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This study aimed to evaluate the acute effects of aerobic and resistance

exercises on blood pressure and endothelial blood markers. We also

correlated post-exercise blood pressure response with baseline

cardiovascular parameters in middle-aged patients with hypertension. This

cross-sectional study randomized 54 volunteers into the aerobic exercise

group (AG, n = 27; 45.6 ± 7.7 years) or dynamic resistance exercise group

(RG, n = 27; 45.8 ± 8.4 years). Blood marker evaluation, cardiopulmonary

exercise tests, resting blood pressure monitoring, ambulatory blood pressure

monitoring (ABPM), flow-mediated dilatation monitoring, and body

composition evaluation were carried out. Exercise sessions were performed

to evaluate post-exercise hypotension (PEH) and endothelial marker responses,

in addition to post-exercise ABPM (ABPMex). This study is an arm of the study

whichwas approved by the local ethics committee (No. 69373217.3.0000.5347)

in accordance with the Helsinki Declaration and was registered at ClinicalTrials.

gov (NCT03282942). The AG performed walking/running at 60% of the reserve

heart rate, while the RG performed 10 exercises with two sets of

15–20 repetitions. The mean 24 h ABPM and ABPMex values showed no

significant statistical differences. Systolic and diastolic blood pressure

hypotension after aerobic and dynamic resistance were −10.59 ± 5.24/−6.

15 ± 6.41 mmHg and −5.56 ± 7.61/−6.20 ± 8.25 mmHg, respectively. For an

up-to-7 h assessment of resting pressure, there was a positive effect in the

aerobic group. The concentrations of nitrites/nitrates (NOx) and endothelin-1

(ET-1) did not change during hypotension. Moreover, PEH and ABPMex were

significantly correlated with baseline health variables. Thus, when middle-aged

patients with hypertension perform aerobic or resistance exercise, the NOx/ET-

1 pathway does not provide the best explanation for PEH. Finally, we found

associations between baseline cardiovascular variables and endothelial

vasoconstrictors with PEH.
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Introduction

Physical exercise is a non-pharmacological strategy that can,

directly and indirectly, assist in the treatment of hypertension.

Aerobic exercise promotes post-exercise hypotension (PEH),

even at low intensity and short duration (Kenney and Seals,

1993; Pascatello et al., 2016). However, the magnitude of this

phenomenon is inconsistent among studies following a dynamic

resistance exercise session. Recently, it was demonstrated that

PEH occurs after one or three sets of resistance exercises in

women with hypertension (De Freitas Brito et al., 2019).

Additionally, the magnitude of PEH seems to be associated

with the chronic effects of training and consequent resting

blood pressure values (Hecksteden et al., 2013; Brito et al.,

2018a). Thus, investigating the PEH phenomenon is relevant,

as this effect is important for chronic adaptation.

In the last decade, PEH has been investigated using different

aerobic exercise models in middle-aged patients with

hypertension (Augeri et al., 2009; Eicher et al., 2010; New

et al., 2013; Simoes et al., 2013; De Brito et al., 2015; Cunha

et al., 2016; Pescatello et al., 2016; Morales-Palomo et al., 2017;

Pescatello et al., 2017; Brito et al., 2018b; Da Silva et al., 2018;

Fonseca et al., 2018; Joubert et al., 2018; Neto et al., 2018;

Ramirez-Jimenez et al., 2018; Cilhoroz et al., 2019; Pimenta

et al., 2019). However, only one study has used heart rate

reserve to control exercise intensity (Ciolac et al., 2009). This

is important because reserve heart rate is recommended for

exercise intensity control in patients with hypertension (SBC,

2010a). However, only nine studies looking at the PEH following

resistance exercises in middle-aged patients with hypertension

were found (Tibana et al., 2013; De Freitas Brito et al., 2015;

Queiroz et al., 2015; Figueiredo et al., 2016; La Scala Teixeira

et al., 2017; Queiroz et al., 2017; De Freitas Brito et al., 2019;

Zafeiridis et al., 2019; Boeno et al., 2021). Regarding exercise

integrity control, the moderate fatigue method has been

suggested as an alternative to avoid concentric failure and

consequent blood pressure peaks during resistance exercise

sessions (Queiroz et al., 2015; La Scala Teixeira et al., 2017;

Queiroz et al., 2017; De Freitas Brito et al., 2019). Additionally,

PEH is usually measured for a short period of time, and studies

showing ambulatory blood pressure monitoring (ABPM)

responses to different exercise modalities are needed. (Cardoso

et al., 2010; Carpio-Rivera et al., 2016; Casonatto et al., 2016;

Coelho-Júnior et al., 2022).

The physiological mechanisms by which exercise promotes

PEH suggest decreased cardiac output (CO) and peripheral

vascular resistance (PVR). Patients with hypertension present

with an exacerbated sympathetic tone, while baroreflex control

and endothelial function are impaired. Consequently, the PVR

may be affected, and a decrease in CO can be facilitated (Brito

et al., 2014). However, the literature presents two important

mechanisms for lowering blood pressure: 1) immediate post-

exercise hyperemia and 2) sustained post-exercise vasodilation

(Halliwill et al., 2013; Romero et al., 2017). Therefore, the balance

between the vasodilators and vasoconstrictors is important. This

balance may be associated with PVR to explain the physiological

mechanisms of PEH.

Endothelium-derived substances, such as nitrites/nitrates

(NOx) and endothelin-1 (ET-1), are important markers of

vascular tone homeostasis (Shah, 2007; Green et al., 2011).

However, in the context of hypertension, endothelial tissue

may present with functional impairments, such as reduced

bioavailability of nitric oxide (NO) and increased ET-1

concentrations, compromising the endothelium’s ability to

respond to hemodynamic stimuli (Green et al., 2011;

Konukoglu and Uzun, 2017). In this way, prehypertensive

subjects who performed aerobic exercise for 30 min presented

with PEH; however, NOx levels remained unchanged until 2 h

after session cessation (New et al., 2013). In contrast, a recent

study by our group showed increased ET-1 levels after high-

intensity dynamic resistance exercises in sedentary men.

Individuals who performed moderate-intensity exercise

demonstrated increased flow-mediated dilation (FMD) at

30 min and NOx levels immediately after the workout session

(Boeno et al., 2019).

To the best of our knowledge, no studies have investigated

the balance between NO and ET-1 derived from the endothelium

during PEH in middle-aged subjects with hypertension under

antihypertensive drug treatment. Therefore, the present study

aimed to evaluate the effect of a single session of aerobic and

dynamic resistance exercise on clinical, ABPM, and endothelial

marker levels in middle-aged patients with hypertension.We also

sought to correlate post-exercise blood pressure responses with

the baseline parameters of lipid profile, endothelial function, and

endothelial markers.

Materials and methods

Study population

Participants were recruited from the community using flyers

and advertisements on the radio/internet, in newspapers, and in

magazines. A total of 182 individuals met the preliminary study

criteria and were invited to complete laboratory screening. They

were fully informed about the study procedures and potential

risks/benefits, and they gave written informed consent. An

interview was conducted to confirm the eligibility criteria.
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This included a comprehensive medical history and information

regarding medication use and exercise participation (Figure 1).

Men and women with hypertension aged 30–59 years, who

were receiving at least one antihypertensive drug, were enrolled

in the study. Patients were excluded based on the following

criteria: 1) body mass index ≥40 kg/m2; 2) participation in

regular exercise training of any type in the previous 6 months;

3) symptomatic peripheral arterial occlusive disease; 4) aortic

insufficiency or stenosis greater than stage I; 5) hypertrophic

obstructive cardiomyopathy; 6) congestive heart failure (NYHA

II); 7) uncontrolled cardiac arrhythmia with hemodynamic

relevance; 8) change in antihypertensive drugs in the

preceding 4 weeks and during the study, 9) unstable coronary

artery disease, or 10) the use of tobacco products.

Participants’ characteristics are presented in Table 1. Fifty-

four participants (24 women and 30 men) were randomized

(https://www.randomizer.org/) into two experimental groups:

the aerobic group (AG) and the dynamic resistance group

(RG). In addition, the individuals in the experimental groups

were their own controls, called aerobic control (AC) and

resistance control (RC), respectively. The examiner was

blinded to the group assignment of the patients and did not

participate in the intervention. This study is an arm of the study

which was approved by the local ethics committee (No:69373217.

3.0000.5347) in accordance with the Helsinki Declaration and

was registered at ClinicalTrials.gov (NCT03282942).

Experimental design

This is a cross-sectional study. The primary outcome was

post-exercise blood pressure, and the secondary outcome was the

FIGURE 1
Flowchart of the recruitment, allocation, follow-up, and analysis of participants’ data processes.
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changes in the vasoactive substances of the endothelium after

exercise. Individuals who met the study criteria (n = 57) were

randomized into blocks of three according to peak oxygen

consumption (VO2peak), sex, and body mass index (BMI).

Follow-up data were accessed prior to the experimental

sessions: venous blood samples, resting blood pressure (72 h

without strenuous activities), cardiopulmonary exercise test

(CPET), FMD, and body composition. Subsequently, the

subjects randomly performed a control or exercise session.

Finally, an exercise session corresponding to that of the

experimental group was conducted. In both groups, the

subjects’ blood samples were collected following an exercise

session to evaluate endothelial vasoactive substances. Blood

pressure and heart rate were measured following exercise

before blood collection. Finally, the participants performed

ABPM after the exercise session (ABPMex). For the control

session, the subjects performed only ABPM.

Female participants were evaluated between days 1 and 7 of

their menstrual cycles to control for the potential influence of

hormonal fluctuations during the menstrual cycle (Farinha et al.,

2018). Data analysis of all the measures was performed by

investigators blinded to the allocation of the participants, and

the CPET was analyzed by two independent blinded researchers.

Exercise protocols

The participants were familiarized with the equipment and

exercise protocols for 1 week and then performed their respective

experimental conditions as described below.

The AG walked on a treadmill for 5 min to warm-up and

walked/ran for 45 min at 60% of the heart rate reserve. Heart rate

was monitored during the AG session using telemetry (Polar

Electro Oy, Kempele, Finland) (2010b, Thompson et al., 2013;

Pescatello et al., 2004). To perform the heart rate calculation, the

cardiopulmonary exercise test parameters were used.

The RG consisted of two sets (passive rest for 120 s) of

15–20 submaximal repetitions of bench press, leg press, lat

pulldown, leg extension, shoulder press, leg curl, biceps curl,

plantar flexion, and triceps extension exercises. To avoid pressure

peaks during the session, the participants performed the

maximum weight movement with a good technique (without

concentric failure). In addition, two sets of 15 repetitions of

abdominal exercises were performed (2010b, Thompson et al.,

2013; Pescatello et al., 2004).

We ensured that the training volumes of both the groups

were similar. The interventions were equalized over time

(approximately 50 min).

Blood pressure assessment

The individuals randomly performed a control or exercise

session. ABPM was performed in the control session and

ABPMex after the experimental (AG or RG) or control (AC

or RC) sessions. The evaluations were conducted at an interval of

at least 1 week.

Blood pressure was measured every 15 min during the day

and every 30 min at night for 24 h using a noninvasive automatic

ABPM system (Meditech KFT Ulloiút 200, H-1191 Budapest,

TABLE 1 Characterization of the middle-aged subjects with the hypertension sample submitted to an aerobic or strength exercise session.

Characteristics of subjects AG (n = 27) RG (n = 27) p value

Age (years) 45.6 ± 7.7 45.8 ± 8.4 0.89

Height (cm) 168.6 ± 9.4 167.1 ± 11.2 0.57

Women, n (%) 13 (48.1) 11 (40.7) —

Men, n (%) 14 (51.9) 16 (59.3) —

ARA, n (%) 7 (25.9) 9 (33.3) —

ECA, n (%) 6 (22.2) 3 (11.1) —

DIU, n (%) 1 (3.7) 3 (11.1) —

ARA + DIU, n (%) 6 (22.2) 4 (14.8) —

ARA + BB, n (%) 4 (14.8) 3 (11.1) —

ARA + DIU + CCB, n (%) 0 (0) 1 (3.7) —

ARA + DIU + BB, n (%) 0 (0) 1 (3.7) —

ECA + DIU, n (%) 1 (3.7) 0 (0) —

ECA + BB, n (%) 0 (0) 2 (7.4) —

ECA + DIU + BB, n (%) 1 (3.7) 1 (3.7) —

DIU + CCB, n (%) 1 (3.7) 0 (0) —

The therapeutic classes were grouped at absolute and relative frequency. Therapeutic class: ARA, angiotensin receptor antagonist; ECE, angiotensin-converting enzyme; DIU, diuretic; BB,

beta blocker; CCB, calcium channel blocker.

Frontiers in Physiology frontiersin.org04

Ramis et al. 10.3389/fphys.2022.993258

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.993258


Hungary). After this period, the individuals visited the laboratory

again for the removal of the equipment, and the recorded data

were analyzed using HYPERView 7.0.0 software (MICROMED

Biotechnology, Brazil) (O’brien et al., 2013). Nocturnal fall was

calculated as [(mean daytime-mean nighttime)/mean daytime] ×

100. From an hourly analysis, we used the longest time interval

for all participants to provide blood pressure data after the

exercise and control sessions.

In addition, office blood pressure and resting heart rate were

measured using a validated sphygmomanometer (Omron, HEM-

907, Japan), and data were obtained as recommended by the

Brazilian Guidelines (SBC, 2010b; SBC2, 2011). Additionally,

blood pressure was assessed immediately after the exercise

sessions. The participants remained in an air-conditioned and

quiet room in a sitting position for 30 min. Measurements were

performed immediately after the end of the exercise and after

15 and 30 min using an oscillometric monitor (Omron, HEM-

907, Japan) according to the manufacturer’s instructions.

Individuals were familiarized with office blood pressure

measurements. In addition, to minimize possible bias in the

measurements, it was performed during all the visits. Regarding

ambulatory measurements, all subjects performed a control

session of ABPM. Finally, ABPM was performed on the same

day of the week and time to minimize bias in relation to the

routine (De Brito et al., 2019).

Body composition

The anthropometric evaluation was based on anatomical site

markings and the measuring skinfolds technique, following the

standards of the International Society for the Advancement of

Kinanthropometry (ISAK); therefore, body composition was

calculated using a 5-componentmethod (Marfell-Jones et al., 2006).

The standing height, bodymass, and waist circumference were

measured using the standard anthropometric procedures. For

muscle thickness measurements, ultrasound images of the right

vastus lateralis (VL), rectus femoris (RF), vastus intermedius (VI),

vastus medialis (VM), biceps brachii, and brachialis muscles were

obtained, as we previously described (Ramis et al., 2018), using an

ultrasound system equipped with a 9.0 MHz linear-array

transducer (LOGIQ-E, GE Medical Systems, Milwaukee,

United States). Briefly, transverse images were acquired by an

experienced investigator with the ultrasound transducer placed

perpendicular to the surface of the thigh and arm, while care was

taken to avoid compression of the dermal surface. Three images

were acquired and exported to a personal computer for analysis by

the same investigator using ImageJ software version 1.42

(Maryland City, United States) (Ramis et al., 2018).

Cardiopulmonary fitness assessment

After performing the body composition evaluation, the

CPET assessment was scheduled for another day. VO2peak and

maximal heart rates were determined using an incremental

exercise test on a treadmill (Inbramed, Porto Alegre, Brazil).

The test consisted of a 5 min warm-up starting at 3 km/h and

increasing by 0.5 km/h each min to 5 km/h, followed by increases

in incline by 2% and speed by 1 km/h every min until volitional

exhaustion. Ventilatory parameters were measured continuously

breath-by-breath using an open-circuit spirometry system

(Quark CPET, Cosmed, Italy). Heart rate was measured

continuously using telemetry (Polar Electro Oy, Kempele,

Finland) (Rodrigues-Krause et al., 2018).

Endothelial function

Brachial artery FMD was measured according to established

guidelines (Thijssen et al., 2011), in a quiet, temperature-

controlled (22°C) room, following abstinence from alcohol and

caffeine intake for at least 12 h. An experienced investigator

imaged the brachial artery using a high-resolution ultrasound

system equipped with a 7–12 MHz linear-array transducer

(LOGIQ-E, GE Medical Systems, Milwaukee, United States).

The participant rested in the supine position with the non-

dominant arm extended and abducted at approximately 90°,

while the brachial artery was imaged 5–10 cm above the

antecubital fossa in the longitudinal plane using duplex mode.

Once an optimal image was acquired, the position was

maintained for the entire test, and images were recorded at

the baseline and after 5 min of ischemia. A blood pressure

cuff was placed around the largest part of the forearm and

TABLE 2 Evaluation of body composition, blood pressure, muscle
thickness, and maximum oxygen consumption in middle-aged
subjects with hypertension.

Variables AG (n = 27) RG (n = 27) p value

BM (kg) 96.40 ± 14.58 92.83 ± 17.32 0.46

BMI (kg/m2) 33.85 ± 4.01 33.09 ± 4.25 0.50

AM (kg) 31.49 ± 6.29 30.88 ± 5.20 0.69

MM(kg) 40.59 ± 7.72 38.73 ± 9.97 0.44

Waist circumference(cm) 100.46 ± 10.27 98.90 ± 11.11 0.59

Hip circumference(cm) 113.10 ± 9.40 110.39 ± 8.82 0.27

SBP rest (mmHg) 124.57 ± 10.10 125.29 ± 10.93 0.80

DBP rest (mmHg) 77.72 ± 10.88 78.18 ± 10.35 0.87

HR rest (BPM) 71.38 ± 9.11 71.97 ± 12.64 0.84

VO2 (ml kg−1 min−1) 26.62 ± 6.03 27.12 ± 6.09 0.76

Biceps (mm) 23.95 ± 5.38 22.15 ± 5.91 0.24

QUAD (mm) 81.07 ± 16.80 76.28 ± 13.81 0.22

BM, body mass; BMI, body mass index; AM, adipose mass; MM, muscle mass; SBP,

systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; QUAD.,

quadriceps sum; VO2, peak oxygen consumption; AG, aerobic exercise group; RG,

dynamic resistance exercise group.
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inflated to 250 mmHg for 5 min. Brachial artery B-mode images

and Doppler velocity waveforms were obtained continuously for

30 s before and 3 min after the cuff release using an angle of

insonation of <60°. Brachial artery images were analyzed by a

blinded investigator using FloWave.US (Coolbaugh et al., 2016).

Arterial diameters were measured as the distance (mm) between

the intima and lumen interfaces of the near and far walls. The

blood flow was calculated as follows:

BF (ml/min) � blood velocity · π · (vessel diameter
2

)
2

· 60.
(1)

FMD was calculated as follows:

FMD (%) � [(peak diameter − baseline diameter)]p100
baseline diameter

. (2)

Blood collection and analyses

Venous blood samples were drawn into 4 ml EDTA

anticoagulant tubes. After centrifugation, plasma aliquots were

frozen at −80°C for further analysis. After at least 10 h of fasting

(basal analyses), blood was drawn to determine the ET-1,

prostacyclin (PGI2), thromboxane (TXA2), NOx, glucose, high-

density lipoprotein (HDL), low-density lipoprotein (LDL), total

cholesterol, and triglyceride levels. Regarding the exercise sessions,

blood draws were performed before (pre-exercise), immediately

after exercise (Sponton et al., 2014), and 30 min after the session

for the measurement of ET-1 and NOx concentrations. ET-1 was

determined using ELISA, according to the manufacturer’s

instructions (BosterBio, Pleasanton, CA, United States). Plasma

levels of PGI2 and TXA2 were detected based on the presence of

their stable metabolites, 6-keto-PGF1 and TXB2, respectively,

using commercially available ELISA kits (Cayman, Ann Arbor,

United States), according to the manufacturer’s protocol. Nitrite

and nitrate (NOx) levels were measured using a colorimetric

method with commercially available kits (Cayman, Ann Arbor,

MI, United States). The absorbance of vascular parameters was

measured using a microplate reader (Multiskan Go, Thermo

Scientific, Waltham, United States). The glucose, total

cholesterol, HDL, and triglyceride levels were measured using

an automated analyzer (Cobas C111; Roche Diagnostics, Basel,

Switzerland), while the low-density lipoprotein (LDL) levels were

estimated using the Friedewald equation (Friedewald et al., 1972).

Statistical analysis

The sample size was calculated usingWinPEPI version 11.65.

To perform this calculation, we used preliminary data from our

pilot study (unpublished data). ABPM was the main outcome,

and the standard deviation of systolic blood pressure (SBP) at

24 h was 6.7 mmHg. To provide 80% power to detect a difference

of 2 mmHg between the two groups, a total of 60 individuals

would be required to sufficiently power the study.

Data were structured and analyzed using the IBM SPSS

statistical package (Statistical Package for Social Sciences, version

22.0, IBM, United States). The Shapiro–Wilk test was performed to

verify data normality, while the analysis of the homoscedasticity of

variances and sphericity was determined using the Levene’s and

Mauchly’s tests, respectively. When comparing the two

experimental groups, Student’s t-test was used for independent

data on variables with parametric distribution, and the

Mann–Whitney U test for variables with non-parametric

distribution. The area under the curve (AUC) of mean blood

pressure (MBP) was calculated using the trapezoidal method by

subtracting the basal levels of MBP from each evaluation point. The

comparison of the data withmore than onemoment was performed

using the model of generalized estimation equations (GEE),

adopting the factor group (two stratifications) and time (two,

three, four, or seven stratifications). When necessary, the

Bonferroni post-hoc test was used to locate the differences. All

results are expressed as mean and standard deviation or standard

error, and the significance level was set at 5%. The variables of

interest were correlated with PEH and ABPMex through the

Pearson or Spearman test and were classified as small (0.3–0.5),

moderate (0.5–0.7), or large (≥0.7) correlation (Hinkle et al., 2003).

Results

Table 1 presents the characteristics of the sample and the use

of antihypertensives. There were no differences in body

composition, resting blood pressure, muscle thickness, and

TABLE 3 Biochemical variables related to vascular homeostasis, lipidic
profile, and flow-mediated dilatation in middle-aged subjects
with hypertension.

Variables AG (n = 27) RG (n = 27) p value

NOx (μM) 10.46 ± 4.54 10.58 ± 4.15 0.92

ET-1 (pg/ml) 6.04 ± 1.06 5.97 ± 0.92 0.76

Prostacyclin (pg/ml) 6.38 ± 3.41 4.92 ± 2.06 0.11

Thromboxanes (pg/ml) 139.14 ± 100.77 153.87 ± 144.57 0.74

Glucose (mg/dl) 96.69 ± 9.83 96.58 ± 9.20 0.96

Triglycerides (mg/dl) 125.66 ± 45.19 124.89 ± 42.26 0.94

Cholesterol (mg/dl) 198.16 ± 37.31 205.64 ± 41.35 0.48

HDL (mg/dl) 38.34 ± 11.66 38.26 ± 11.95 0.97

LDL (mg/dl) 132.80 ± 38.69 140.51 ± 41.43 0.48

Basal Diameter (mm) 37.22 ± 5.95 37.71 ± 6.55 0.77

Peak diameter time (sec) 85.44 ± 15.84 82.33 ± 17.89 0.50

FMD (%) 7.45 ± 3.35 7.26 ± 3.25 0.85

NOX: nitrite and nitrates; ET-1, endothelin-1; HDL, high-density lipoprotein; LDL, low-

density lipoprotein; FMD, flow-mediated dilation; AG, aerobic exercise group; RG,

dynamic resistance exercise group.
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VO2peak (Table 2). Additionally, no differences were found in

endothelium-derived substances, lipid profiles, or FMD

(Table 3). Table 4 presents the results for the mean 24-h

ABPM and ABPMex values. No differences in ABPM or

ABPMex were found between the groups. Regarding daytime,

the average heart rate (HR) in the AG was higher in ABPMex

than in ABPM. Higher percentages of falls in nighttime HR and

rate pressure product were observed after ABPMex when

compared to ABPM. In the AG, average drop in HR and rate

pressure product after ABPM were 8.58 ± 8.19% and 19.62 ±

10.81% to 15.15 ± 7.15% (p < 0.0001) and 25.45 ± 10.05% (p =

0.019) in the ABPMex, respectively. On RG, average drop in HR

and rate pressure product after ABPM were 10.44 ± 7.36% and

21.14 ± 10.94% to 14.47 ± 9.09% (p = 0.042) and 24.83 ± 9.45%

(p = 0.099) in the ABPMex, respectively (Table 4).

Figure 2 demonstrates that differences between moments

occurred in both groups in terms of SBP. In the AG, differences

were found among all moments. In the RG, the pre-exercise value

was different from the post and 30 min values, whereas the post-

exercise value led to differences when compared to the 15 and

30 min values after exercise. The DBP responses after an aerobic

exercise session showed some significant changes, but no changes

were found in response to strength exercise. In the AG, there was a

DBP decrease between pre and 30 min values (p = 0.023), while the

values of the post-exercise moment were different at 15 and 30 min

post-exercise. In the AG, HR differed among all moments.

Regarding HR, the pre-exercise value in the RG was different

from those post-exercise and 15 min, while the post moment

showed a difference between the 15 and 30 min values after the

exercise. Finally, the 15 min moment was different from that at

30 min. Moreover, differences were found only in SBP-PEH. SBP

hypotension was −10.59 ± 5.24 mmHg and −5.56 ± 7.61 mmHg in

RG and AG (p = 0.007), respectively. DBP hypotension in AG and

RG was −6.15 ± 6.41 mmHg and −6.20 ± 8.25 mmHg, respectively.

No differences were found in MBP AUC between groups (GA:

94.10 ± 8.42 mmHg and GF:93.95 ± 6.25 mmHg).

TABLE 4 Ambulatory blood pressure at rest and post-exercise in middle-aged patients with hypertension.

Variables AG (n = 27) RG (n = 27) P group AG (n = 27) RG (n = 27) P group Time AG Time RG

24 h mean
(mmHg)

ABPM ABPMex

SBP (mmHg) 119.00 ± 8.66 119.95 ± 8.87 117.75 ± 6.00 120.26 ± 7.72

DBP 70.71 ± 7.96 72.80 ± 8.20 71.41 ± 6.36 73.51 ± 7.60

MBP 86.82 ± 7.42 88.57 ± 7.82 86.86 ± 5.42 89.09 ± 7.28

HR 74.34 ± 9.07 72.98 ± 10.31 74.95 ± 8.54 74.75 ± 9.34

RPP 8896.82 ± 1327.05 8827.79 ± 1545.93 8877.68 ± 1051.37 9072.97 ± 1437.37

Daytime (mmHg)

SBP 124.41 ± 9.45 125.56 ± 8.79 123.05 ± 5.57 125.40 ± 7.74

DBP 74.86 ± 8.98 77.15 ± 8.78 75.36 ± 6.48 77.42 ± 8.11

MBP 91.40 ± 8.41 93.36 ± 8.18 91.26 ± 5.16 93.41 ± 7.62

HR 76.66 ± 9.07* 75.94 ± 10.84 79.12 ± 9.26* 78.76 ± 10.23 p = 0.05 p = 0.06

RPP 9548.15 ± 1288.75 9566.83 ± 1585.39 9739.89 ± 1162.75 9916.05 ± 1551.88

Nighttime (mmHg)

SBP 109.17 ± 11.15 110.42 ± 11.64 107.74 ± 8.95 110.17 ± 10.53

DBP 63.09 ± 8.22 65.35 ± 8.91 63.80 ± 7.47 65.79 ± 9.25

MBP 78.45 ± 8.47 80.38 ± 9.27 78.45 ± 7.34 80.58 ± 9.24

HR 70.03 ± 10.20 67.83 ± 10.44 66.93 ± 8.44 67.03 ± 9.34

RPP 7690.77 ± 1596.06 7541.45 ± 1656.29 7235.76 ± 1184.71 7433.06 ± 1405.53

Nocturnal fall (%)

SBP 12.06 ± 8.42 11.97 ± 8.19 12.44 ± 5.81 12.09 ± 7.01

DBP 15.28 ± 9.60 14.95 ± 9.97 15.25 ± 7.56 14.81 ± 9.72

MBP 13.86 ± 8.67 13.71 ± 8.84 14.02 ± 6.45 13.61 ± 8.17

HR 8.58 ± 8.19* 10.44 ± 7.36** — 15.15 ± 7.15* 14.47 ± 9.09** p < 0.0001 p = 0.042

RPP 19.62 ± 10.81* 21.14 ± 10.94 25.45 ± 10.05* 24.83 ± 9.45 p = 0.019 p = 0.099

SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean arterial pressure; HR, heart rate; RPP, rate pressure product; AG, aerobic exercise group; RG, dynamic resistance

exercise group. *In AG time, the statistical differences (p < 0.05). **In RG time, the statistical differences (p < 0.05).
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FIGURE 2
(A–F) Responses of systolic blood pressure (A), diastolic (B), heart rate (C), systolic blood pressure hypotension (D), diastolic (E), and area under
the curve (AUC) of mean arterial pressure (MBP) (F), after an exercise session inmiddle-aged patients with hypertension. Subjects were classified into
the aerobic exercise group (AG) or dynamic resistance exercise group (RG). In GA, the statistical differences (p < 0.05) between moments of acute
exercise are represented with symbols in the lower portion of the Figure, **, PRE–POST; ‡‡, PRE—15 min; $, PRE—30 min; a, POST—15 min; °,
POST—30 min; &, 15 min—30 min. The symbol £ means that all moments had statistical differences between them. In RG, the statistical differences
between moments of the acute exercise with symbols in the upper part of the Figure, *, PRE–POST; †, PRE—15 min; ||, PRE—30 min; ‡,
POST—15 min; #, POST—30 min; §, 15 min—30 min.
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Figure 3 shows no differences in endothelium-derived

substances between the groups over time.

Figure 4 depicts differences between the AG and RG SBP at 1 h

post-exercise (116.70 ± 1.51 vs. 125.6 ± 2.25, respectively,

Δ = −8.93 ± 2.71), p = 0.006; AG and RC at 1 h post-exercise

vs. control (116.7 ± 1.51 vs. 126.6 ± 2.86, respectively, Δ = −9.89 ±

3.24), p = 0.014. Differences were found between values at rest and

1 h post-exercise inAG (124.85 ± 1.99 vs. 116.70 ± 1.51, respectively,

Δ = −8,15 ± 1,59; p < 0.001); 1 h post-exercise with 4 h post-exercise

(116.70 ± 1.51 vs. 124.41 ± 2.06, respectively, Δ = +7.70 ± 2.0; p =

0.003) and 1 h post-exercise with 5 h post-exercise in AG (116.70 ±

1.51 vs. 122.11 ± 1.76, respectively, Δ = +5.41 ± 1.64 p = 0.027).

Moreover, there were differences in values among that at 6 h post-

exercise with those at 4 h and 5 h post-exercise (119.11 ± 1.61 vs.

124.41 ± 2.06 and 122.11 ± 1.76, p = 0.022 and p = 0.020,

respectively); 3 h and 5 h post-exercise in AC (124.70 ± 2.32 vs.

117.81 ± 2.60, p = 0.016) under AG. Lastly, difference was found in

3 h vs. 5 h post-exercise values (124.70 ± 2.32 and 117.81 ± 2.53,

respectively, Δ = +6.89 ± 1.99, p < 0.016) in AC. For DBP, there was

no group or time interaction (p = 0.090).

Regarding MBP over the 7 h post-exercise session, Figure 5

depicts differences between groups at 1 h. Moreover, there is

difference between values at rest and 1 h post-exercise

(Δ = −5.20 ± 1.28, p = 0.001) and between 1 h and 4 h post-

exercise (Δ = −5.10 ± 1.38, p = 0.006). In the RC, differences were

found between values at 1 h and 5 h post-exercise (Δ = −5.53 ±

1.69, p = 0.031), 6 h post-exercise (Δ = −6.80 ± 1.73, p = 0.002)

and 7 h post-exercise (Δ = −7.12 ± 2.24, p = 0.041).

In addition to a pooled analysis, the subanalysis by sex of

both men and women showed reduced SBP after 1 h of aerobic

exercise compared with those pre-exercise (F and I, respectively).

Also, women showed a reduction in SBP after 7 h compared to

that in pre-exercise (K). In the grouped analysis, there was a

reduction after 5 h and 6 h of aerobic exercise execution

compared to that at the 4 h time point. However, this result

was maintained only in women (L and M). When the type of

exercise and time were fixed, men had higher SBP than women

6 h after the strength exercise (129.09 ± 2.29 and 118.19 ± 2.33,

p = 0.001A) (Supplementary Table S1).

Unlike in the pooled analysis, in the subanalysis by sex for

DBP presented in supplementary Table 2, differences were found

over time mainly for the aerobic control (B) and resistance

control (C, D, F, G, and H) groups. In the experimental

group, women who performed strength exercises showed a

reduction from hour 3 to hour 6 after the session (E)

(Supplementary Table S2).

For MBP (Supplementary Table S3), women who performed

aerobic exercise showed a reduction in MBP from pre- to the first

hour after exercise (A). In addition, women who performed

strength exercises showed a reduction after 6 h compared to

3 and 4 h after the session (B and C). There were no differences

between the types of exercise in both sexes; however, the

difference between men and women occurred 6 h after

strength exercise (G).

Notably, SBP hypotension (up to 30 min) after aerobic

exercise was negatively correlated with TXA2 (r = −0.436; p =

FIGURE 3
(A-D) Levels of endothelium-derived substances after an exercise session in middle-aged patients with hypertension. NOx, nitrites and nitrate;
ET-1, endothelin-1; Delta NOx, highest post–pre values; Delta ET-1, lowest post–pre value levels. AG, aerobic group (AG); RG, dynamic resistance
exercise group.
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0.02). SBP and DBP before exercise showed a negative correlation

with SBP hypotension after aerobic exercise (SBP: r = −0.454, p =

0.018; DBP: r = −0.578, p = 0.002). DBP hypotension after aerobic

exercise was correlated with SBP and DBP pre-exercise (SBP:

r = −0.446; p = 0.020; DBP: r = −0.570; p = 0.002). In contrast,

SBP hypotension after strength exercise showed a negative

correlation with SBP pre-exercise (SBP: r = −0.688; p <
0.0001) (Supplementary Table S4, S5).

After strength exercise, the average SBP at 24 h was correlated

with BMI (r = 0.433; p = 0.024), while the DBP 24-h mean was

correlated with TXA2 (r = 0.531; p = 0.004). The DBP of the

daytime mean after aerobic exercise showed a positive correlation

with VO2peak (r = 0.420; p = 0.029). In contrast, daytime SBP was

correlated with BMI (r = 0.436; p = 0.023) and TXA2 levels (r =

0.415; p = 0.031) after dynamic resistance exercise. A correlation

was also found between the daytime mean DBP and

TXA2 concentrations (r = 0.507; p = 0.007). The nighttime SBP

after aerobic exercise correlated with ET-1 delta (r = 0.476; p =

0.012), VO2peak (r = −0.432; p = 0.024), and BMI (r = 0.512; p =

0.006). The average nighttimeDBP also correlated with ET-1 levels

(r = 0.517; p = 0.006). Finally, after dynamic resistance exercise, a

correlation was found between mean DBP and FMD (r = −0.410;

p = 0.034) (Supplementary Table S4, S5).

Discussion

This study aimed to investigate whether acute aerobic

and resistance exercise sessions affect ABPM and NOx/ET-

1. In addition, possible correlations between the baseline

variables of middle-aged subjects with hypertension with

PEH and ABPMex effects were investigated. Both groups

presented with SBP-PEH, although a more pronounced

hypotension was observed after aerobic exercise.

Additionally, only the AG showed DBP hypotension

(only clinical blood pressure). Ambulatory blood pressure

did not differ between exercise (AG or RG) and control (AC

and RC) sessions for 24 h. For the assessment of resting

pressure for up to 7 h, there was a positive effect for the

aerobic group. Similar concentrations of ET-1 and NOx up

to 30 min post-exercise were observed between the AG

and RG.

FIGURE 4
Comparison of AG and RG (A,B), AG and AC (C,D), and RG and RC (E,F) (for SBP, DBP, respectively) across the 7 h. AC—aerobic control;
AG—aerobic group; C—condition factor; CxT—interaction condition x time; DBP—diastolic blood pressure; GEE—generalized estimating equation;
RC—resistance control; RG—resistance group; SBP—systolic blood pressure; T—time factor. (A) difference between AG and RG (p = 0.006) in 1 h
post-exercise; (B) difference between rest and 1 h post-exercise in AG (p < 0.001); (C) difference between 1 h with hours 4 and 5 post-exercise
in AG (p = 0.003 and p = 0.027, respectively); (D) difference between 6 h with hours 4 and 5 post-exercise in AG (p = 0.022 and p = 0.020,
respectively); (E) difference between hour 3 and 5 post-control session in AC (p = 0.016).
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Office blood pressure and ambulatory
blood pressure

Mean daytime HR increased after an aerobic exercise session

compared to the rest in this study. Simultaneously, an increasing

tendency was observed in the RG, but the difference was not

statistically significant (p = 0.06). The literature shows that an

exercise session can reduce baroreflex sensitivity, which is usually

followed by an increased HR (Heffernan et al., 2007; Brito et al.,

2014). After an exercise session, both groups presented a

nocturnal HR decline compared to the rest. AG also

promoted a nocturnal decline in the rate pressure product. A

10% decrease in blood pressure during the nighttime in relation

to the daytime has an inverse relationship with cardiovascular

outcomes (Ben-Dov et al., 2007). However, the nocturnal

decrease in the rate pressure product was not related to the

SBP. This was due to the average HR increase during the daytime

after the effort, which influenced the decrease in the nighttime, as

the calculation of the fall takes these variables into account.

Finally, a single exercise session did not reduce the mean

ambulatory blood pressure relative to the rest.

The clinical blood pressure results of the present study

showed a reduction of −10.59 ± 5.24 and −5.56 ± 7.61 mmHg

in SBP, post-aerobic and resistance exercise, respectively,

pointing out differences between the groups for deltas. Both

groups also presented a 30 min decrease in SBP. On the other

hand, DBP showed a reduction of −6.15 ± 6.41 and −6.20 ±

8.25 mmHg, post-aerobic and resistance exercise, respectively;

with no difference between the groups. Differences between

moments were presented only in the AG (pre- and 30 min

post-exercise). Moreover, a reduction of −8.15 ± 1.59 in SBP

and −5.20 ± 1.28 in MBP at 1 h post-exercise was observed in the

AG. Finally, at 1 h post-exercise, SBP, MBP, and AG were

significantly lower than those in the RG. In addition to

scientific relevance, both groups present significant results in

clinical practice, as they have a potential effect on reducing

cardiovascular risk (Lewington et al., 2002), especially in

middle-aged individuals. For example, a 5 mmHg chronic

reduction in SBP has been associated with a 9% and 14%

decrease in mortality from coronary heart disease and stroke,

respectively (Stamler et al., 1989; Alpsoy, 2020). This could

amplify the beneficial effects of pharmacological treatment.

Our results are in line with the systematic review by Rivera

et al. (Carpio-Rivera et al., 2016), in which they stated that the

post-aerobic exercise hypotension was approximately −6.22/

−3.80 mmHg and after strength exercise was -3.36/-

2.73 mmHg, for SBP and DBP, respectively. When all

modalities were stratified for the population with

FIGURE 5
Comparison of AG and RG (A), AG and AC (B), and RG and RC (C) for MBP across the 7 h. AC—aerobic control; AG—aerobic group; c- condition
factor; CxT—interaction condition x time; GEE—generalized estimating equation; MBP—mean blood pressure; RC—resistance control;
RG—resistance group; T—time factor. a- difference between AG and RG (p = 0.006) for hour 1 post-exercise; b- difference between rest and hour
1 post-exercíse in AG (p = 0.001); c- difference between hour 1 and hour 4 post-exercise in AG (p = 0.006); d- difference between hour 1 with
hours 5, 6, and 7 post-exercise in RC (p = 0.031, p = 0.002, and p = 0.041, respectively).
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hypertension, PEH showed falls of approximately −8.13/

−3.02 mmHg. PEH has been widely studied in the literature

because it has an important effect on the prevention and

treatment of SAH. PEH seems to be of clinical importance

when some studies have demonstrated a correlation between

the magnitude of PEH and chronic adaptations of training on

resting blood pressure (Liu et al., 2012; Hecksteden et al., 2013).

Brito et al. (2018) suggested that PEH has a significant but small

protective effect on the cardiovascular system despite the

development of chronic adaptations and reduced

cardiovascular risk with the accumulation of exercise sessions

(Brito et al., 2018a). Nonetheless, in recent years, only five

investigations using an exercise prescription methodology

similar to that used in the present study have been found in

the literature. Only one study compared the effect of continuous

and interval aerobic exercise on 24 h ambulatory blood pressure

in treated patients with hypertension, and both groups had

reduced ambulatory blood pressure (Ciolac et al., 2009). In

contrast, four studies used the moderate fatigue method to

prescribe strength exercise in patients with hypertension, with

all of them presenting with PEH (Queiroz et al., 2015; La Scala

Teixeira et al., 2017; Queiroz et al., 2017; De Freitas Brito et al.,

2019).

Individuals treated with antihypertensive drugs exhibited a

negative association between pre-exercise blood pressure values

with SBP and DBP post-aerobic exercise hypotension. In the RG,

pre-exercise blood pressure was negatively associated only with

SBP-PEH. Our results disagree with those of Carpio-Rivera et al.

(2016), which showed that the PEH magnitude was independent

of the initial blood pressure levels. On the other hand, in a

systematic review by Casonatto and Polito (2009), the clinical

status of the individuals was related to the magnitude and

duration of PEH (Casonatto and Polito, 2009). Anyway,

patients with either normotension or hypertension presented

with PEH; however, the PEH was improved in subjects with a

higher initial blood pressure level (Forjaz et al., 2000).We suggest

that the main mechanism behind PEH in patients with

hypertension is the decrease in cardiac output (Brito et al.,

2014), whereas, in patients with normotension, the reduction

in PVR would explain PEH. As a means, the cardiac output

would remain high (Casonatto and Polito, 2009), and the

occurrence of PEH would be less.

Additionally, other baseline variables were associated with

post-exercise blood pressure outcomes. In the AG group, a

higher SBP nighttime mean post-exercise was associated with a

lower VO2peak or a higher individual BMI. Moreover, the lower

the FMD, the higher the mean DBP during the nighttime post-

strength exercise. Finally, in the RG group, individuals with

higher BMI presented an increase in the mean SBP 24 hours.

Thus, despite the acute benefits that exercise can promote, it is

perceived that physical training acts as a non-drug tool for

patients with hypertension, promoting chronic benefits in

maximum oxygen capacity, BMI, and endothelial function.

Training helps in systemic adaptations that improve

endothelial function and consequently facilitate the

reduction of PVR and blood pressure after exercise (Carpio-

Rivera et al., 2016). Thus, reducing and treating some risk

factors through better pharmacological and non-

pharmacological interventions can help in the treatment of

hypertension (Braunwald, 2014).

Vasoactive substances

Although patients with hypertension usually present with

endothelial dysfunction (Brito et al., 2014), l-arginine

supplementation combined with aerobic exercise can improve

the diastolic hypotensive response (Neto et al., 2018). In addition,

ET-1 also plays a negative role in the post-exercise vasodilator

response (Boeno et al., 2019). In the present study, the

concentrations of NOx and ET-1 remained unchanged until

30 min after the exercise protocols in middle-aged patients

with hypertension. Some studies have reported similar results

or even a decrease in endothelial function, which is explained by

greater sympathetic activity and higher production of reactive

oxygen species (ROS) (Goto et al., 2003; Phillips et al., 2011;

Polito et al., 2011; Birk et al., 2012; Dawson et al., 2013; Franklin

et al., 2014; Mcclean et al., 2015; Phillips et al., 2015). Literature

indicates that the endothelium plays an important role in the

control of blood pressure; however, in this context, it seems that

vasodilation does not depend on NO pathways. Thus, PEH could

be explained through a histamine-dependent pathway (Halliwill

et al., 2013; Brito et al., 2014; Romero et al., 2017).

Decreased endothelial function is associated with a decreased

release or bioavailability of vasodilatory substances due to

oxidative inactivation (Valko et al., 2007). In our study,

vasoactive markers were found to be associated with blood

pressure. Higher baseline thromboxane levels are associated

with higher SBP hypotension after aerobic exercise. Baseline

thromboxane levels showed a positive association with mean

DBP 24 h, mean SBP, and DBP daytime after resistance exercise.

Finally, after aerobic exercise, baseline ET-1 levels were positively

correlated with mean DBP. Thus, we understand that these

associations can justify our results; as previously seen, a

higher baseline blood pressure is related to higher PEH.

Moreover, the fact that thromboxane concentrations changed

the mean 24-h and daytime blood pressure may be related to the

modality since this happened only in the RG group. Resistance

exercise is believed to amplify the consequences of endothelial

dysfunction and has repercussions on the relationship between

baseline ET-1 levels and mean nighttime blood pressure. It has

recently been demonstrated by our research group that high-

intensity resistance exercise (80% 1RM) increases ET-1

concentrations (Boeno et al., 2019), whereas maximum

voluntary contraction is related to impaired FMD (Franklin

et al., 2014). However, moderate-intensity resistance exercise
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(50% 1RM) increases the bioavailability of NO and,

consequently, the FMD (Boeno et al., 2019), which is a safe

alternative for individuals with hypertension. Although these

associations have rational explanations, more investigations are

necessary, especially on PEH length, to the general clinical

condition of the individual and not only the resting blood

pressure before exercise.

Limitations and strengths

The present study has some limitations. Subjects were

under strict pharmacological treatment to lower blood

pressure, which may explain our results concerning the

absence of significant differences between the means of

ambulatory blood pressure after exercise and that at rest. In

addition, the participants did not access the FMD after the

exercise session. On the other hand, individuals were in the

normal blood pressure range before starting exercise sessions,

as recommended. The work also contains originality since no

studies with a well-controlled methodology have evaluated the

responses of office blood pressure, ambulatory blood pressure,

and vasoactive substances in middle-aged patients with

hypertension.

Conclusion

Aerobic and strength exercises promoted SBP-PEH, although

the AG group presented with higher hypotension. Simultaneously,

only aerobic exercise promoted DBP hypotension. In terms of

ambulatory blood pressure, only the AG experienced SBP and

MBP hypotension after exercise. Moreover, in middle-aged

patients with hypertension, in the face of aerobic or resistance

exercise, the NOx and ET-1 pathways were not activated; thus, it

did not provide the best explanation for PEH. Finally, we found

associations of characterization variables, mainly vasoconstrictive

products of the endothelium, with PEH and ABPMex. We cannot

confirm that these associations can affect PEH, and further studies

are needed.
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