Unet Ours

Dice LV 0.837 0.731 0.844 0.842 0.834 0.840 0.849

RV 0.764 0.679 0.772 0.778 0.769 0.792 0.803

MYO 0.807 0.697 0.818 0.831 0.827 0.829 0.831

HD LV 7.215 12.948 7.158 7.115 7.128 7.112 6.991

RV 7.954 13.485 7.758 7.147 7.168 7.135 6.915

MYO 12.015 19.942 11.849 11.428 11.489 11.408 11.248

T2-SPAIR MRI

— — U-Net DeeplabV3+ Segnet U-Net++ DMR SK-Unet Ours

Dice LV 0.848 0.795 0.850 0.853 0.852 0.857 0.861

RV 0.684 0.624 0.683 0.689 0.691 0.695 0.698

MYO 0.795 0.742 0.792 0.798 0.801 0.811 0.817

HD LV 6.518 10.548 6.517 6.521 6.517 6.510 6.501

RV 8.849 15.984 8.850 8.853 8.842 8.834 8.824

MYO 10.742 19.571 10.743 10.738 10.698 10.691 10.672

The values in bold are the best results.

4.5.2 Experiments on MyoPS dataset
Since the MyoPS dataset contains MRI with three different

sequences: bSSFP, LGE, and T2-SPAIR, we designed three sets
of comparative experiments to verify the effectiveness of the
model.

4.5.2.1 Comparison of results on bSSFP sequence MRI
Table 6 shows the experimental comparison results of ourmethod

and other methods on bSSFP sequence images. It can be seen that
compared with the classical U-Net method, our method improves the
RV segmentation accuracy by 2.11%. The segmentation accuracy was
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also improved in MYO and LV segmentation tasks. And compared
with other methods, our method can segment more accurately.

4.5.2.2 Comparison of results on LGE sequence MRI
The comparison results are shown in Table 6. The intensity

distribution of MRI of LGE sequence is similar to that of bSSFP
sequence, so the trend of MRI segmentation accuracy of the two
sequences is similar. Our method outperforms other methods on
cardiac MRI segmentation tasks. In addition, the proposed method
achieves the highest Dice score on LV, RV and MYO segmentation,
and the lowest Hausdorff distance score.

4.5.2.3 Comparison of results on T2-SPAIR sequence MRI
The intensity distribution of T2-SPAIR MRI was different from

that of the previous two sequences. Table 6 shows the experimental
results. It can be seen that all segmentation methods perform poorly
when segmentingRV.When segmenting lv, the segmentation accuracy
of the proposed method is slightly higher than that on the other two
sequences. For theMYO site, the proposedmethod performed well on
all three sequences of MRI. Similarly, in the MRI segmentation task of
T2-SPAIR sequence, our proposed method performs well.

5 Conclusion

This paper proposes a cardiacMRI segmentationmethod utilizing
multi-scale features and orientation fieldmodules.Thismethodmakes
full use of multi-scale features, and effectively improves the output
features through the directional fieldmodule, thereby obtaining better
segmentation accuracy. In addition, the model also uses edge features
to further improve the segmentation performance. Our limitation is
that with the deepening of the convolution layer, some small details
are easily lost and cannot be recovered. In the future work, we will try
to provide global context information for all the convolutional layers
in the decoder to preserve the more easily ignored details.
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