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Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a

multifactorial and heterogeneous disease characterized by amenorrhea,

decreased estrogen levels and increased female gonadotropin levels. The

incidence of POF is increasing annually, and POF has become one of the

main causes of infertility in women of childbearing age. The etiology and

pathogenesis of POF are complex and have not yet been clearly elucidated.

In addition to genetic factors, an increasing number of studies have revealed

that epigenetic changes play an important role in the occurrence and

development of POF. However, we found that very few papers have

summarized epigenetic variations in POF, and a systematic analysis of this

topic is therefore necessary. In this article, by reviewing and analyzing the most

relevant literature in this research field, we expound on the relationship

between DNA methylation, histone modification and non-coding RNA

expression and the development of POF. We also analyzed how

environmental factors affect POF through epigenetic modulation.

Additionally, we discuss potential epigenetic biomarkers and epigenetic

treatment targets for POF. We anticipate that our paper may provide new

therapeutic clues for improving ovarian function andmaintaining fertility in POF

patients.
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Introduction

Premature ovarian failure (POF) is a reproductive endocrine disease that occurs

before the age of 40 in women. POF is the main cause of female infertility and is

characterized by increased gonadotropin levels and decreased estrogen levels,

accompanied by primary or secondary amenorrhea. POF is highly heterogeneous, and

abnormal follicular development at all stages may lead to POF (Collins et al., 2017).

Approximately 1% of women under 40% and .1% of women under 30 are estimated to

suffer from POF (Coulam et al., 1986; Barbarino-Monnier 2000). POF has become a
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serious problem that affects the reproductive health of women of

reproductive age. The occurrence of POF may be related to

various factors, such as an insufficient primordial follicle pool

reserve, accelerated follicular atresia, changes in dominant follicle

recruitment, and follicular maturation disorders (Webber et al.,

2016). The etiology of POF is mostly idiopathic (approximately

80%), and the other causes of POF involve genetic factors,

iatrogenic diseases, autoimmune and endocrine diseases,

mitochondrial dysfunction, infection and environmental

factors (Vujovic 2009). Approximately 20%–25% of POF cases

are caused by genetic abnormalities (Qin et al., 2015). The genetic

factors conclusively discovered in POF patients to date include

autosomal and X chromosome abnormalities and variants in

POF candidate genes such as follicle-stimulating hormone

receptor (FSHR), newborn ovary homeobox gene (NOBOX),

forkhead box L2/O3 (FOXL2/FOX O 3), spermatogenesis- and

oogenesis-specific basic helix-loop-helix 1 (SOHLH1),

folliculogenesis-specific BHLH transcription factor (FIGLA),

growth differentiation factor 9 (GDF9) and bone

morphogenetic protein 15 (BMP15). In addition to these

causative genes, variations in epigenetic and epigenetic

regulators also add complexity to the etiology of POF. With

the assistance of new technologies represented by next-

generation sequencing (NGS), new causative genes, such as

non-coding RNAs, have been identified, and researchers have

proposed an epigenetic explanation for POF (Jiao et al., 2018).

Epigenetic modification is an indispensable part of cell

differentiation, development and activity maintenance

(Skvortsova et al., 2018). Epigenetic hallmarks, such as DNA

methylation, histone modification and non-coding RNA

FIGURE 1
Epigenetic modifications that are probably involved in POI includes DNA methylation, histone modification and non-coding RNA regulation.
Altered DNA methylation may lead to gene silencing, reduce gene transcription levels, remodel chromatin and regulate important developmental
processes. In POF patients, aberrant DNAmethylation may induce GC apoptosis, reduce follicles number and change hormone expression. Histone
modifications affect chromatin structure that are conducive to the expression or repression of target genes. Histone modifications may hinder
oocyte development and maturation and reduce oocyte number. Non-coding RNAs control gene expression by binding to DNA or RNA sequences
and proteins. In POF patients, the abnormal non-coding RNA expression may promote GC apoptosis and promote follicular atresia.
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regulation, may alter chromatin structure without changing the

DNA sequence, conferring a differential program of gene

expression (Lee et al., 2014) (Figure 1). Since the epigenome

of cells is highly plastic and reprogrammable, epigenetic

modifications may dynamically and reversibly control gene

expression. Epigenetic reprogramming can change cell fate

throughout the developmental phase and adulthood, and

epigenetic regulation is also an important molecular

mechanism by which organisms respond to external

environmental factors (Safi-Stibler and Gabory 2020).

Epigenetics are closely associated with many diseases,

including various developmental disorders, such as Beckwith-

Wiedemann, Silver-Russell and Fragile X syndromes (Inoue

et al., 2020; Nobile et al., 2021; Tüysüz et al., 2021), and

complex and multifactorial diseases, such as cancer, diabetes

and obesity (Nebbioso et al., 2018; Ling and Rönn 2019). An

increasing numbers of studies has revealed that epigenetic

changes are a universal phenomenon in the occurrence and

development of POF (Figure 2). In this article, we will provide

an overview of the epigenetic mechanism of POF and introduce

some potential epigenetic biomarkers and epigenetic treatment

targets for POF. Our aim is to provide new therapeutic clues for

improving ovarian function and preserving fertility in POF

patients.

Epigenetic mechanisms regulating
the occurrence and development OF
POF/POI

Epigenetic modifications play a crucial role in reproductive

aging (Chamani and Keefe 2019; Li et al., 2021a). Under

physiological conditions, epigenetic modification is

indispensable in the development of germ cells and early

embryos. Many studies have shown that abnormal epigenetic

modifications, such as changes in methylation levels, histone

modifications and non-coding RNA expression, occur in germ

cells in the aging process.

The effect of DNA methylation on germ
cell senescence

DNA methylation is one of the most typical epigenetic

modifications and participates in regulating many life

activities. Altered DNA methylation is a major epigenetic

marker of epigenetic reprogramming during germ cell aging,

which leads to gene silencing, reduces gene transcription levels,

remodels chromatin, and subsequently regulates important

developmental processes, including genomic imprinting and X

FIGURE 2
Epigenetics are closely associated with many diseases, such as developmental disorders (e.g., DNA methylation perturbations and loss-of-
function mutations of imprinted genes in Beckwith-Wiedemann, Silver-Russell and Fragile X syndromes), complex and multifactorial diseases (e.g.,
DNA methylation, histone modifications, microRNAs and nucleosome remodeling in cancers, diabetes and obesity) and degenerative disease (e.g.,
epigenetic modifications in Alzheimer’s disease and amyotrophy).
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chromosome inactivation (Das et al., 2009; Deaton and Bird

2011; Duncan et al., 2018; Marshall and Rivera 2018). Aberrant

DNA methylation is a classic feature of mammalian aging

(Bjornsson et al., 2008; Maegawa et al., 2010). Insufficiency of

follicles in the primordial follicle pool is associated with primary

POI, and epigenetic modification exerts a strong effect on

controlling programmed oocyte death during the

establishment of the primordial follicle pool (PF) (Sun et al.,

2017; Sun et al., 2018). Liu et al. found that the methylation levels

of GATCG sites in oocytes decreased from primary follicles to

secondary follicles, while the methylation levels of CCGG and

GATCG in ovarian granulosa cells (GCs) decreased significantly

from primary to secondary follicles and then increased in tertiary

follicles. Moreover, the authors observed marked demethylation

of CCGG sites in terminal deoxynucleotidyl transferase dUTP

nick-end labeling (TUNEL)-positive GCs, suggesting that failure

of the follicular stage-dependent increase in CCGG and GATCG

methylation may induce GC apoptosis and follicular atresia (Liu

et al., 2018b). In addition, Yu et al. conducted mRNA-Seq and

genome-wide DNA methylation studies in human ovarian GCs

and found that compared with young healthy donors, older

women with a natural age-related decline in ovarian function

showed lower gene expression (1,809 genes were downregulated)

that was correlated with higher gene body methylation and 3′-
end GC density (Yu et al., 2015). According to Marshall et al., the

expression level of the DNAmethyltransferase Dnmt1 in oocytes

increased in 69- to 70-week-old mice compared with 10- to 13-

week-old mice, and the DNA and histone H3K9me2 methylation

levels also increased (Marshall et al., 2018). However, Yue et al.

found that the DNA methylation level of metaphase II (MII)

oocytes in 35- to 40-week-old mice decreased compared with six-

to 8 week-old mice, and the expression levels of Dnmt1, Dnmt3a,

Dnmt3b, and Dnmt3L decreased (Yue et al., 2012).

Several genes associated with ovarian function are regulated

by epigenetics, and their epigenetic variations may lead to POF.

Anti-Mullerian hormone (AMH), a GC-rich gene, is a biomarker

for diminished ovarian reserve (Moolhuijsen and Visser 2020).

As shown in the study by Yu et al., AMH expression was

strikingly downregulated in the poor responder group, and a

partially methylated CpG island was identified close to its

transcriptional end site (TES) (Yu et al., 2015). Gao et al.

examined pigs and found that excess sodium fluoride (NaF)

increased the DNA methylation level and downregulated the

expression of the maternal imprinted gene NNAT (neuronatin),

which affects glucose transport by inhibiting the

phosphoinositide 3-kinase (PI3K)- AKT serine/threonine

kinase 2 (Akt2) signaling pathway. Suppression of NNAT

disrupts glucose metabolism in oocytes, hinders oocyte

maturation, affects follicular development and reduces ovarian

reserve (Gao et al., 2016; Liu et al., 2018c). Kordowitzki et al.

studied the DNA methylation-based biomarkers of aging

(epigenetic clocks) in bovine oocytes and blood to reveal the

epigenetic mechanisms underlying the effects of aging on the

female reproductive system, and they found that the rate of

epigenetic aging was slower in oocytes than in blood, but oocytes

appeared to begin aging at an older epigenetic age. Their findings

suggested that epigenetic clocks for oocytes are promising

markers to address questions of reproductive aging, including

methods to slow the aging of oocytes (Kordowitzki et al., 2021).

Guglielmino et al. observed significantly lower expression of

TAp73 (encoded by the P73 gene, which belongs to the P53

family) in the oocytes of women over 38 years old than in women

under 36 years old; they also indicated that the methylation level

of CpG sites in the P73 promoter decreased in aging mouse

oocytes, indicating that CpG hypomethylation may be involved

in oocyte senescence (Guglielmino et al., 2011). Qian et al.

measured the expression levels of 5-cytosine (5 mC) and ten-

eleven-translocation (Tet)/thymine DNA glycosylase (Tdg) in

mouse oocytes obtained under natural and accelerated aging

conditions, and they found that the levels of intermediates

produced by demethylation-modified cytosine (5mC, 5 hmC,

5 fC and 5caC) increased. Additionally, Tet expression levels

increased and Tdg expression levels decreased. Notably, genomic

DNA demethylation was more significant in chemically induced

senescent oocytes (Qian et al., 2015).

DNAmethylation also occurs at sites other than CpG, known

as non-CpG methylation or asymmetric methylation. Yu et al.

showed that human genomic CpG methylation is mostly stable

during oocyte maturation, but non-CpGmethylation increases in

local genomic regions and gradually accumulates (Yu et al.,

2017). This finding is consistent with conclusions drawn by

Tomizawa, who reported that the methylation of non-CpG

sites changes dynamically during the maturation of mouse

oocytes (Tomizawa et al., 2011).

Female X -chromosome inactivation (XCI) is an important

epigenetic mark and leads to differences in epigenetic marks on

the active and inactive X -chromosome (Boumil and Lee 2001).

The CpG island-containing promoters of genes subject to XCI

are approximately 50% methylated in females (Cotton et al.,

2011). XCI is a random process, and the number of cells

expressing maternal and paternal chromosomes is 50:50.

When XCI is not random, an imbalance of cells expressing

either the paternal or maternal X–chromosome occurs, which

is known as skewed X -chromosome inactivation (sXCI) (Liehr

et al., 2018). Studies have suggested that POF correlates with

sXCI. For example, Susana et al. suggested that sXCI and X

-chromosome deletion may induce abnormal expression of some

crucial ovarian development-associated genes and induce POF

(Ferreira et al., 2010). Sato et al. also implied that sXCI disrupts

the expression of genes involved in ovarian development (such as

bone morphogenetic protein 15 (BMP15), a member of the

transforming growth factor-β (TGF-β) superfamily that

regulates follicular survival/atresia and oocyte maturation),

which in turn causes ovarian dysfunction and subsequently

results in POF (Sato et al., 2004). sXCI is commonly observed

in diploid cell lines arising from trisomy rescue events
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(Peñaherrera et al., 2000). Oocytes may contain high levels of

trisomic cells, and these cells are more likely to suffer early

atresia, resulting in a reduced follicular pool size and the

occurrence of primary amenorrhea (Bretherick et al., 2007).

However, Silvia et al. analyzed 151 POF patients and found

that the distribution of sXCI in the POF population was similar to

that in the control population. They also suggested that small

deletions or mutations in X-linked genes do not appear to be a

common feature of POF patients and that X-linked genes

involved in POF may be too few or are unable to interfere

with XCI (Bione et al., 2006). Marian et al., Pu et al. and Sang

et al. also reported that sXCI may not be associated with POF

(Kline et al., 2006; Yoon et al., 2008; Pu et al., 2010; Spath et al.,

2010).

DNA methylation, one of the most classic epigenetic

regulation patterns, affects a variety of cellular behaviors by

regulating gene transcription. Numerous studies have widely

confirmed that DNA methylation contributes to various

diseases, particularly degenerative diseases. However, all the

literature we can find is focused on DNA methylation of germ

cells (Table 1), and the large-scale detection of DNA methylation

in the occurrence and development of POF and in-depth

systematic functional research of POF have not been conducted.

The effect of histone modifications on
germ cell senescence

Histone modifications are covalent posttranslational

epigenetic modifications that alter the chromatin structure

and subsequently regulate gene expression. Histones are

responsible for packing DNA into small structures called

nucleosomes within the nucleus. Histones are composed of

octamers with two copies each of H2A, H2B, H3 and

H4 encapsulating DNA and a linker histone (H1). Chemical

modifications of histone tails, such as acetylation, methylation,

phosphorylation and ubiquitination, alter the affinity of

chromatin for those transcription factors, thereby affecting

gene transcription and cellular phenotypes (Barth and Imhof

2010). Histone acetylation is a switch that allows interconversion

between permissive and repressive chromatin domains (Verdone

et al., 2005); histone methylation contributes to the regulation of

genome integrity, replication and accessibility (Li et al., 2021b);

histone phosphorylation and ubiquitination facilitate DNA

damage repair and maintain genome stability (Mattiroli and

Penengo 2021; Zhu et al., 2021); and errors in histone

posttranslational marks have been implicated in the

pathogenesis of human disorders (Eiras et al., 2022). Although

direct evidence that histone modifications are associated with

POI/POF is unavailable, we can obtain some proof showing how

histone modifications regulate mammalian oocyte meiosis,

growth, maturation and activation during the normal aging

process (Swain et al., 2007; Gu et al., 2010; Yang et al.,

2012a). For example, Bui et al. investigated the changes in

histone H3 in pig oocytes and found that it undergoes the

acetylation/deacetylation and phosphorylation/

dephosphorylation modifications during the growth,

maturation, and activation of pig oocytes. They also noted

that phosphorylation of histone H3 is a key event in oocyte

meiosis (Bui et al., 2007). The decreases in oocyte competence

with maternal aging is a major factor contributing to mammalian

infertility, and one of the factors contributing to this infertility is

changes in chromatin modifications. Shao et al. compared

H3K4 methylation (H3K4me1/2/3) in young (6–8 weeks old)

and older (42–44 weeks old) mouse oocytes and found that

H3K4me2/3 levels decreased in older germinal vesicles (GVs),

while H3K4me2 levels subsequently increased in older MII

oocytes. The authors also found that the expression level of

Kdm1a (the gene encoding the H3K4 demethylase lysine (K)-

specific demethylase 1A) was increased in older GV oocytes but

decreased in older MII oocytes, which was negatively correlated

with H3K4me2 levels. These epigenetic changes represent a

molecular mechanism underlying human infertility caused by

aging (Shao et al., 2015). Suo et al. studied acetylated H4K12

(acH4K12) levels in oocytes during mouse aging and evaluated

their effect on the developmental potential of oocytes. They

stated that the acH4K12 levels in oocytes were significantly

increased during mouse aging. When histone acetylation of

oocytes was artificially increased by trichostatin A (TSA)

treatment in young mice, a large number of oocytes failed to

form pronuclei or formed morphologically abnormal pronuclei

(Suo et al., 2010). Manosalva et al. reported that acH4K12 and

TABLE 1 Effects of DNA methylation on germ cells.

Genes Methylation level Effects on germ cells References

AMH Rise Promoting GC senescence and apoptosis Yu et al. (2015)

NNAT Rise Promoting oocyte senescence Liu et al. (2018c)

Dnmt1,Dnmt3a,Dnmt3b,Dnmt3L Rise Being involved in oocyte aging process Marshall et al. (2018)

DENND1A Rise Being involved in egg cell aging process Kordowitzki et al. (2021)

TAp73, P73 Decline Being involved in oocyte aging process Guglielmino et al. (2011)
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acH4K16 levels decreased in old GV oocytes, while

acH4K12 levels subsequently increased in old MII oocytes.

Additionally, the expression of cell division cycle gene 2a

(Cdc2a, a gene related to H4K12 acetylation) increased in old

oocytes with a non-surrounded nucleolus but decreased in old

MII oocytes. Correction of the histone deacetylation of old

oocytes at the GV stage restores young-like levels of

H4K12 acetylation and CDC2A protein at the MII stage.

These data provide evidence for the mechanism by which

histone modification affects aging-induced infertility

(Manosalva and González 2009). Similar conclusions were

reported in the studies by Akiyama et al., Zhang et al., van

den Berg et al. and Eslami et al., who suggested that histone

modification may affect the aging of germ cells (Akiyama et al.,

2006; Eslami et al., 2018; van den Berg et al., 2011; Zhang et al.,

2014).

Histone modifications mediate a variety of critical biological

processes through chromatin modifications that are conducive to

the expression or repression of target genes. Table 2 summarizes

the effects of histone modifications on germ cells. Unfortunately,

few studies have directly addressed the association of histone

modifications with POF. Additionally, the bulk of the literature

describing ovarian function has focused on the acetylation and

methylation of histones, but other modifications, such as

phosphorylation, ubiquitination, and lactylation, have received

little attention, although they are also crucial histone epigenetic

modifications.

Epigenetic enzymes involved in germ cell
senescence

Epigenetic-related enzymes directly regulate epigenetic-

based gene expression and therefore exert considerable effects

on the aging process and age-associated diseases. DNA

methyltransferases are a class of crucial epigenetic enzymes,

and include DNMT1, DNMT2, DNMT3A, DNMT3B,

DNMT3C and DNMT3L. DNMT1 maintains the methylation

of DNA that has been established in the genome, while DNMT3a

and DNMT3b are essential for de novo methylation (Finnegan

and Kovac 2000). Numerous studies have confirmed the role of

DNMT enzymes in transcriptional silencing through their ability

to methylate gene promoters and change chromatin states (Klose

and Bird 2006; Lyko 2018). However, recent studies found that

under certain circumstances, DNMTs may cooperate with

transcription factors to activate gene transcription (Rinaldi

et al., 2016; Yin et al., 2017). DNA methyltransferases are

essential for mammalian development and have been proven

to exhibit remarkable differences in spatial and temporal

expressional levels and subcellular localizations (Petrussa

et al., 2014; Uysal et al., 2017; Chen and Zhang 2020). Yu

et al. measured the expression of DNA methyltransferases

(Dnmt1/3a/3b/3L) in MII oocytes and found that Dnmt

protein levels in the old group were lower than those in the

young group, and the DNA methylation levels were also

decreased significantly during mouse aging, suggesting that

the decreased expression of DNA methyltransferases and the

change in genome-wide DNA methylation in oocytes may be

related to lower reproductive potential in old female mice (Yue

et al., 2012).

TET enzymes include TET1, TET2 and TET3, which regulate

DNA demethylation and transcription (Dai et al., 2016; Wu and

Zhang 2017). TET-mediated DNA demethylation occurs in

various biological contexts, including primordial germ cell

development, somatic cell reprogramming, embryonic stem

cell maintenance and tumorigenesis (Wu and Zhang 2017).

Studies have also revealed the involvement of TET and active

DNA demethylation in genomic instability and DNA damage

TABLE 2 Effects of histone modifications on germ cells.

Genes Expression
level

Histone modification Effects on germ cells References

Cbx1 Increase Decreased methylation levels of H3K36me2/
H3K79me2/H4K20me2

Interfering oocyte growth and maturation Manosalva and González
(2010)

Sirt1 Decrease Decreased methylation levels of H3K36me2/
H3K79me2/H4K20me2

Hindering oocyte development and maturation Manosalva and González
(2010)

Kdm1a Decrease/Increase Elevated methylation levels of H3K4me2/
Decreased methylation levels of 3K4me2 andme3

Being involved in MII oocyte egg senescence/GV
oocyte aging process

Shao et al. (2015)

BRCA1 Decrease Decreased methylation and acetylation levels of
H3K9

Hindering oocyte maturation Pan et al. (2008)

Cdc2a Decrease Increased acetylation level of H4K12/Decreased
acetylation level of H4K12 and H4K16

Being involved in MII/GV oocyte senescence
process

Manosalva and González
(2009)

Sirt2 Decrease Elevated acetylation level of H4K16 Affecting oocyte quality Zhang et al. (2014)

FMR1 Decrease Increased methylation levels H3K9ac and
H3K9me

Reducing the number of oocytes Eslami et al. (2018)
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repair (An et al., 2015; Georges et al., 2022). TET1 is necessary for

maintaining oocyte quality, oocyte number and the follicle

reserve. Tet1 deficiency promotes DNA demethylation in

primordial germ cells, leading to downregulation of meiotic

gene expression, which in turn leads to abnormal ovarian cell

meiosis and a reduced follicle reserve (Yamaguchi et al., 2012).

Liu et al. also found that mouse Tet1 deficiency downregulates

the expression of X -chromosome-linked genes, such as fragile X

messenger ribonucleoprotein 1 (Fmr1), substantially reducing the

follicle reserve of Tet1-deficient mice at a young age, and the

follicle reserve further decreases with age, a phenomenon

consistent with POF (Liu et al., 2021a). Wang et al. showed

that Tet2 deficiency increases the DNA methylation levels of

genes involved in oocyte meiosis, such asmeiotic double-stranded

break formation protein 1 (Mei1), cyclin B3 (Ccnb3), meiosis

specific with coiled-coil domain (Meioc), synaptonemal complex

protein 1/2 (Sycp1/Sycp2), mutS homolog 5 (Msh5),

RAD21 cohesin complex component like 1 (Rad21l) and PR

domain containing 9 (Prdm9), which significantly delays

meiotic progression, reduces oocyte quality and mouse

fertility, and thereby accelerates reproductive aging in adult

female mice (Wang et al., 2021a).

Primordial follicles (PFs) are the initial stage of follicle

development, and their number determines the length of the

female reproductive lifespan (Adhikari and Liu 2009). The

balance between the quiescent and activated states of PFs is

crucial to female fertility, and thus excessive activation may

deplete quiescent follicle reserves (Reddy et al., 2010). Histone

deacetylases (HDACs) include HDAC1, HDAC2, HDAC3,

SIRT1, HDAC6 and the lysine-specific demethylase 1 (LSD1).

Tighter wrapping of DNA around histones diminishes

accessibility for transcription factors and leads to

transcriptional repression. HDAC enzymes remove the acetyl

group from histones, resulting in a decrease in the space between

the nucleosome and the DNA (de Ruijter et al., 2003). HDACs

regulate PF maintenance, oocyte maturation, ovulation and early

embryonic development (Vaquero et al., 2007; Matoba et al.,

2014; Ma and Schultz 2016; Wang et al., 2019; He et al., 2020).

HDAC6 is expressed at high levels in germ cells and is involved in

maintaining primordial follicle dormancy in neonatal mice

(Verdel et al., 2000; Kawaguchi et al., 2003; Bertos et al., 2004;

Zhang et al., 2007; Aslan et al., 2013; Li et al., 2013). Zhang et al.

found that overexpression of HDAC6 in mouse embryonic stem

cells may reduce the level of H3K9me3, increase follicle numbers

(especially antral and secondary follicles) and prolong the

reproductive lifespan of mice (Zhang et al., 2017). Zhang et al.

support these conclusions and stated that HDAC6 may maintain

mouse primordial follicles in a dormant state by regulating the

mechanistic target of rapamycin (mTOR)- KIT ligand (KITL)

signaling pathway (Zhang et al., 2021). Conversely, low

expression of Hdac6 may diminish ovarian reserve. Sirtuin 1

(Sirt1, an NAD-dependent deacetylase) is upregulated during

mouse PF activation and activates the Akt/mTOR pathway,

suggesting that Sirt1 participates in maintaining PF quiescence

(Zhang et al., 2019c). According to He et al., specific disruption of

Lsd1 resulted in significantly increased autophagy through its

H3K4me2 demethylase activity and a decreased oocyte number

in perinatal mice, leading to the depletion of oocytes (He et al.,

2020). In contrast, some studies confirm that treatment with

HDAC inhibitors, such as TSA or butyrate, may promote steroid

hormone synthesis in GCs during follicular development by

differentially regulating gene expression (Xing et al., 2018; Ye

et al., 2021).

Epigenetic enzymes recognize, add and remove epigenetic

marks on DNA and histones. Changes in the structure and

activity of epigenetic enzymes significantly affect life

expectancy and are associated with aging-related structural

and functional declines and senile diseases (Prachayasittikul

et al., 2017). Over the past few years, epigenetic drugs, as

represented by inhibitors of DNMTs and HDACs, have

emerged and have been proven to potentially affect aging-

associated diseases and longevity (Pasyukova et al., 2021).

Unfortunately, none of these DNMT inhibitors have been

proven to prevent POF, and some of them may even impair

ovarian function (Table 3). Therefore, relevant research and

market development are urgently needed and promising.

Non-coding RNAs involved in the
occurrence and development of POF

Non-coding RNAs (ncRNAs) are epigenetic marks that

control gene expression by binding to DNA or RNA

sequences (at the transcriptional level) and proteins (at the

posttranscriptional level). The main types of ncRNAs are

microRNAs (miRNAs, ~20 nt in length) and long ncRNAs

(lncRNAs, >200 nt in length), which are involved in multiple

physiological and pathological processes (Esteller 2011; Lee and

Young 2013).

miRNAs and POF
MiRNAs play a pivotal role in mammalian follicular cell

physiology, ovarian function and oocyte maturation by

regulating the expression of fertility-related genes (Tesfaye

et al., 2018). Studies have suggested that miRNAs are

associated with multiple reproductive diseases, such as

infertility, polycystic ovary syndrome (PCOS), POF and

repeated implantation failure (RIF) (Mezzanzanica et al., 2011;

Kamalidehghan et al., 2020). However, the underlying

mechanisms remain unclear.

Many researchers have focused on how miRNAs modulate

POF occurrence and development. The most popular topic is

how miRNAs affect ovarian GCs. Follicular atresia removes most

follicles from the ovaries before ovulation and thus limits

mammalian follicle utilization. However, GC apoptosis is the

basic physical mechanism of follicular atresia. Currently, the
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broad consensus is that miRNAs participate in the regulation of

GC apoptosis. Zhang et al. compared the miRNA profiles of

different mammalian species and found that the let-7 family,

miR-23–27–24 cluster, miR-183–96–182 cluster, miR-17–92

cluster and their related pathways are involved in GC

apoptosis and follicular atresia (Zhang et al., 2019b). Liu et al.

observed the downregulation of miR-92a expression in atretic

porcine follicles, and miR-92a expression inhibited GC apoptosis

by targeting the Smad family member 7 (Smad7)-TGFβ pathway
(Liu et al., 2014). Yang et al. analyzed the miRNA-regulated

signaling pathways and related genes in POF patients by

performing Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses and found that

miR-23a was overexpressed in POF patients. They reported that

miR-23a may induce GC apoptosis by activating the X-linked

inhibitor of apoptosis protein (XIAP) and caspase-3 pathways

(Yang et al., 2012b). Chen et al. observed the significant

upregulation of miR-146a expression in GC cells from POF

patients, and miR-146a induced GC apoptosis by targeting

IRAK1 (interleukin-1 receptor-associated kinase) and TRAF6

(tumor necrosis factor receptor-associated factor 6) (Chen et al.,

2015). Zhang et al. reported significantly higher miR-181a

expression in blood from POF patients. They also suggested

that overexpression of miR-181a downregulates cyclin D2 and

inhibits mouse GC proliferation (Zhang et al., 2013). According

to Zhang et al. and Dang et al., the expression of miR-127-5p and

miR-379-5p in biochemical POI patients was significantly

upregulated. Overexpression of these two miRNAs may

inhibit mouse GC proliferation and attenuate DNA repair by

targeting high mobility group box 2 (Hmgb2), poly(ADP-ribose)

polymerase 1 (Parp1) and X-ray repair cross complementing 6

(Xrcc6) (Dang et al., 2018; Zhang et al., 2020). Other similar

studies investigating the correlation between miRNA variations,

gene regulation, GC apoptosis, folliculogenesis and POF

development are listed in Table 4.

The use of drugs is a negligible risk factor for POF. A clear

understanding of the molecular mechanism by which these drugs

induce POF is important for protecting the female reproductive

system in women of childbearing age (especially female cancer

patients). Multiple studies have revealed that miRNAs are

involved in drug-induced POF. For example, Liu et al. found

that cyclophosphamide may upregulate the expression of miR-

15b, silence endogenous α-Klotho (KL) and stimulate the

TGFβ1/Smad pathway, attenuating the autophagy of mouse

GCs, inducing GC apoptosis and reducing ovarian reserve

(Liu et al., 2019b). Wang et al. reported that cisplatin may

upregulate miR-125a-5p expression and induce mouse GC

apoptosis by inhibiting the expression of signal transducer

and activator of transcription 3 (Stat3) (Wang et al., 2016). As

shown in the study by Ai et al., triptolide induces the expression

of endogenous miR-15a and inhibits the Hippo-yes-associated

protein (Hippo-YAP)/TAZ pathway, leading to the cytotoxicity,

senescence and apoptosis of ovarian GCs (Ai et al., 2018).

Additionally, epigenetic therapy is a promising approach for

the treatment of cancers (Matthews et al., 2021; Xu et al., 2021;

Brown et al., 2022; Hoang and Landi 2022). Since DNA

methylation plays an important role in the formation of

primordial germ cells, epigenetic therapy, e.g., DNMT

inhibitor-based (such as decitabine) therapies, may hamper

oocyte differentiation and development and thus induce POI

(Yang et al., 2019). However, studies and experimental results in

this area are still lacking and needed.

LncRNAs and POF
LncRNAs function in various diseases (Yang et al., 2014).

Studies have found that lncRNAs may participate in the

development of POF, but the underlying mechanism remains

unclear.

Two mechanisms may explain the role of lncRNAs in POF.

One is the interactions between lncRNAs and miRNAs, which

may induce ovarian GC apoptosis. For example, Zheng et al.

found that in POF patients, the lncRNA deleted in lymphocytic

leukemia 1 (DLEU1) is upregulated and its overexpression

promotes GC apoptosis (Zheng et al., 2021). Zhang et al.

TABLE 3 Effects of epigenetic enzymes on germ cells.

Enzymes Variation or function of enzymes The effect of enzymes on germ cells References

Dnmt Dnmt1/Dnmt3a/Dnmt3b/Dnmt3L hypomethylation Promoting oocyte senescence Yue et al. (2012)

Tet1 Demethylating and downregulating the meiosis-related
genes such as FMR1

Decreasing the number of oocytes and reducing ovarian
reserve

Liu et al. (2021a)

Tet2 Elevating DNA methylation and downregulating the
meiosis-related genes in oocytes

Decreasing oocyte quality Wang et al. (2021a)

HDAC6 Increasing the acetylation level of H3K9me3/H3K9ac/H4K8,
upregulating the expression level of Bax, and
downregulating the expression level of GLUT3/GLUT8/
Bcl-xl

Depleting primordial follicles, reducing ovarian reserve,
promoting GCs apoptosis, and inhibiting production of
reproductive hormones such as estrogen

Zhang et al. (2017)

LSD1 Demethylating H3K4me2 and interfering transcription
of p62

Increasing autophagy level in oocyte, promoting oocyte
depletion and reducing ovarian reserve

He et al. (2020)
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observed a decreased expression level of translation regulatory

long non-coding RNA 1 (TRERNA1) in POF patients, and

TRERNA1 may sponge miR-23a and suppress GC apoptosis

(Zhang et al., 2022). Yu et al. found that the lncRNA

BBOX1 antisense RNA 1 (BBOX1-AS1) in GC was

unregulated in POF patients. BBOX1-AS1 may directly

TABLE 4 MiRNAs involved in POF.

miRNAs Expression
level

Target genes Regulation results References

miR-29a Decrease PLA2G4A Promoting follicular atresia Kuang et al. (2014)

miR-144 Decrease mTOR Promoting follicular atresia Kuang et al. (2014)

miR-27 b Increase PappA Inducing ovarian GC apoptosis Kamalidehghan et al. (2020)

miR-190 Increase PHLPP Activating primordial follicle pool and reducing ovarian reserve Kamalidehghan et al. (2020)

miR-151 Increase TNFSF10 Inducing ovarian GC apoptosis Kamalidehghan et al. (2020)

miR-672 Increase FNDC1 Inducing ovarian GC apoptosis Kamalidehghan et al. (2020)

miR-1275 Decrease CYP19A1/LRH-1 Promoting early apoptosis of porcine GCs and initiating follicular
atresia; Inhibiting E2 release

Liu et al. (2018a)

miR-361-5p Decrease VEGFA Promoting porcine GCs apoptosis Ma et al. (2020)

miR-26 b Decrease HAS2 Enhancing ovarian GC apoptosis Liu et al. (2016)

miR-22 Decrease SIRT1 Suppressing GC apoptosis Xiong et al. (2016)

miR-92a Decrease Smad7 Inducing ovarian GC apoptosis Liu et al. (2014)

miR-181a Decrease/Increase S1PR1/acvr2a Promoting follicular GC apoptosis/Suppressing mouse GC proliferation Zhang et al. (2019a); Zhang
et al. (2013)

miR-23a Increase XIAP/Caspase-3 Promoting human GC apoptosis Liu et al. (2019a); Yang et al.
(2012b)

miR-27a Increase Caspase/SMAD5 Promoting human GC apoptosis Liu et al. (2019a)

miR-379-5p Increase Parp1/Xrcc6 Inhibiting GC proliferation and attenuating DNA repair efficiency Dang et al. (2018)

miR-127-5p Increase Hmgb2 Impairing GCs function Zhang et al. (2020)

miR-146a Increase IRAK1/TRAF6 Promoting ovarian GC apoptosis Chen et al. (2015)

miR-155 Decrease MSH2 Downregulating cell cycle and DNA replication related genes in theca
cells

Donadeu et al. (2017)

miR-378 Decrease VEGFA Regulating steroidogenesis in GCs and promoting follicular atresia Donadeu et al. (2017)

miR-222 Decrease ETS1 Promoting angiogenesis in theca cells Donadeu et al. (2017)

miR-199a-5p Decrease HIF1A Inducing follicular GC apoptosis Donadeu et al. (2017)

let-7g Decrease TGFBR1 Inducing GC apoptosis and follicular atresia Zhou et al. (2015)

miR-22-3p Decrease FSH Inhibiting FSH levels and reducing estradiol synthesis Dang et al. (2015)

miR-21 Increase/Decrease SNHG7/Peli1 Inhibiting ovarian GC proliferation/Regulating the proportion of Tregs
and destroying ovarian tissue

Aldakheel et al. (2021); Li et al.
(2020b)

miR-
146aC>G

Decrease FOX O 3/FOXL2/
CCND2

Interfering follicle development Cho et al. (2017)

miR-
196a2T>C

Decrease DICER1, FAS,
NOBOX

Interfering folliculogenesis Rah et al. (2013)

miR-15 b Increase α-Klotho Kl Inducing ovarian GC apoptosis Liu et al. (2019b)

miR-125a-5p Increase Stat3 Inducing ovarian GC apoptosis Wang et al. (2016)

miR-15a Increase Last1 Inducing ovarian GC cytotoxicity, senescence and apoptosis Ai et al. (2018)
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interact with miR-146b, and overexpression of BBOX1-AS1 may

increase GC apoptosis in POF by sponging miR-146 b (Yu et al.,

2022). Yao et al. documented that non-coding RNA that was

highly expressed in atretic follicles (NORHA), which is related to

follicular atresia, induces GC apoptosis by inhibiting the activities

of the miR-183–96–182 cluster and FoxO1 axis (Yao et al., 2021).

The other mechanism is that some lncRNAs are involved in

regulating several critical proteins and signaling pathways. For

example, Xiong et al. indicated that cyclophosphamide induces

mouse ovarian atrophy and inhibits the proliferation of ovarian

GCs. The lncRNA maternally expressed gene 3 (Meg3) was

unregulated in cyclophosphamide-treated mouse ovarian GCs,

and inhibition of Meg3 effectively reduced the effect of

cyclophosphamide through the p53-p66Shc pathway (Xiong

et al., 2017). Li et al. observed the significant downregulation

of the expression of the lncRNA NEAT1 (nuclear enriched

TABLE 5 POF-related lncRNAs and their targets.

lncRNA name Expression level Targets Regulation results References

NEAT1 Decrease P53 Inducing ovarian GC apoptosis Li et al. (2020a)

HOTAIR Decrease Notch-1 Inducing ovarian GC apoptosis Zhao and Dong (2018)

DLEU1 Increase miR-146b-5p Promoting ovarian GC apoptosis Zheng et al. (2021)

TRERNA1 Decrease miR-23a Promoting ovarian GC apoptosis Zhang et al. (2022)

BBOX1-AS1 Increase miR-146 b Inducing ovarian GC apoptosis Yu et al. (2022)

NORHA Increase miR-183–96–182 Promoting follicul aratresia Yao et al. (2021)

Meg3 Increase P53/P66Shc Inhibiting mouse OGCs proliferation Xiong et al. (2017)

FIGURE 3
Environmental and lifestyle factors accelerates the decline of ovarian function. In our daily life, chemical and radiation pollutions are very
common. Chemical pollutions come from paint (e.g., PCBs), drugs/pesticide (e.g., MXC and DDT), electronic equipment and food packaging (e.g.,
PAEs and BPA), and radiation pollutions mainly come from decoration materials (especially stones) and iatrogenic radiation (e.g., MRI and CT scan).
Exposure to RTECs or ionizing radiation may alter DNA methylation patterns, modify histone/chromatin structure and change miRNA profiles
and thus impairs sex hormone synthesis, affects gametogenesis and decreases fertility. MRI: magnetic resonance imaging; CT: computerized
tomography.
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abundant transcript 1) in the ovarian tissue of POF patients.

Cytological experiments indicated that overexpression of

NEAT1 may inhibit ovarian cell apoptosis by inhibiting P53

(Li et al., 2020a). Zhao et al. detected significantly lower

expression of the lncRNA HOX antisense intergenic RNA

(HOTAIR) in ovarian tissue and serum samples from POF

patients than in healthy controls. Overexpression of HOTAIR

in hamster ovary cell lines upregulated Notch-1 expression and

reduced cell apoptosis (Zhao and Dong 2018). Table 5

summarizes the lncRNAs involved in POF and their targets.

External factors involved in POF
development and their epigenetic
mechanisms

Environmental, social, psychological and lifestyle factors may

accelerate the decline in ovarian reserve (Richardson et al., 2014)

(Figure 3). Based on accumulating evidence, exposure to

reproductively toxic environmental chemicals (RTECs) leads

to premature menopause and POF. RTEC exposure during

fetal and neonatal periods reduces ovarian reserve, whereas

exposure during the prepubertal period and adulthood

accelerate follicular pool depletion, and the mechanism may

be ascribed to changes in the germ cell epigenome (Béranger

et al., 2012; Grindler et al., 2015; Vabre et al., 2017; Ge et al.,

2019). According to a recent study, multiple chemicals (such as

phthalates (PAEs), polychlorinated biphenyls (PCBs), and

bisphenol A (BPA), which are widely used in electronic

transformers, capacitors, coolants and food packaging),

ionizing radiation, smoking and drinking may affect ovarian

reserve via epigenetic regulation and induce POF (Yang et al.,

2021). High-dose BPA exposure during the neonatal period is

associated with the occurrence of POF in adulthood. Exposure to

BPA during pregnancy has been suggested alter the expression of

steroid hormone synthesis-related genes and microRNA profiles

related to gonadal differentiation and follicle synthesis in

offspring and ultimately disrupt the fertility of offspring (Yang

et al., 2021). Zhang et al. found that exposure to BPA reduced the

methylation levels of imprinted genes insulin-like growth factor

2 receptor (Igf2r), paternally expressed gene 3 (Peg3) and H19 in

fetal rat germ cells, which in turn affected gametogenesis (Zhang

et al., 2012). Qiu et al. reported decreased fertility and

progesterone levels in neonatal mice exposed to BPA, along

with increased serum testosterone and estradiol levels in their

adult period. Exposure to BPA may interfere with the function of

the hypothalamic-pituitary-ovarian axis (HPOA), decrease the

production of sex hormones and reduce the number of oocytes

(Qiu et al., 2020). Currently, researchers postulate that the

reproductive toxicity of BPA is closely correlated with its

epigenetic regulation of gene expression. Zama et al. found

that when fetal rats were exposed to 100 mg/kg methoxychlor

(MXC, an organochlorine pesticide with weak estrogenicity) in

utero every day, the DNA methylation level in the estrogen

receptor (ER)-β promoter region was increased, and the

Dnmt3b level was elevated in postnatal rat ovarian tissue

(Zama and Uzumcu 2009). Li et al. examined diethylhexyl

phthalate (DEHP)-treated mouse oocytes and observed a

reduced percentage of methylated CpG sites in the imprinted

genes Igfr2r and Peg3, and the DNA methylation modification

was inherited by the F2 generation and thus decreased the

number of primordial follicles in puberty and adulthood (Li

et al., 2014). Nilsson et al. reported that exposure to the

environmental toxicants vinclozolin and

dichlorodiphenyltrichloroethane (DDT) promotes epigenetic

susceptibility in the ovaries of F0 generation rats, altering

DNA methylation and ncRNAs in the ovarian GCs of the

F3 generation; these results indicated that environmental

toxicants may induce transgenerational inheritance of the

ovarian GC epigenome (Nilsson et al., 2018). As shown in the

study by Liu et al., a HFHS (high-fat and high-sugar) diet

promotes ovarian GC aging and POF by inhibiting

endogenous miR-146b-5p expression, activating the disabled

homolog 2-interacting protein (DAB2ip)/apoptosis signal-

regulating kinase 1 (ASK1)/p38 signaling pathway and γ-
H2A.X phosphorylation (Liu et al., 2021c). Rhon-Calderón

et al. found that daily exposure to low doses of 3-

methylcholanthrene (3 MC) in adolescent mice decreases

follicle numbers, blocks follicle development and inhibits

ovulation (Rhon-Calderón et al., 2016). They indicated that

3 MC increases the H3K4me3 trimethylation levels at the

cytochrome P450 family one subfamily A member 1 (Cyp1a1),

jagged canonical notch ligand 1 (Jag1), dnaJ heat shock protein

family (Hsp40) member B6 (Dnajb6), Igf2, Notch receptor 2

(Notch2), ADAM with thrombospondin type 1 motif 1

(Adamts1), BCL2-associated X (Bax) and Caspase-9 genes and

the H3K9Ac acetylation levels at the Cyp1A1, Jag1, cyclin-

dependent kinase 2 (Cdk2), Dnajb6, Igf2, intercellular cell

adhesion molecule-1 (Icam1), and Sp1 genes, suggesting that

mechanisms may play an important role in POF development

(Rhon-Calderón et al., 2018). Additionally, ionizing radiation

alters DNA methylation patterns, modifies histone/chromatin

structure and changes miRNA profiles (Pogribny et al., 2005;

Halimi et al., 2012; Kumar et al., 2012; Metheetrairut and Slack

2013; Miousse et al., 2017). Ionizing radiation may also damage

the female reproductive system and decrease ovarian reserve

(Quan et al., 2020). Filkowski et al. found that exposure to 2.5 of

Gy X-rays upregulated the expression level of miR-29 in mouse

germ cells, resulting in a decrease in Dnmt3a levels, which in turn

increased the susceptibility of the ovary in offspring and the risk

of POF (Filkowski et al., 2010).

Transgenerational epigenetic changes may be inherited

through germ cells (sperm or eggs) and occur in early

embryonic and stem cells, affecting all somatic cells and

tissues and increasing disease susceptibility in adulthood.

Therefore, ovarian disease may be partially induced by
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ancestral environmental exposures and the corresponding

epigenetic changes (Anway and Skinner 2008). With

industrialization, globalization and the growing economy,

people’s lifestyles have become more convenient than ever

before. However, currently, people are exposed to various

chemicals, and the potential hazards of these chemicals should

not be ignored.

Epigenetic targets OF POF therapy

Currently, the most common treatment for POF in the clinic

is hormone replacement therapy (HRT). However, HRT only

relieves low estrogen-related symptoms such as vaginal dryness,

hot flashes and genitourinary tract atrophy but does not improve

ovarian reproductive function (Sullivan et al., 2016). Therefore,

an understanding of the pathogenesis of POF is crucial to develop

corresponding treatment regimens targeting those key

pathogenic factors. In many cases, POF patients harbor

epigenetic alterations in their reproductive system instead of

genetic alterations (e.g., gene mutations). Therefore, precision

therapy targeting epigenetic variations is a probable and valuable

approach for POF clinical treatment in the future.

Epigenetic strategies for POF treatment targeting DNA and

histone modifications are still in the exploratory stage. Previous

studies have confirmed that butyrate, an HDAC inhibitor, can

loosen the chromosome structure and enhance gene transcription

by increasing the level of histone acetylation (Corfe 2012). Ye et al.

found that butyrate increases estradiol and progesterone synthesis in

rat and human GCs by increasing the acetylation of histone H3K9

(H3K9ac) and stimulating the peroxisome proliferator activated

receptor (PPARγ)/CD36/steroidogenic acute regulatory protein

(StAR) pathways, which enhances mitochondrial dynamics and

alleviates oxidative damage in GCs (Ye et al., 2021). As shown in

the study by Liu et al., thymopentin promotes the transcription and

expression of Lin28A (a marker of ovarian GC proliferation), inhibits

the activity of let-7 family miRNAs and alleviates the aging of ovarian

GCs, which provides a valuable therapeutic target for POF (Liu et al.,

2021b). Zhao and others found that hyaluronic acid (HA) blocks

Tripterygium glycoside-induced POI-like presentations in rats,

including delayed or irregular estrous cycles, reduced

E2 concentrations, decreased numbers of follicles, destruction of

the follicle structure, and damage to the reproductive ability.

Regarding the molecular mechanism, they indicated that HA

upregulated progesterone receptor membrane component 1

(Pgrmc 1) expression in GCs by suppressing of miR-139-

5p. Moreover, HA downregulated miR-139-5p expression via

histone deacetylation at its promoter (Zhao et al., 2014; Zhao

et al., 2015).

Natural products and traditional Chinese medicine may exert

unexpected effects on the treatment of POF. For example, Zhu

et al. showed that American ginseng treatment regulates the

expression levels of phospholipase A2 group IVA (Pla2g4a),

miR-29a and miR-144 in POF rats. After POF rats were

administered American ginseng for 1 month, the levels of all

hormones (prostaglandin E2 (PGE2), FSH, and luteinizing

hormone (LH)) and E2 secretion approached normal levels,

and POF symptoms were improved (Zhu et al., 2015). Liu et al.

treated POF rats with 10 ml/kg/day modified Bazhen decoction

(MBD, a traditional Chinese medicine mixing Ginseng,

Atractylodes macrocephala Koidz, Poria cocos, Licorice, Angelica

sinensis, Radix Rehmanniae, Radix Paeoniae Alba and Ligusticum

wallichii) for 4 weeks and found that MDB substantially activated

X-linked inhibitor of apoptosis protein (Xiap) but inhibited the

expression of miR-23a and miR-27a and effectively prevented the

apoptosis of oocytes and GCs (Liu et al., 2019a).

Mesenchymal stem cell (MSC) transplantation is the most

promising option to treat POF. Preliminary clinical trials have

shown that MSCs improve ovarian function and increase the

pregnancy rate of POI/POF patients (Wang et al., 2021b). We

systematically described the mechanism and application of MSC

therapy for POF in our previous review (Wang et al., 2021b). By

synthesizing the current research conclusions, we consider that

MSC therapy for POF relies mainly on miRNA-dependent

epigenetic regulation and its related cellular signal

transduction pathways. According to Fu et al., transplantation

of MSCs overexpressing miR-21 in rats with chemotherapy-

induced POF increases ovarian weight and follicle counts,

increases E2 levels and decreases FSH levels. They also

indicated that miR-21 inhibits GC apoptosis by targeting

phosphatase and tensin homolog (Pten) and programmed cell

death 4 (Pdcd4) (Fu et al., 2017). EL-Derany et al. showed that

bone marrowMSCs (BMMSCs) increase the ovarian follicle pool

and preserve ovarian function in rats with γ-ray-induced POF.

They indicated that BMMSC miRNAs epigenetically regulate the

TGF-β, Wnt/β-catenin and Hippo signaling pathways, which

control the apoptosis, proliferation, and differentiation of

ovarian follicles (El-Derany et al., 2021).

Exosomes and their incorporated miRNAs have been proven to

be functional components in MSC therapy. Yang et al. found that

BMSC-derived exosomes prevent ovarian follicular atresia and

inhibit GC apoptosis in cyclophosphamide-treated rats via the

delivery of miR-144-5p and suppression of its related Pten/Pi3k/

Akt pathway (Yang et al., 2020). Sun et al. found that miR-644-5p

carried by BMSC-derived exosomes represses GC apoptosis and

increase cell viability in mice with cisplatin-induced POF by

negatively regulating p53 (Sun et al., 2019). In the study by Xiao

et al., amniotic fluid stem cell (AFSC)-derived exosomes prevented

ovarian follicular atresia in chemotherapy-treated mice via the

delivery of miR-146a (targeting Irak1 and Traf6) and miR-10a

(targeting Bim) and inhibition of GC apoptosis (Xiao et al., 2016).

Currently, hundreds of potential epigenetic drugs targeting

DNMTs and histone methyltransferase have been developed or

have undergone clinical trials, and some of them have been

approved by the FDA or EMA. However, the diseases for which

these drugs have been approved as treatments are limited to cancers,
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Alzheimer’s disease, and diabetes (Pasyukova et al., 2021), and no

epigenetic drug is definitely suitable for the prevention or treatment

of POF (Table 6). Additionally, since aging is highly complex, the

side effects of some epigenetic drugs have been introduced into

clinical practice to treat aging-associated diseases (e.g., neurological

disturbances, and cardiac and metabolic abnormalities) are

unignorable (Nervi et al., 2015).

Conclusion and prospects

POF is different from aging-associated diseases, such as

Alzheimer’s disease, diabetes and cancers. Although non-fatal, it is

very harmful to women’s bodies and minds, especially those women

of childbearing age. In China, with the continuous development of the

economy and revolution of traditional culture, women are

increasingly participating in all aspects of social life. Due to

increasing academic, economic and living pressure, the maternal

age at first pregnancy of Chinese women continues to increase. If

this phenomenon continues, it will inevitably lead to an aging

population and a substantial decrease in the social labor force.

Moreover, many women find themselves suffering from POF by

the time they want to have a child, and an indisputable fact is that the

number of POF patients is increasing in the clinic.

Due to the non-lethal nature of POF, many women choose to

remain silent about the disease. The complexity of the disease

prevents researchers and doctors from determining a clear and

definite cause of the disease. However, the spread of this disease

will clearly harm society in the future. In many cases, the

occurrence of POF is not caused by an exact gene or protein

variation; it is more likely induced by the combined effect of the

patient’s physical condition, psychological condition and living

TABLE 6 Epigenetic targets of POF therapy.

Treatment reagents or
methods

Preclinical/
Clinical

Molecular mechanism Treatment effect References

Butyric acid Preclinical Upregulating histone H3K9 acetylation via
PPARγ and PGC1α pathways

Promoting synthesis of estradiol and
progesterone in ovarian GCs

Ye et al. (2021)

Thymopentin Preclinical Promoting the transcriptional activation of
Lin28a by stimulating the expression of
transcription factor YY2 and inhibiting the
activity of LET-7 family miRNAs

Inhibiting ovarian GC apoptosis Liu et al. (2021b)

Hyaluronic Acid Preclinical Downregulating miR-139-5p levels by
histone acetylation and enhancing the
expression level of PGRMC1 in GC

Inhibiting ovarian GC apoptosis Zhao et al. (2014)

Changing eating habits Preclinical Upregulating endogenous miR-146b-5p
expression, inhibiting DAB2ip/ask1/
p38 signaling pathway and γ-H2A.X
phosphorylation modification

Inhibiting ovarian GC aging Liu et al. (2021c)

American Ginseng Preclinical Downregulating PLA2G4A mRNA and
protein expression; Increasing miR-29a and
miR-144 levels; Decreasing serum
prostaglandin PGE2, LH and FSH levels;
Increasing E2 level

Promoting prostaglandin biosynthesis and
reproductive hormone synthesis and
ovulation

Zhu et al. (2015)

Flavored Bazhen Soup Preclinical Inhibiting the expression levels of miR-23a
and miR-27a; Activating XIAP

Preventing oocytes and GCs apoptosis Liu et al. (2019a)

BMSCs Preclinical Promoting miR-21 overexpression and
downregulating PTEN and PDCD4 levels

Inhibiting ovarian GC apoptosis Fu et al. (2017)

Preclinical Upregulating Wnt/β-catenin and HIPPO
signaling pathways

Promoting follicle growth and maturation El-Derany et al.
(2021)

Preclinical The derived exosomal miR-144-5p may
activate the PTEN/PI3K/AKT pathway

Inhibiting follicular atresia Yang et al. (2020)

Preclinical miR-644-5p carried by exosomes can target
and downregulate p53 level

Inhibiting ovarian GC apoptosis Sun et al. (2019)

AFSC Preclinical miR-146a carried by exosomes
downregulates the expression of target
genes IRAK1 and Traf632

Inhibiting ovarian GC apoptosis Xiao et al. (2016)

Preclinical miR-10a carried by exosomes can inhibit
the proapoptotic factor Bim31

Reducing ovarian GC apoptosis Xiao et al. (2016)
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environment. In this case, patients’ epigenetic changes are the

dominant factor contributing to this disease. In this review, by

summarizing the research achievements published in the past

2 decades, we draw several conclusions, which are listed below. 1)

Epigenetic variation exists objectively in POF patients and is

closely correlated with the occurrence and development of POF.

2) Epigenetic variations in POF patients mainly include changes

in DNA, histones, enzymes, and profiles of ncRNAs. 3) Studies

examining ncRNA expression profiles are significantly more

common than studies on assessing other aspects, which may

be because next-generation sequencing is easier, faster and

cheaper to implement. Meanwhile, we strongly recommend

that the following issues are considered: 1) research on the

epigenetic etiology of POF is still far from sufficient; 2)

although closely related to epigenetic variations, no epigenetic

drug specific for POF has been developed. In other words, the

treatment of this disease is still not receiving sufficient attention;

3) as a chronic disease, stem cell therapy and natural medicine

(mainly targeting non-coding RNA and immunomodulation)

appear to be milder and more appropriate than epigenetic

enzyme inhibitors.
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