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Objective: Renal cell carcinoma (RCC) is the most common malignancy of the

kidney. However, there is no reliable biomarker with high sensitivity and

specificity for diagnosis and differential diagnosis. This study aims to analyze

serum metabolite profile of patients with RCC and screen for potential

diagnostic biomarkers.

Methods: Forty-five healthy controls (HC), 40 patients with benign kidney

tumor (BKT) and 46 patients with RCC were enrolled in this study. Serum

metabolites were detected by ultra-high performance liquid chromatography-

tandem mass spectrometry (UPLC-MS/MS), and then subjected to multivariate

statistical analysis, metabolic pathway analysis and diagnostic performance

evaluation.

Results: The changes of glycerophospholipid metabolism, phosphatidylinositol

signaling system, glycerolipid metabolism, D-glutamine and D-glutamate

metabolism, galactose metabolism, and folate biosynthesis were observed in

RCC group. Two hundred and forty differential metabolites were screened

between RCC and HC groups, and 64 differential metabolites were screened

between RCC and BKT groups. Among them, 4 differential metabolites,

including 3-β-D-Galactosyl-sn-glycerol, 7,8-Dihydroneopterin,

lysophosphatidylcholine (LPC) 19:2, and γ-Aminobutyryl-lysine (an amino

acid metabolite), were of high clinical value not only in the diagnosis of RCC

(RCC group vs. HC group; AUC = 0.990, 0.916, 0.909, and 0.962; Sensitivity =

97.73%, 97.73%, 93.18%, and 86.36%; Specificity = 100.00%, 73.33%, 80.00%,

and 95.56%), but also in the differential diagnosis of benign and malignant

kidney tumors (RCC group vs. BKT group; AUC = 0.989, 0.941, 0.845 and 0.981;

Sensitivity = 93.33%, 93.33%, 77.27% and 93.33%; Specificity = 100.00%, 84.21%,

78.38% and 92.11%).

Conclusion: The occurrence of RCCmay involve changes inmultiplemetabolic

pathways. The 3-β-D-Galactosyl-sn-glycerol, 7,8-Dihydroneopterin, LPC 19:
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2 and γ-Aminobutyryl-lysine may be potential biomarkers for the diagnosis or

differential diagnosis of RCC.

KEYWORDS
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metabolism, amino acid metabolism, potential biomarkers

1 Introduction

Kidney carcinoma is one of the most common malignancies

of the urinary system, and renal cell carcinoma (RCC) accounted

for more than 85% of kidney carcinoma (Nabi et al., 2018).

According to the GLOBOCAN 2020 reports, there are more than

430,000 new cases of RCC and nearly 180,000 new deaths

annually worldwide (Sung et al., 2021). In the early stages of

RCC, patients are usually asymptomatic, but RCC patients’

conditions usually progress to the intermediate or advanced

stage, when they present with the typical classic clinical triad

of gross hematuria, flank pain, and palpable abdominal mass

(Gray and Harris, 2019). Although modern imaging techniques

are widely available to detect most kidney masses, 20%–30% of

patients with RCC have metastases at diagnosis (Petejova and

Martinek, 2016). Moreover, most patients with RCC are almost

always detected by brightness-mode ultrasound, computed

tomography, or magnetic resonance imaging when screening

for other diseases not related to the kidney (Capitanio et al.,

2019). Therefore, early diagnosis of RCC is essential to improve

treatment outcomes and reduce mortality in patients with RCC.

The commonly used kidney function indicators in clinic,

such as urea, creatinine (Cr), uric acid (UA), cystatin C (CysC),

complement C1q (C1q), neutrophil gelatinase-associated

lipocalin (NGAL), and estimated glomerular filtration rate

(eGFR), can evaluate the kidney function of patients with

RCC, but cannot indicate kidney tumors. To date, few reliable

tumor-specific markers are available for clinical use in kidney

carcinoma. Although kidney biopsy is the "gold standard” for the

diagnosis and identification of kidney tumors, its clinical

application is often limited because of its invasive nature and

the possible risk of needle tract implantation and metastasis.

In recent years, metabolomics technology has been widely

used to screen for potential biomarkers of diseases, especially

tumors, and to explore the occurrence and development of

diseases through the metabolic pathways of substances in vivo

(Wang et al., 2021a). Some early studies investigated the urinary

metabolomics of patients with RCC using ultra-high

performance liquid chromatography-tandem mass

spectrometry (UPLC-MS/MS) and found a metabolite panel

consisting of cortolone, testosterone and L-2-aminoadipate

adenylate, and that combined detection of L-3-

hydroxykynurenine, 1,7-dimethylguanosine and

Tetrahydroaldosterone-3-glucuronide may be used for

distinguishing RCC from benign kidney tumor (BKT) (Liu

et al., 2019a; Zhang et al., 2020a). Another study confirmed

that analysis using blood samples could more accurately reflect

the metabolic changes in tumor tissues than using urine samples

(Ganti et al., 2012). Additionally, some scholars found by plasma

metabolomics (Liu et al., 2020) that combined detection of

diaminopimelic acid, 12,13-DHOME, 5-L-glutamyl-L-alanine,

PC (38:4), 4,8- dimethylnonanoyl carnitine and cholesteryl 11-

hydroperoxy-eicosatetraenoate could be used for the differential

diagnosis of benign and malignant kidney tumors. However,

these screened potential biomarkers had low diagnostic

performance, sensitivity and specificity for identifying RCC.

Furthermore, it has been shown that the metabolomic analysis

of serum samples is more reliable than plasma samples (Yu et al.,

2011; Sotelo-Orozco et al., 2021).

Lipids are important components in serum, and a study

found that disturbed lipid metabolism was strongly associated

with disease severity of RCC and may be a risk factor for RCC

development (Li et al., 2020). Based on the above theories and

research findings, we propose a hypothesis: compared with

healthy subjects or BKT, RCC patients have abnormal

metabolic pathways of some substances. In this study, we

analyzed the serum metabolomic profile of patients with RCC

and BKT by untargeted metabolomics based on UPLC-MS/MS.

We also investigated the relationship of metabolites with

common indicators for kidney function and lipid indicators.

The results of this study may provide new insights into the

pathogenesis of RCC and provide evidence for screening new

potential biomarkers for its diagnosis and differential diagnosis.

2 Materials and methods

2.1 Subjects

Between March 2021 and March 2022, 86 patients with

kidney tumors, including 46 cases with RCC and 40 cases

with BKT, who were admitted to the Department of Urology,

Mianyang Central Hospital were enrolled in the study.

Inclusion criteria: 1) age ≥18 years; 2) All patients were

diagnosed as RCC or BKT by pathological biopsy after finding

abnormalities in computed tomography (CT) or magnetic

resonance imaging (MRI) examination. Exclusion criteria: 1)

patients with failure of blood sample collection; 2) women in

pregnancy or lactation; 3) patients complicated with other

metabolic diseases and tumors; 4) patients with RCC who

underwent treatment with radiotherapy or immunotherapy

before enrollment; 5) patients who had undergone
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nephrectomy. In addition, all diagnoses were confirmed by senior

clinicians according to clinical diagnostic criteria.

Forty-five healthy subjects who underwent physical

examination during the same period were enrolled as healthy

controls (HC). Inclusion criteria: 1) age≥18 years; 2) healthy

volunteers with normal examination indexes during the same

period; 3) subjects who did not take drugs that may affect kidney

function within the last month. Exclusion criteria: 1) patients

with failure of blood sample collection; 2) women in pregnancy

or lactation.

Detailed clinical information of the subjects is shown in

Supplementary Table S1. This study was approved by the

Medical Ethics Committee of Mianyang Central Hospital

(P2020030), and all patients signed the informed consent.

2.2 Sample collection

After fasting overnight, all study subjects were subjected to

blood collection (approximately 5.0 ml of venous blood each)

from 8:00–10:00 a.m. The SSTTM II Advance vacuum blood

collection tube (BD Vacutainer®, United States) containing

separation gel and coagulant was used. After centrifugation at

3,000 g for 10 min, the serum was collected and equally divided

into two parts. One part was tested for kidney function and lipid

indicators within 2 h. The other part was stored at −80°C for

metabolomics analysis.

2.3 Detection of common kidney function
and lipid indicators

The indicators for kidney function and lipid indicators were

measured on LST008 automatic biochemical analyzer (Hitachi,

Japan). The C1q kit was provided by Shanghai Beika Biochemical

Reagent Co., Ltd. (Shanghai, China). The kits for other indicators

were provided by Sichuan Maker Biotechnology Co., Ltd.

(Sichuan, China).

2.4 Ultra-high performance liquid
chromatography-tandem mass
spectrometry analysis

2.4.1 Sample preparation and analysis
A mixture of 190 µl of serum sample, 10 µl of internal

standard (10 μg/ml, clenbuterol and chloramphenicol mixture)

and 800 µl of methanol-acetonitrile (v/v = 1:1) solution was

sonicated at 4°C for 10 min, then the mixture was incubated

at –20°C for 1 h, followed by centrifugation at 13,000 g for 15 min

at 4°C to obtain the supernatant. The supernatant was filtered by

0.22 µm microporous membrane. Finally, 3 µl of the filtrate-

solution was transferred by an autosampler and injected into the

UPLC-MS/MS system for metabolomic analysis. In addition,

10 µl of serum from each sample was mixed as a quality control

(QC) sample. QC samples were processed in the same way as the

study samples. Serummetabolomics analysis was performed with

Agilent® 1290 Infinity II UPLC system (Agilent Technologies

Inc., United States) and AB Sciex® Triple TOF 5600+ mass

spectrometer system (AB Sciex, United States). UPLC-MS/MS

analytical conditions used previous methods of our lab (Xu et al.,

2021). In addition, QC samples were tested after every 10 samples

in the analysis sequence to evaluate the reliability of the large-

scale metabolomics analysis and the stability of the instrument

(Dudka et al., 2020; Zhu et al., 2021).

2.4.2 Metabolite identification and analysis
Raw data were collected using Analyst TF 1.7 software (AB

Sciex, United States of America). The metabolomics data were

subjected to a series of processing workflow, including peak

picking, quality assessment, missing value imputation,

normalization, transformation and scaling. The details were as

follows: 1) the XCMS algorithm was applied to peak extraction

based on the One-MAP platform (http://www.5omics.com)

provided by Dalian Dashuo Information Technology Co.

(Dalian, China). 2) quality analysis of the data based on the

stability of the QC samples. The percentage of relative standard

deviation (RSD) of metabolic mass spectrometry features in QC

samples that were less than 50% should exceed 80%. Calibration

of QC was performed using the statTarget analysis (Luan et al.,

2018). 3) the 80% rule was used to exclude metabolic features

with more than 20% of non-zero values in any category of

samples in the metabolic features. Missing values were filled

with the smallest value in the variable. 4) normalization of data

was performed using the MetNormalizer method of QC-based

support vector regression analysis and the internal standards was

used for checking the stability of the instrument performance. 5)

the feature variables were processed by auto scaling in principal

component analysis (PCA) and partial least squares analysis

(PLS-DA). This was to eliminate differences in the order of

magnitude of the concentration of different metabolites. The

characteristic peaks of metabolites were carried out by molecular

weight error (<20 ppm), signal-to-noise ratio and summation

ions to predict their molecular formulae. Metabolite

identification was annotated by scoring each peak based on

matches to accurate masses, retention times, and MS/MS

fragmentation to the standard compounds databases

(containing information of 1,550 metabolic standards), and

custom databases including METLIN (http://metlin.scripps.

edu/), Kyoto Encyclopedia of Genes and Genomes (KEGG)

(http://www.kegg.jp/kegg/pathway.html), LipidMaps (https://

www.lipidmaps.org/), Human Metabolome Database (HMDB)

(https://hmdb.ca/), MassBank (https://massbank.eu/), and

PubChem Database (https://pubchem.ncbi.nlm.nih.gov/),

parameters setting: Δm/z (MS1)≤0.01000Da; Δm/z (MS2)≤0.
05000Da; MS2 Score Method = Forward; Reference Noise of
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Unknown MS2 to remove = 1.000000; Reference Noie of

Standard MS2 to remove = 200.000000; the number of near

fragments at least to merge peaks cluster = 2; investigate the

maximum number of fragments = 2. According to the formal

definition of metabolite annotation and identification specified

by the Chemical Analysis Working Group of the Metabolomics

Standards Initiative (MSI), the metabolites determined in this

study would be considered as putative identification (levels 2)

(Viant et al., 2017). Untargeted metabolomics does not need a

reference standard, but structural information was obtained

using MS/MS data and combined with mass-to-charge ratio

(m/z) and retention time. Metabolic pathways of the

differential metabolites were analyzed by the Kyoto

Encyclopedia of Genes and Genomes (http://www.genome.jp/

kegg) and MetaboAnalyst database exploration (http://www.

metaboanalyst.ca/).

2.5 Statistical analysis

Statistical analysis was performed using SPSS 26.0 software

(International Business Machines Corp., United States).

Normally distributed data were expressed as mean ± standard

deviation, and compared with one-way ANOVA followed by

LSD test. Non-normally distributed data were expressed as

median (interquartile range), and analyzed with

Kruskal–Wallis H test. Count data were compared using chi-

square test. Spearman correlation was used for correlation

analysis. PCA and PLS-DA were performed using SIMCA

14.1 software (Umetrics AB, Umea, Sweden). The validity of

the PLS-DA model was examined using a random permutation

test (100 times). Receiver operating characteristic curve (ROC)

analysis was used to evaluate the diagnostic performance of the

differential metabolites. When AUC = 0.50–0.59, 0.60–0.69,

0.70–0.79, 0.80–0.89, or ≥0.90, it means that the diagnostic

performance is fail, poor, fair, good, or excellent, respectively

(Nahm, 2022). p < 0.05 indicated that the difference was

statistically significant.

3 Results

3.1 Kidney function and lipid indicators

As shown in Table 1, the kidney function and lipid indicators

of NGAL, Cr, CysC, eGFR, triglyceride (TG), low density

lipoprotein cholesterol (LDL-C) and apolipoprotein B (Apo-B)

were statistically significant among the HC, RCC and BKT

groups (all p < 0.05). Pairwise comparison analysis showed

that compared with the HC group, NGAL (z = 3.542, p <
0.001), Cr (z = 3.352, p = 0.001), CysC (z = 3.511, p < 0.001),

TG (z = 3.521, p < 0.001), LDL-C (z = 2.650, p = 0.008) and Apo-

B (t = 0.368, p < 0.001) were significantly increased in the RCC

group, whereas eGFR (t = 3.443, p = 0.001) was significantly

decreased in the RCC group. NGAL (z = 2.705, p = 0.007), TG

(z = 2.420, p = 0.016), LDL-C (z = 2.650, p = 0.008) and Apo-B

(t = 0.240, p = 0.018) were significantly increased in the BKT

group than in the HC group. Compared with the BKT group, Cr

TABLE 1 Common renal function and lipid indicators of the study subjects.

Group HC (n = 45) BKT (n = 40) RCC (n = 46) χ2/F, P

UA (μmol/L) 332.0 (269.3, 371.7) 282.4 (229.0, 350.8) 333.3 (236.4, 417.1) 4.354a, 0.113

C1q (mg/L) 207.0 (175.5, 235.5) 193.5 (168.4, 229.0) 191.5 (166.6, 221.8) 1.366a, 0.505

NGAL (μg/L) 95.0 (78.5, 113.0) 124.0 (85.3, 180.0) * 130.1 (93.0, 164.8) * 13.799a, 0.001

Urea (mmol/L) 5.10 (4.13, 5.64) 5.37 (4.07, 6.60) 5.43 (4.46, 6.59) 4.215a, 0.122

Cr (μmol/L) 66.0 (53.4, 78.0) 65.6 (54.2, 87.6) 80.1 (61.7, 105.7) * 11.775a, 0.003

CysC (mg/L) 0.91 (0.79, 1.00) 0.92 (0.76, 1.18) 1.07 (0.90, 1.26) * 13.391a, 0.001

eGFR (ml/min/1.73m2) 88.59 ± 12.29 85.75 ± 24.14 73.09 ± 20.85 * 8.057b, 0.001

TC (mmol/L) 4.58 ± 0.59 4.89 ± 1.11 5.17 ± 1.37 * 3.297b, 0.040

TG (mmol/L) 0.98 (0.87, 1.19) 1.29 (0.99, 2.37) * 1.39 (0.98, 1.97) * 13.261a, 0.001

HDL-C (mmol/L) 1.38 (1.14, 1.55) 1.31 (1.17, 1.64) 1.22 (1.05, 1.45) 2.717a, 0.257

LDL-C (mmol/L) 2.60 (2.27, 2.96) 3.13 (2.26, 3.56) * 2.99 (2.32, 4.31) * 9.355a, 0.009

Apo-A1 (g/L) 1.55 ± 0.21 1.53 ± 0.31 1.48 ± 0.27 0.834b, 0.437

Apo-B (g/L) 0.81 ± 0.14 0.93 ± 0.24* 1.00 ± 0.30* 7.263b, 0.001

Note: n, case; a is the χ2 value; b is the value of F; HC, healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma; Cr, creatinine; UA, uric acid; CysC, cystatin C; C1q,

complement C1q; NGAL, neutrophil gelatinase-associated lipocalin; eGFR, estimated glomerular filtration rate; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein

cholesterol; LDL-C, low density lipoprotein cholesterol; Apo-A1, apolipoprotein A1; Apo-B, apolipoprotein B. Compared with HC, group, *p < 0.05. Compared with BKT, group, p < 0.05.
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FIGURE 1
Serum fingerprint profiling of QC based on UPLC-MS/MS. Total ion chromatogram (TIC) and base peak intensity (BPI) diagram of ESI + model
(A,B) and ESI- model (C,D).

FIGURE 2
PCA analysis of QC samples and serum samples. PCA scores for QC samples and serum samples in ESI + mode (A) and ESI- mode (B). HC,
healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma; QC, quality control.
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(z = 2.250, p = 0.024) and CysC (z = 2.561, p = 0.010) were

significantly increased in the RCC group, while eGFR (t = 2.631,

p = 0.010) was significantly decreased in the RCC group. These

results showed that kidney function and lipid indicators were

abnormal in patients with RCC to different degrees.

3.2 Serum metabolic profiling

The 131 serum samples and 14 QC samples were analyzed by

UPLC-MS/MS in positive ion (ESI+) and negative ion (ESI-)

modes. The results were analyzed by PCA analysis. The PCA

score plots, total ion chromatogram (TIC) and base peak

intensity (BPI) diagram of QC samples indicated that the

metabolomics dataset of this study had good stability and

reproducibility (Figure 1), while those of the serum samples

showed that the serum components of the HC, BKT and RCC

groups were not effectively separated (Figures 2A,B). Further

analysis with PLS-DA resulted in effective separation (Figures

3A,B). To avoid overfitting of the PLS-DA model, 100 random

permutation tests were performed. The results showed that for

the HC, BKT and RCC groups, the degree of explanation of X

(R2X), the degree of explanation of Y (R2Y) and the

predictability of the model (Q2) were 0.32, 0.76, and 0.54,

respectively, in the ESI + model, and were 0.37, 0.82 and 0.60,

respectively, in the ESI- model (Figures 3C,D). These results

reveals that the PLS-DA model has high goodness-of-fit and

predictive power, and can effectively separate serum metabolite

profiles of the HC, BKT, and RCC groups.

3.3 Screening of markers and analysis of
their metabolic pathways

The results of MS/MS experiments were subjected to data

filtering, which yielded 6938 and 6868 peaks in the ESI+ and ESI-

modes, respectively. Qualitative analysis of these peaks using the

standard compounds databases, customized databases, and

integrated databases showed that a total of 910 metabolites

were identified in ESI + mode and 917 metabolites were

identified in ESI- mode. According to the criteria of variable

importance for the projection>1, fold change>1.2 or<5/6, and

FIGURE 3
PLS-DA analysis and permutation test. PCA scores for the HC, BKT, and RCC groups in the ESI +model (A) and ESI-model (B) Permutation test in
the ESI + model (C) and ESI- model (D) among HC group, BKT group, and RCC group. The criterion for PLS-DA not overfitting is that the R2 and
Q2 values of all alignments on the left side are lower than the corresponding original points on the right side. The regression line of point
Q2 intersects the horizontal coordinates or is less than 0. R2X and R2Y denote the degree of explanation of the PLS-DA model for the
categorical variables X and Y, respectively. Q2 denotes the predictiveness of the PLS-DAmodel. HC, healthy control; BKT, benign kidney tumor; RCC,
renal cell carcinoma.
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p < 0.05 (Zhang et al., 2020b; Lu et al., 2021), 240 differential

metabolites between the RCC and HC groups, 175 differential

metabolites between the BKT and HC groups, and 64 differential

metabolites between the BKT and RCC groups were identified.

Pathway enrichment was used to analyze the metabolic

pathways in which these differential metabolites may be

involved. The results showed that among the 64 differential

metabolites between the BKT and RCC groups, 8 differential

metabolites were enriched in the glycerophospholipid

metabolism pathway, 2 differential metabolites were enriched

in the phosphatidylinositol signaling system, and 1 differential

metabolite was enriched in the D-glutamine and D-glutamate

metabolism pathway. Among the 240 differential metabolites

between the RCC and HC groups, 10 differential metabolites

were enriched in the glycerophospholipid metabolism pathway,

3 differential metabolites were enriched in the glycerolipid

metabolism pathway, and 1 differential metabolite were

enriched in the D-glutamine and D-glutamate metabolism

pathway. These results indicate that the main metabolic

pathways in patients with RCC may be lipid metabolism and

amino acid metabolic pathways (Table 2 and Figure 4). Details of

metabolic pathways matched to specific metabolites are shown in

Supplementary Tables S2–S4.

3.4 Diagnostic performance of the
screened markers

With reference to the literature (Nahm, 2022), we selected

differential metabolites with good or excellent diagnostic

TABLE 2 Metabolic pathways significantly altered between groups.

Group Pathway −log(P) Impact Hits Compounds

RCC
vs. BKT

Glycerophospholipid metabolism 11.10 0.44 8 PE 21:5, PC 34:2, LPC 19:2, PA 23:2, PS 18:3, PG 14:0, LPG 18:3 and PI 18:4

Phosphatidylinositol signaling system 1.39 0.10 2 PI 18:4 and PA 23:2

D-Glutamine and D-glutamate
metabolism

1.67 0.50 1 Glutamic acid

RCC vs. HC Glycerophospholipid metabolism 9.65 0.46 10 PE 21:5, PC (34:2), LPC 19:2, Choline, PA 23:2, PS 18:3, LPE 16:0, LPI 18:5, LPG
24:0 and PI 16:0

Glycerolipid metabolism 8.48 0.22 3 PA 23:2, MG (18:1) and MGDG 22:3

D-Glutamine and D-glutamate
metabolism

2.90 1.00 1 Glutamic acid

BKT vs. HC Glycerophospholipid metabolism 8.77 0.46 8 PE 22:1, PC 34:2, LPC 19:2, PA 23:3, PS 23:4, LPE 20:1, PG 14:0 and PI 16:0

Note: HC, healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma; PE, phosphatidylethanolamine; PC, phosphatidylcholine; LPC, lysophosphatidylcholine; PA,

phosphatidic acid; PS, phosphatidylserine; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; LPG, lysophosphatidylglycerol; PI, phosphatidylinositol; MG,

monoglyceride; MGDG, monogalactosyldiglyceride. -log(P), negative logarithm of the p-value of the statistic; Impact, impact value of metabolic pathway determined by topology analysis;

Hits, the number of differential metabolites matching the pathway.

FIGURE 4
Metabolic pathway analysis of the screened differentialmarkers. (A)Metabolic pathway analysis of differential metabolites between the RCC and
BKT groups. (B)Metabolic pathway analysis of differentialmetabolites between the RCC andHC groups. (C)Metabolic pathway analysis of differential
metabolites between the BKT and HC groups. HC, healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma; -log(P), negative logarithm
of the p-value; Impact, impact value of metabolic pathway determined by topology analysis.
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performance (AUC≥0.80) as potential markers for diagnosis. The

diagnostic performance of the candidate markers was evaluated

by ROC analysis, and the results showed that among the

64 differential metabolites between the BKT and RCC groups,

there were 4 differential metabolites with area under the ROC

curve (AUC)≥0.80, namely 3-β-D-Galactosyl-sn-glycerol, γ-
Aminobutyryl-lysine, 7,8-Dihydroneopterin, and

lysophosphatidylcholine (LPC) 19:2 (Table 3). Among the

240 differential metabolites between the HC and RCC groups,

there were 7 differential metabolites with AUC≥0.80, namely 3-

β-D-Galactosyl-sn-glycerol, γ-Aminobutyryl-lysine, 7,8-

Dihydroneopterin, LPC 19:2, 6 Keto-prostaglandin F1α,
17α,21-Dihydroxypregnenolone, and γ-Glutamylphenylalanine

(Figure 5). The m/z of parent ion and product ion of the

7 differential metabolites is shown in Supplementary Table S5.

Serum levels of 6-Keto-prostaglandin F1α, 17α,21-
Dihydroxypregnenolone and γ-Glutamylphenylalanine were

significantly higher in the RCC group compared with the HC

group (Table 4). Compared with the HC and BKT groups, serum

levels of 3-β-D-Galactosyl-sn-glycerol, γ-Aminobutyryl-lysine,

7,8-Dihydroneopterin and LPC 19:2 were significantly lower

in the RCC group, and the normalized peak intensities of

these four metabolites were shown in Figure 6. These results

suggest that 3-β-D-Galactosyl-sn-glycerol, γ-Aminobutyryl-

lysine, 7,8-Dihydroneopterin and LPC 19:2 could distinguish

patients with RCC from patients with BKT and healthy subjects.

3.5 Correlation analysis of markers with
common kidney function and lipid
indicators

Spearman correlation was used to analyze the correlation of

the four metabolites with common kidney function and lipid

indicators (Table 5). The results showed that 3-β-D-Galactosyl-
sn-glycerol was negatively correlated with Cr (r = -0.268, p =

0.002), CysC (r = -0.268, p = 0.002) and NCAL (r = -0.176, p =

0.047), while positively correlated with eGFR (r = 0.268, p =

0.002). 7,8-Dihydroneopterin was negatively correlated with Cr

(r = -0.214, p = 0.016), CysC (r = -0.193, p = 0.030) and NGAL

(r = -0.202, p = 0.022), whereas positively correlated with eGFR

(r = 0.193, p = 0.030). LPC 19:2 had negative correlation with

urea (r = -0.181, p = 0.042), Cr (r = -0.222, p = 0.012), CysC (r =

-0.202, p = 0.023) and TG (r = -0.183 p = 0.040), but positively

TABLE 3 Diagnostic performance evaluation of candidate biomarkers.

Biomarker Scan
mode

Rt (s) m/z Adducts AUC (95%CI) Se (%) Sp (%) YI

RCC vs. BKT

3-β-D-Galactosyl-sn-glycerol — — — — 0.989 (0.936–1.000) 93.33 100.00 0.933

γ-Aminobutyryl-lysine — — — — 0.981 (0.924–0.999) 93.33 92.11 0.854

7,8-Dihydroneopterin — — — — 0.941 (0.867–0.981) 93.33 84.21 0.775

LPC 19:2 — — — — 0.845 (0.748–0.916) 77.27 78.38 0.557

RCC vs. HC

3-β-D-Galactosyl-sn-glycerol ESI- 481.035 253.083 M-H 0.990 (0.942–1.000) 97.73 100.00 0.977

γ-Aminobutyryl-lysine ESI- 545.151 230.155 M-H 0.962 (0.898–0.991) 86.36 95.56 0.819

7,8-Dihydroneopterin ESI- 481.173 254.086 M-H 0.916 (0.838–0.964) 97.73 73.33 0.711

LPC 19:2 ESI+ 440.903 556.346 M + Na 0.909 (0.829–0.959) 93.18 80.00 0.732

6-Keto-prostaglandin F1α ESI+ 668.909 371.242 M + H 0.897 (0.815–0.952) 88.64 82.22 0.709

17α,21-Dihydroxypregnenolone ESI+ 698.951 349.237 M + H 0.830 (0.735–0.901) 77.27 77.78 0.551

γ-Glutamylphenylalanine ESI- 283.958 293.113 M-H 0.823 (0.728–0.896) 77.27 80.00 0.573

RCC vs (BKT + HC)

3-β-D-Galactosyl-sn-glycerol — — — — 0.990 (0.953–0.999) 97.78 97.56 0.953

γ-Aminobutyryl-lysine — — — — 0.971 (0.924–0.992) 86.67 95.12 0.818

7,8-Dihydroneopterin — — — — 0.928 (0.868–0.966) 95.56 78.05 0.736

LPC 19:2 — — — — 0.879 (0.808–0.930) 93.18 71.60 0.648

(RCC + BKT) vs HC

3-β-D-Galactosyl-sn-glycerol — — — — 0.763 (0.679–0.834) 65.06 93.18 0.582

γ-Aminobutyryl-lysine — — — — 0.692 (0.604–0.771) 48.19 97.73 0.459

7,8-Dihydroneopterin — — — — 0.691 (0.602–0.770) 63.86 72.73 0.366

LPC 19:2 — — — — 0.803 (0.722–0.869) 81.48 70.45 0.519

Note: HC, healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma; Rt, retention time; m/z, mass-to-charge ratio; LPC, lysophosphaticholine; AUC, area under ROC, curve;

95%CI, 95%confidence interval; Se, sensitivity; Sp, specificity; YI, youden index.
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FIGURE 5
ROC analysis of candidate biomarkers. (A) ROCanalysis of candidate biomarkers for discriminating RCC fromBKT. (B)ROC analysis of candidate
biomarkers for discriminating RCC from HC. (C) ROC analysis of candidate biomarkers for discriminating RCC from BKT and HC. (D) ROC analysis of
candidate biomarkers for discriminating RCC and BKT from HC. HC, healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma. LPC,
lysophosphatidylcholine.

TABLE 4 Significantly differential metabolites of RCC vs. BKT groups and RCC vs. HC groups.

Group FC VIP P Trend Pathway

RCC vs. BKT

3-β-D-Galactosyl-sn-glycerol 0.296 3.723 <0.001 ↓ Galactose metabolism

γ-Aminobutyryl-lysine 0.425 4.769 <0.001 ↓ Amino acid metabolism

7,8-Dihydroneopterin 0.419 3.349 <0.001 ↓ Folate biosynthesis

LPC 19:2 0.589 4.611 <0.001 ↓ Glycerophospholipid metabolism

RCC vs. HC

3-β-D-Galactosyl-sn-glycerol 0.322 3.853 <0.001 ↓ Galactose metabolism

γ-Aminobutyryl-lysine 0.485 3.687 <0.001 ↓ Amino acid metabolism

7,8-Dihydroneopterin 0.500 3.167 <0.001 ↓ Folate biosynthesis

LPC 19:2 0.441 3.239 <0.001 ↓ Glycerophospholipid metabolism

6-Keto-prostaglandin F1α 2.800 3.042 <0.001 ↑ Arachidonic Acid Metabolism

17α,21-Dihydroxypregnenolone 2.119 2.722 <0.001 ↑ Steroid hormone biosynthesis

γ-Glutamylphenylalanine 1.932 1.659 0.006 ↑ Amino acid metabolism

Note: HC, healthy control; BKT, benign kidney tumor; RCC, renal cell carcinoma; LPC, lysophosphatidylcholine; FC, fold change; VIP, variable importance for the projection.
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correlation with eGFR (r = 0.202, p = 0.023). Although the

correlation coefficient is weak (Akoglu, 2018; Schober et al.,

2018), these results indicated that the reduced serum levels of

3-β-D-Galactosyl-sn-glycerol, 7,8-Dihydroneopterin and LPC

19:2 in patients with RCC may have a certain degree of

correlation with kidney impairment and dyslipidemia.

4 Discussion

RCC is ametabolic disease and analyzing its metabolic profile

is essential for identification of biomarkers. Metabolomics based

on UPLC-MS/MS technology have been widely used to explore

new biomarkers of diseases (Liu et al., 2019b; Crestani et al., 2020;

Wilkinson et al., 2020; Ai et al., 2022). Studies have shown that

comparing with plasma samples. Serum can avoid the influence

of anticoagulants on the concentration of certain metabolites

(such as amino acids) compared to plasma samples, and the

higher concentration of metabolites in serum may provide more

sensitive results in biomarker detection, so the metabolomic

analysis of serum samples may be more reliable than plasma

samples (Yu et al., 2011; Sotelo-Orozco et al., 2021). Take into

account this factor, serum was selected as the sample for this

study. We found that there were significant differences in serum

metabolic profiles among healthy subjects, patients with BKT,

and patients with RCC. The glycerophospholipid metabolism

pathway, D-glutamine and D-glutamate metabolism pathway,

phosphatidylinositol signaling system, glycerolipid metabolism

pathway, galactose metabolism pathway, and folate biosynthesis

were significantly abnormal in patients with RCC. In addition, 3-

β-D-Galactosyl-sn-glycerol, γ-Aminobutyryl-lysine, 7,8-

Dihydroneopterin, and LPC 19:2 were identified as potential

markers for the diagnosis of RCC.

Dysregulated lipid metabolism affects a variety of cellular

physiological processes, such as cell proliferation, differentiation

and motility, which are closely associated with cancer

transformation, progression and metastasis (Perrotti et al.,

2016; Butler et al., 2020). In the present study, most of the

markers screened from RCC were lipid and lipid-like

metabolites, among which serum levels of 3-β-D-Galactosyl-
sn-glycerol and LPC 19:2 were significantly reduced, while

serum levels of 6-Keto-prostaglandin F1α and 17α,21-
Dihydroxypregnenolone were significantly increased. The

reduced serum levels of lipid and lipid-like metabolites in

patients with RCC may be attributed to increased demand for

phospholipids by the rapidly proliferated cancer cells to generate

new cell membranes; and, the increased serum levels of lipid and

lipid-like metabolites may because the enhanced exogenous lipid

uptake and activated endogenous lipid synthesis in tumor cells to

provide energy (Butler et al., 2020). It is worth noticing that LPC

19:2 in serum has not been reported in the literature. In this

study, the retention time, MS1 and MS2 data obtained through

MS/MS analysis matched with the integrated database, and LPC

19:2 was identified. After metabolic pathway analysis, it was

found that LPC 19:2 involved in the glycerol phospholipid

metabolic pathway. Glycerophospholipid metabolism is one of

the important pathways of lipid metabolism in vivo, and changes

in glycerophospholipid levels may affect cellular function,

cytocytosis, cytospin, cytoskeletal regulation, and membrane

fusion (Wang et al., 2021b). Previous studies have found that

there is dysregulated glycerophospholipid metabolism pathway

in some cancers, such as gastric cancer (Yu et al., 2021),

hepatocellular carcinoma (Yu et al., 2022), prostate cancer (Xu

et al., 2021), non-small cell lung cancer (Chen et al., 2018),

ovarian cancer (Gan et al., 2020), colorectal cancer

(Gumpenberger et al., 2021), and pancreatic ductal

adenocarcinoma (Martin-Blazquez et al., 2020). In this study,

we found altered glycerophospholipid metabolism pathway in

patients with RCC, further confirming that the

glycerophospholipid metabolism pathway may be associated

with the occurrence of RCC. However, the mechanism

underlying the altered the glycerophospholipid metabolic

pathway in RCC needs further study. In addition, abnormal

lipid metabolism in RCCmay also be due to abnormal expression

of key genes of lipogenesis, such as fatty acid synthase, ATP

citrate lyase, sterol regulatory element-binding protein 1, and

FIGURE 6
Normalized peak intensities of the four candidate biomarkers.
HC, healthy control; BKT, benign kidney tumor; RCC, renal cell
carcinoma. LPC, lysophosphatidylcholine. Normalization of peak
intensities is performed using the MetNormalizer method of
QC-based support vector regression analysis. QC, an aliquot
mixture of all serum samples processed in the same way as the
samples. Q1, 25th percentile; M, median; Q3, 75th percentile.
***p < 0.001.
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hydroxy acyl-CoA dehydrogenase alpha subunit (Heravi et al.,

2022). Further studies at gene level are needed to understand the

mechanisms.

Glutamine metabolism and glutamic acid metabolism are

one of the important pathways to obtain nutrients during the

growth and proliferation of cancer cells. Glutamine is not only

the nitrogen source for cancer cell biosynthesis (such as

nucleotide synthesis and protein synthesis), either directly or

indirectly by conversion to glutamic acid, but also a carbon

source for amino acid and fatty acid synthesis in cancer cells

(Altman et al., 2016). Additionally, it can be converted to α-
ketoglutarate to enter the tricarboxylic acid cycle, thus providing

energy for cancer cell growth and proliferation (Altman et al.,

2016). One study found (Shroff et al., 2015) that the metabolites

of the glutaminolytic pathway were elevated in RCC tissues

compared to normal kidney tissues, suggesting that RCC

survival may be related with glutamine metabolism.

Consistently, the current study confirmed that serum levels of

glutamic acid, which is involved in the D-glutamine and

D-glutamate metabolism pathway, were elevated in patients

with RCC. These findings indicate that elevated glutamic acid

in RCC may provide sufficient energy and substances for growth

and proliferation of RCC.

In this study, 3-β-D-Galactosyl-sn-glycerol, γ-Aminobutyryl-

lysine and 7,8-Dihydroneopterin were identified to be possible

potential biomarkers to distinguish patients with RCC from

patients with BKT and healthy subjects. The chosen kidney

function and lipid indicators for comparative analysis in this

study are commonly used in clinical diagnosis of kidney function

damage or to judge whether the blood lipid level is normal. They are

intermediate or end products of substance metabolism in the body.

Because of their high level in blood, they can be accurately detected

by conventional chemical analysis methods. In contrast, the new

biomarkers screened in this study were obtained by untargeted

metabolomics technology, which can only perform qualitative and

semi-quantitative analysis on the analyzed substances (that is, the

level of substance in the sample can only be estimated roughly

according to the peak height or area of the mass spectrum).

However, several potential biomarkers for diagnosis or

differential diagnosis of RCC, which were not previously noticed,

were found through the analysis of serum samples of subjects using

untargeted metabolomics technology in this study. Many studies

have also confirmed that untargeted metabolomics can

comprehensively and systematically analyze small molecular

substances in biological samples (Hou et al., 2020; Castelli et al.,

2022; Khoramipour et al., 2022), and it is an excellent analytical tool

for screening biomarkers at present. In this group of subjects, no

indicators consistent with the observed kidney function and blood

lipid indicators were found by UPLC-MS/MS method. This is

because we use untargeted metabolomics technology to screen

different markers in different settings. However, the observed

kidney function and blood lipid indicators have high

concentrations in each group we set, so they may be ignored as

non-differential indicators during the analysis. Some new

biomarkers related to them were also found. However, due to

different detection methods, the correlation between these new

biomarkers and any of the observed kidney function and blood

lipid indicators is not good enough. However, this is enough to show

that the reduced serum levels of 3-β-D-Galactosyl-sn-glycerol and
7,8-Dihydroneopterin in patients with RCC may have a certain of

correlation with kidney impairment and dyslipidemia. However, the

underlying mechanisms need further investigation. 3-β-D-
Galactosyl-sn-glycerol is involved in the galactose metabolism

pathway and it is reduced in the serum of patients with RCC.

TABLE 5 Correlation analysis of markers with common renal function and lipid indicators (r, P).

Compounds 3-β-D-Galactosyl-sn-glycerol γ-Aminobutyryl-lysine 7,8-Dihydroneopterin LPC 19:2

Urea (mmol/L) −0.159, 0.093 −0.029, 0.748 0.037, 0.680 −0.181, 0.042*

Cr (μmol/L) −0.268, 0.002* −0.095, 0.290 −0.214, 0.016* −0.222, 0.012*

UA (μmol/L) −0.084, 0.350 −0.074, 0.407 −0.002, 0.986 −0.041, 0.650

CysC (mg/L) −0.271, 0.002* −0.138, 0.123 −0.190, 0.033* −0.203, 0.023*

eGFR (ml/min/1.73m2) 0.271, 0.002* 0.138, 0.123 0.190, 0.033* 0.203, 0.023*

C1q (mg/L) 0.081, 0.367 −0.015, 0.869 0.006, 0.949 0.029, 0.746

NGAL (μg/L) −0.169, 0.063 −0.131, 0.152 −0.218, 0.016* −0.125, 0.173

TC (mmol/L) −0.057, 0.523 −0.054, 0.547 −0.015, 0.169 −0.101, 0.263

TG (mmol/L) −0.113, 0.204 −0.132, 0.138 −0.169, 0.057 −0.176, 0.049*

HDL (mmol/L) 0.084, 0.345 0.102, 0.255 0.104, 0.243 0.115, 0.203

LDL (mmol/L) −0.053, 0.555 −0.044, 0.626 0.044, 0.620 −0.150, 0.094

APO-A (g/L) 0.101, 0.262 0.102, 0.255 −0.063, 0.486 0.123, 0.173

APO-B (g/L) −0.071, 0.427 −0.076, 0.395 −0.007, 0.939 −0.168, 0.062

Note: LPC, lysophosphatidylcholine; Cr, creatinine; UA, uric acid; CysC, cystatin C; C1q, complement C1q; NGAL, neutrophil gelatinase-associated lipocalin; eGFR, estimated glomerular

filtration rate; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; Apo-A1, apolipoprotein A1; Apo-B,

apolipoprotein B. *p < 0.05.
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Lactose is hydrolyzed into to glucose and galactose in the intestine by

lactase (Forsgard, 2019), which can enter the circulation through the

same transporter in the intestinal epithelium and participate in

metabolism. The glucose requirements of cancer cells are greater

than those of normal cells because they mainly depend on aerobic

glycolysis for their energy source. Therefore, reduced serum levels of

3-β-D-Galactosyl-sn-glycerol metabolites involved in galactose

metabolism in patients with RCC may be attributed to the

competitive inhibition of galactose uptake in intestinal epithelial

cells. Although the 7,8-dihydroneopterin in other diseases has been

reported, the mechanism of its association with RCC occurrence

needs to be further investigated. 7,8-Dihydroneopterins are organic

compounds of biopterins and their derivatives, which have

antioxidant effects (Janmale et al., 2020). The current study

identified γ-Aminobutyryl-lysine, a dipeptide present in the

human brain, whose relationship with RCC has not been reported.

In this study, serum levels of 6-Keto-prostaglandin F1α, 17α,21-
Dihydroxypregnenolone and γ-Glutamylphenylalanine in RCC

patients were found to be elevated which may be potential

biomarkers to distinguish RCC patients from healthy individuals.

However, the diagnostic performances of these three biomarkers for

distinguishing RCC and BKTwere not good (all AUC<0.80, the data
were not displayed). 6-Keto-prostaglandin F1α belongs to the

prostaglandin and related compounds. Prostaglandin is

unsaturated fatty acids produced by the cyclooxygenase-catalyzed

arachidonic acid metabolism and is widely present in various vital

tissues and body fluids in humans. It is reported that

cyclooxygenase-2 overexpression in RCC may be associated with

metastasis of tumor cells, tumor invasion and angiogenesis

(Kaminska et al., 2014; Ching et al., 2020). Therefore, elevated 6-

Keto-prostaglandin F1α in RCC patients may be attributed to the

overexpression of cyclooxygenase. 17α,21-Dihydroxypregnenolone
belongs to the organic compounds known as 21-hydroxysteroids,

and is involved in steroid hormone biosynthesis pathway. Increased

serum levels of 17α,21-Dihydroxypregnenolone in patients with

RCC may be related to the expression and function of steroid

hormone receptors. These receptors can act as ligand-dependent

transcription factors or induce gene expression through ligand-

independent pathways and play an important role in tumor growth

and differentiation (Bennett et al., 2014). γ-Glutamylphenylalanine

is a dipeptide composed of γ-glutamic acid and phenylalanine,

which is a proteolytic breakdown product of larger proteins. It may

be formed by γ-glutamyl transpeptidase catalyzing the

transpeptidation between glutathione and the corresponding

amino acid. γ-glutamyl transpeptidase is an enzyme primarily

involved in cellular glutathione homeostasis, and although it has

been studied in other cancers, such as gastric cancer (Wang et al.,

2017), intrahepatic cholangiocarcinoma (Zhang et al., 2021),

hepatocellular carcinoma (Ince et al., 2020) and oral squamous

cell carcinoma (Mujawar et al., 2020), its mechanism of action in

RCC has not been reported. In addition, some compounds have not

been screened as potential diagnostic biomarkers of RCC in this

study, such as 21 Deoxycortisol, Dehydrocholic acid, Leucyl leucine,

Ethylene brassylate, Leu Ala OH and Leukotriene F4, etc. However,

they also show high FC, VIP scores and significant p-values.

Therefore, these compounds may also be worthy of attention

and further research.

In the screening process of biomarkers, it was found that some

compounds involved two or more metabolic pathways, such as

phosphatidic acid (PA) 23:2 and phosphatidylinositol (PI) 18:4, and

were associated with glycerophospholipid, phosphatidylinositol and

glycerolipid pathways. Since these biomarkers are provided by

database comparison, are they the intersections of metabolic

pathways or subset of other pathways? Unclear. Fortunately,

these substances have little significance for this study, so they are

only cared about very little. Although these metabolites are not as

important as those screened in this study, they actually involve some

metabolic pathways. Perhaps these metabolites could be related to a

certain disease in a particular way, but they cannot be observed in

this study. Similarly, in the process of pathway analysis, it is found

that some metabolic pathways only involve the changes of 1-

2 markers, for example, only PA 23:2 and PI 18:4 were hit to the

phosphatidylinositol metabolism pathway and only glutamic acid

was hit to the D-glutamine and D-glutamate metabolism pathway.

Although these substances were discovered by screening, the final

results only focused on 4 biomarkers, indicating that the changes of

1-2 compounds may not affect the changes of the whole metabolic

pathway. In addition, the changes in their quantity (peak intensity

and area of MS) of these substances are not large enough among the

different study groups. Therefore, they were not finally screened as

differential biomarkers.

Based on the above theories and research findings, we propose a

hypothesis: there are some changes in metabolic pathways of

substances in the body of RCC patients, which at least include

lipidmetabolism, amino acidmetabolism, galactosemetabolism and

folate biosynthesis. Studying the signal pathways involved in these

metabolic pathways may find a new way to explore the pathogenesis

of RCC. This study only provides a new way for screening

biomarkers for diagnosis and differential diagnosis of RCC. In

the follow-up study, we will verify and evaluate the diagnostic

performance of these potential biomarkers of RCC found in this

study through targeted metabolomic analysis technology based on

the research results, so as to explore the possibility of these

biomarkers in clinical practice.

5 Conclusion

In summary, this study analyzed serum metabolic profiles of

healthy subjects, patients with BKT and patients with RCC using

UPLC-MS/MS. Four potential biomarkers for the diagnosis of RCC

were screened by multivariate statistical analysis and ROC analysis,

namely LPC 19:2 involved in the glycerophospholipid metabolism

pathway, 3-β-D-Galactosyl-sn-glycerol involved in the galactose

metabolism, 7,8-Dihydroneopterin involved in the folate

biosynthesis and γ-Aminobutyryl-lysine, an amino acid
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metabolite. In addition to the above metabolic pathways, there may

also be changes in the phosphatidylinositol signaling system, the

D-glutamine and D-glutamate metabolism pathway, and the

glycerolipid metabolism pathway in patients with RCC. These

results suggest that the occurrence of RCC may be associated

with changes in lipid metabolism, amino acid metabolism,

galactose metabolism, and folate biosynthesis. These four

metabolites may become markers for the diagnosis or differential

diagnosis of RCC. However, this study is limited in the small sample

size and the lack of targeted metabolomics validation. Therefore,

follow-up studies with larger sample size and validation with other

omics such as genomics and proteomics are warranted to clarify the

metabolicmechanism of RCC and to further identify tumormarkers

for clinical application.
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