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For years, ejection fraction has been an essentially ubiquitous measurement for

assessing the cardiovascular function of animal models in research labs. Despite

technological advances, it remains the top choice among research labs for

reporting heart function to this day, and is often overstated in applications.

This unfortunately may lead to misinterpretation of data. Clinical approaches

have now surpassed researchmethods, allowing for deeper analysis of the tiers of

cardiovascular performance (cardiovascular performance, heart performance,

systolic and diastolic function, and contractility). Analysis of each tier is crucial for

understanding heart performance, mechanism of action, and disease diagnosis,

classification, and progression. This reviewwill elucidate the differences between

the tiers of cardiovascular function and discuss the benefits of measuring each

tier via speckle tracking echocardiography for basic scientists.
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1 Introduction

Proper heart function is mandatory for the quintessential operation of the cardiovascular

system. Thus, for proper evaluation of cardiovascular performance, all constituents of heart

performance (systolic function, diastolic function, and contractility) must be assessed. An

increase in metabolic demand from the body (in situations such as exercise) mandates an

increase in cardiac output to meet this demand. The heart increases cardiac output in vivo via

three mechanisms: by the Bowditch effect (i.e., increasing heart rate), Starling’s Law of the

heart (i.e., increasing end diastolic volume), and through sympathetic (i.e., β-adrenergic)
stimulation (Klabunde, 2012). These influences on the heart utilize the cardiac reserve,

augmenting systolic and diastolic function. Contractility is a key contributor to systolic

function and cardiac reserve. Unfortunately, cardiovascular disease is the leading cause of

death in the world and proper evaluation of all aspects of heart performance is crucial in

determining the development and progression of heart disease (Tan, 1986). Thus, the in vivo

assessment of all tiers of cardiovascular performance, including left ventricular systolic and

diastolic function and contractility, is significant to understand how well the heart is

performing and its role in the development and progression of heart disease.
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1.1 The tiers of cardiovascular
performance

The overall health of cardiovascular performance (definition can

be found in Table 1) can be deduced by ejection fraction (EF) and

mean arterial pressure (MAP) (Eqs 1, 2). Indices of cardiovascular

performance are highly dependent upon preload, afterload, and

heart rate. Preload is measured by EndDiastolic Volume (EDV) and

afterload, or the systemic pressure to overcome for the heart to eject

blood, is correlated to MAP. A major contributor to poor

cardiovascular performance is heart disease (e.g, heart failure, HF).

The performance of the heart is complex and can be broken

down into systolic and diastolic function and contractility. Heart

performance is a subset of cardiovascular performance, and thus is

dependent upon preload, afterload, heart rate, and contractility.

Heart performance (definition can be found in Table 1) is measured

by cardiac output (CO), which takes into account the electrical and

mechanical function, or by stroke volume, which takes into account

only the mechanical function (Eqs 3, 4).

Systolic function (definition can be found in Table 1) can be

measured by fractional shortening, which is dependent upon

preload, afterload, heart rate, and contractility (Eqs 5, 6).

Diastolic function (definition can be found in Table 1) can be

measured by E/A ratio (measured by Doppler ultrasound) or E’/A’

ratio (measured by left ventricular wall velocity), whichmeasures the

ratio of early to late ventricular filling viamitral valve flow. E/A ratio

is dependent upon preload, ventricular compliance, and heart rate.

The definition of contractility is heavily debated. The

definition can be as complicated as “the preload, afterload

and length-independent intrinsic kinetically controlled,

chemo-mechanical processes responsible for the

development of force and velocity” (Muir and Hamlin,

2020). For this discussion, contractility is considered an

intrinsic property of the cardiomyocyte and is inherently

preload-, afterload-, and heart rate-independent. Hence,

contractility contributes to systolic function, which, along

TABLE 1 Definitions and measurements of the different tiers.

Tier Definition Parameter Methodology

Cardiovascular
performance

Determined by how well the pulmonary and peripheral vasculature and the heart are
functioning

Mean arterial
pressure

Tail cuff, catheter, telemetry

Ejection fraction M-mode, speckle tracking

Heart performance Determined by how the atria and ventricles are functioning, and is determined by
systolic and diastolic function

Cardiac output M-mode, speckle tracking

Stroke volume M-mode, speckle tracking

Systolic function Occurs when the ventricle is contracting, and is determined by heart rate, preload,
afterload and contractility

Fractional
shortening

M-mode, speckle tracking

dP/dtmax Intra-ventricular catheterization

Diastolic Function Occurs when the ventricle is relaxed and filling with blood, and is determined by
preload, heart rate and ventricular compliance

Mitral valve filling Speckle tracking, power doppler,
tissue doppler

Diastolic strain rate Speckle tracking

dP/dtmin Intra-ventricular catheterization

Contractility Innate ability of the heart to eject a SV at a given preload/afterload dP/dt/EDV Intra-ventricular catheterization

Strain Speckle tracking

Strain rate Speckle tracking

FIGURE 1
The Pyramid of Cardiovascular Performance. Affecting all
tiers except for contractility are heart rate and loading parameters
(preload and afterload). Cardiovascular performance
encompasses the function of all tiers and is thus the bottom
of the pyramid. Heart performance is a component of
cardiovascular performance. Systolic and diastolic function and
contractility are components of heart performance. However, AS
contractility is by definition an inherent, load and heart rate
independent characteristic of the myocyte, it sits at the top of the
pyramid, unaffected by heart rate or load like the other tiers.
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with diastolic function, contribute to heart performance,

which in turn contributes to cardiovascular performance.

Shown in Figure 1 are the different tiers (or factors) that

determine cardiovascular performance. Contractility is on top of

the pyramid since it is an independent variable (not affected by

load and heart rate independent) (Muir and Hamlin, 2020).

Contractility contributes to systolic function. Systolic and

diastolic function (both of which are load and heart rate

dependent) contribute to heart performance. Heart

performance contributes to cardiovascular performance.

Proper functioning of each tier is necessary for health. Hence,

as each tier is interconnected, to understand cardiovascular

performance and to be able to truly understand mechanisms,

classifications, and prognosis of disease it is vital that one

measures in vivo systolic and diastolic function and

contractility and not just cardiovascular performance (i.e., EF).

1.1.1 Tiers of cardiovascular performance in the
clinics

While there are multiple means to diagnose heart disease in

patients (physical exam, blood tests, noninvasive such as cardiac

imaging (echocardiography, CT scan, MRI, etc.), stress test,

electrocardiogram, and invasive such as angiography and

cardiac catheterization), a common choice for diagnosis is

echocardiography due to cost and ease. Typically, a special

emphasis is placed on EF, which can be calculated through a

multitude of techniques ranging in accuracy.

EF can bemeasured by short or long-axisM-mode, which follows

the displacement of the walls of the heart along a user-drawn line,

which has user-dependent error and is highly variable. The most

accuratemethod ofmeasuring EF is 3D echocardiography tomeasure

full LV chamber volume at systole and diastole (Lang et al., 2015).

Alternatively, the most accurate 2D method to calculate EF is

Modified Simpson’s method, also known as the Biplane of Discs

model recommended by the American Society of Echocardiography

(Lang et al., 2015). While this method does allow for an accurate

calculation of EF compared to traditional M-mode measurements, it

is rarely applied in basic research despite increased accuracy.While EF

varies in accuracy of quantification, it still is dependent on loading

parameters and heart rate.

EF is antiquated and often misstated as an assessment of systolic

function or contractility. This is incorrect as EF is highly preload- and

heart rate-dependent and thus cannot be a measure of contractility

(Kass et al., 1987). In vivo modulators of heart function (Bowditch,

Starling’s Law, and sympathetic) result in changes to preload, a

greater SV, and thus increased CO (Ricci et al., 1979; Sequeira and

van der Velden, 2015). These resultant changes in ventricular volume

are associatedwith corresponding changes in EF, since these volumes

are used in the calculation of EF (please see Section 5- Equations).

For example, with Starling’s Law, this is usually associated with a

decrease in EF (due to increased EDV even though SV increases),

while sympathetic stimulationwill increase EF (Mangano et al., 1980;

Stratton et al., 1987). Also, changes in EDV (i.e., Starling’s Law) will

result in changes in left ventricular end diastolic dimension and thus,

fractional shortening (FS). There is also a misconception in the field

that EF equates to systolic function. For example, a high EF is not

necessarily indicative of healthy or superior heart function and must

be interpreted in conjunction with SV. A high EF but with low SV

(due to low EDV) likely suggests a hypertrophic heart. Preservation

or improvement of EF is a common occurrence in models of

concentric hypertrophy, and often presents with comorbidities

such as hypertension, obesity, diabetes, renal dysfunction, etc

(Hieda et al., 2020; Mouton et al., 2020). Conversely, a low EF is

not necessarily indicative of worsened heart function, as the heart can

remodel both pathologically and physiologically to increase preload.

Physiological remodeling through exercise can cause decreased

baseline EF, but increased cardiac reserve (Roof et al., 2013). EF

is also highly afterload dependent (Kolh et al., 2003). Thus, theremay

be changes in EF that may not be due to altered heart performance

(i.e., hypertension). Further, a normal EF does not preclude changes

to heart performance, as there may be corresponding changes to

volumes. This can clearly be observed in HF, a syndrome in which

the heart cannot pump enough blood to meet the body’s

requirements. There are two classifications of HF: reduced

(HFrEF) or preserved EF (HFpEF). Since EF has been presumed

to be a measure of systolic function and/or contractility, HFrEF is

also known as systolic HF, while HFpEF is also known as diastolic

HF. However, there is both systolic and diastolic dysfunction in both

types of HF (Daubert Melissa, 2019; Pfeffer et al., 2019). Thus,

cardiologists realized that a better understanding of heart

performance (ventricular systolic function, diastolic function, and

contractility) was needed for better diagnosis and treatment for

cardiac patients as EF is insufficient.

Clinicians have implemented quantitative methods that

assess all tiers of cardiovascular function since the early 2000s

(Konstam and Abboud, 2017). Since its clinical

implementation, speckle tracking echocardiography (STE)

has been used on a day-to-day basis, resulting in earlier

diagnosis and therefore better treatment options for

patients (Pérez et al., 1992; Inaba et al., 2005; Ciarka et al.,

2021; Pastore et al., 2021). Clinicians have established proper

assessment of the tiers of cardiovascular function in

determining their treatment of human patients. This has

ultimately improved the understanding of cardiovascular

health and treatment.

1.1.2 Tiers of cardiovascular performance in
research

Researchers commonly perform standard methods of

echocardiography (M-mode measurements) and with good

reason. This method remains the simplest and cheapest

method to assess cardiovascular function over multiple

time points throughout an experiment, allowing for

assessment of progression of disease. However, this

method falls short of assessing all tiers of cardiovascular

performance. Specifically, standard echocardiography
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cannot assess diastolic function or cardiac contractility.

Researchers often revert to alternative methods of

assessing cardiovascular function, such as intra-left

ventricular catheterization for pressure-volume analysis

(PV loops) (Peterson et al., 2018). Although this method

does provide indices for all tiers of cardiovascular

performance (cardiovascular performance, heart

performance, systolic and diastolic function, and

contractility) with the added benefit of decreased load

dependence, it is unfortunately a terminal procedure.

Contractility is a difficult, yet necessary index to measure

in research settings. There is an abundance of wide-ranging

reasons that scientists need to properly measure contractility.

Clinicians have learned that in order to determine how the

heart is impacted through various treatments, proper

characterization of the cardiovascular system at all tiers is

essential. Inherently, contractility is an intrinsic property of

the myocyte. Excitation-contraction coupling (ECC) is the

process by which the cardiac myocyte contracts and changes

in myocyte contraction will alter contractility (Bers, 2002).

Hence to examine the in vivo effects of alterations to ECC

proteins (Wang et al., 2012; Nixon et al., 2013; Nixon et al.,

2014), signaling pathways targeting ECC proteins (Traynham

et al., 2012), etc. as potential therapeutic strategies for heart

disease, one should measure contractility to correctly

understand the resultant effects on systolic function,

diastolic function, heart performance, and cardiovascular

performance. Measuring in vivo contractility (and the

effects of Bowditch, Starling’s law, and sympathetic) is also

important in helping to ascertain disease mechanisms, testing

if new treatment strategies (i.e., drugs, devices, regenerative

medicine, etc.) will be beneficial, etc. Another traditional in

vivo measurement of contractility is performed via intra-left

ventricular catheterization to measure pressure-volume

changes in the heart. Indices such as dP/dtmax and dP/dtmin

(normalized to volume) reflect isovolumetric contraction and

relaxation and can be obtained from PV loops (Rhodes et al.,

1997). Unfortunately, as previously mentioned, this is a

terminal procedure.

Although this review is focused on contractility, with the

recent explosion of HFpEF, it is also vitally important to measure

diastolic function. Unfortunately M-mode echocardiography,

unlike STE, does not provide any measures of diastolic function.

2 Use and interpretation of
parameters of cardiovascular
function in research

Due to the small heart size and fast heart rate, there are a lack of

techniques to measure true parameters of heart performance in mice.

Thus researchers, all too frequently, misuse parameters of

cardiovascular performance, heart performance, systolic function,

diastolic function, and contractility. Often researchers revert to

using EF as a measure of systolic function or contractility. Other

commonly misused parameters include SV, MAP, CO, and FS (Eqs

2–5) which all are dependent upon contractility, but also on preload,

afterload, and heart rate, and thus, cannot be considered indices of

contractility (Lipshultz et al., 1994). Contemporary standards in the

field compel these measurements to be performed in vivo to enhance

the reliability, relevance, and translational aspects.

Thus, researchers should explore nonterminal procedures that

can properly evaluate of all aspects of heart function. Parameters of

cardiovascular performance, heart performance, systolic function,

diastolic function, and contractility with their proper

corresponding accurate measurement are listed in Table 1. Precise

measurements of all tiers individually are needed to fully evaluate

cardiovascular function. Technology has advanced to tools in which

this can now be performed by using speckle tracking

echocardiography. In fact, speckle tracking is already widely used

in the clinics. With technological advancement, these tools are now

available formeasurements in themost commonly used animalmodel

in research: the mouse. Thus, researchers should recognize that EF is

an antiquated measurement that poorly assesses heart function

because of its reliance on physiological parameters and instead

explore speckle tracking echocardiography.

3 Speckle tracking echocardiography

For basic research application, echocardiography has the

advantage of longitudinal measurements for changes in heart

function over time, rather than being the endpoint of an

experiment. Traditional methods of echocardiography acquisition

are often performed in M-mode, which traces the movement of the

heart walls that occurs on a line drawn through the left ventricle.

Besides misusing parameters obtained, this technique also introduces

many sources of error and variation between measurements (i.e., the

angle of the line drawn, the position of the probe in acquisition, the

consistency of the placement by the user between animals, etc.) as well

as sources of variation in analysis (Chukwu et al., 2008). Despite being

well utilized in clinics, echocardiography has only recently been

utilized to the full extent of its capabilities in basic research labs.

STEhas quantitative capabilities to trulymeasure systolic and diastolic

function and contractility (Marwick et al., 2009; Morris et al., 2012;

Oleynikov et al., 2018). STE uses B-mode, which is often the same

imagingmodality as anM-mode, but records a video clip of the entire

heart wall rather than movement along one line. Therefore, as an

averagemeasurement, STE provides data points along the entire heart

wall rather than only two fromM-mode, which increases its accuracy

as an indicator of heart function (Wang et al., 2018).

STE has only in recent years infiltrated basic cardiovascular

sciences as a means of measuring heart function in research models

(de Lucia et al., 2019). STE analysis performed on B-mode images

traces the naturally occurring acoustic markers in a cine loop of the

heart. Calculated from STE is displacement, velocity, strain, and
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strain rate in radial, longitudinal, and circumferential axes (see

Figure 2). The axes of cardiac strain are dependent upon

directionalities of the vector in the wall movement (Eq. 6).

Cardiac strain delineates the deformation of the myocardium

from diastole to systole, thus indicating systolic function. Strain

rate is the derivative of strain with respect to time, and thus has

distinct systolic and diastolic peaks (Eq. 7). Relative to EF, cardiac

strain exhibits less load dependence, and strain rate is the least load

dependent measurement of cardiac function thus far. Systolic strain

is preload and heart rate dependent while systolic and diastolic strain

rate have little preload dependence and no heart rate dependence

(Sutherland et al., 2004; Hoit, 2011; Salvo et al., 2015). Comparisons

between longitudinal, circumferential, and radial strain (and their

corresponding strain rates) with EF and pressure-volume derived

data reveal that strain and strain rate were weakly associated with

load (arterial elastance and EDV). Strain and strain rate are more

strongly associated with chamber elastance and contractility as

compared to EF, which has a modest correlation with arterial

elastance yet no correlation with chamber elastance (Zhang et al.,

2014). Other studies have correlated strain and strain rate with

pressure-volume loop- derived contractility indices, ESPVR (or End

Systolic Elastance- Ees) and diastolic indices, EDPVR, specifically

longitudinal strain and strain rate as well as circumferential strain

and strain rate (Park et al., 2016). Strain has been shown to be less

load dependent than EF, as well as have correlations with previously

established indices of load-independent function (Zhang et al.,

2014). Thus, unlike the variable effects of Bowditch effect,

Starling’s Law and sympathetic stimulation on EF (dependent on

which effect is larger- the increase in EDV or SV), the Bowditch

effect and sympathetic stimulation will increase strain, while there

will be little effect of Starling’s Law since strain measurements are

virtually load-independent (Boettler et al., 2005; Ferferieva et al.,

2013). Thus, STE has numerous benefits, with the major benefit

being that a truer measurement of the heart performance, systolic

function, diastolic function, and contractility. This method gives

researchers the ability to fully characterize the heart without

performing a fatal procedure and thus introduces the possibility

for longitudinal studies. Contrary to all other methods of measuring

cardiac function, STE also has the least user-dependent variability

for image acquisition (Muraru D et al., 2018).

Monitoring and maintaining a close to physiological heart rate

during measurements of heart function is incredibly important for

accurate recordings (Lindsey et al., 2018). Variability in heart rate

results in inconsistent measurements and difficulty comparing

experimental variables. Additionally, an increased heart rate

changes functional parameters (i.e., heart rate positively

correlates with SV) (Lindsey et al., 2018). The resting

physiological heart rate of a mouse averages around 600 BPM

and frame rates on most current echocardiography equipment

struggle to meet frame rates to obtain accurate measurements. A

frame rate of>100 fps is required for speckle tracking analysis which
improves with increasing frame rate (D’Hooge et al., 2000). Frame

FIGURE 2
Directional vectors of Cardiac Strain. Cardiac strain is measured in parasternal long axis and short axis. Long axis cine loops provide long axis
radial (in yellow arrows) and longitudinal strain (in green arrows). Short axis cine loops provide short axis radial (in yellow arrows) and circumferential
strain (in red arrows). Cartoon and anatomical views are provided.
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rates can be improved by reducing image width which decreases

scan size and improves tracing (Voigt et al., 2015). Additionally,

recent improvements in technology in the basic sciences field

(i.e., VevoF2, Visual Sonics) allows for frame rate acquisition of

up to 400 fps, making it easier to obtain and analyze speckle tracking

echocardiography at higher heart rates.

STE and its subsequent measurements also have the distinct

advantage of deciphering early onset of disease, specifically in certain

axes of strain. Circumferential strain and strain rate have been shown

to be sensitive enough to detect early onset of disease. Strain and strain

rate decrease earlier than EF, and thus can be used as earlier indicators

of onset of disease. Circumferential strain has also been indicated as

an independent predictor of negative outcomes and ventricular

remodeling after myocardial infarction (Hung et al., 2010).

Longitudinal strain also exhibits similar sensitivity to early onset of

disease and is an indicator of negative outcomes after MI. Thus

anothermajor advantages of STE in both humans and animalmodels

is the ability to decipher early onset of disease (Pastore et al., 2021).

STE can also elucidate regional functional measurements

(Pastore et al., 2021). Regional data is not only unavailable

through every other method of analysis, but can provide

quantification of models of heart disease, such as myocardial

infarction (i.e., infarct size) (Munk et al., 2010). For example,

global longitudinal strain has been shown to be more effective at

quantifying infarct size compared to standard echocardiographic

indices, such as EF and end systolic volume (Munk et al., 2010).

STE also provides indices of diastolic function from one data

acquisition and analysis, compared to the need for multiple

methods of measurement such as Power Doppler and

M-mode. STE can measure diastolic strain rate, which has

been shown to be advantageous over myocardial velocity and

blood flow velocity for assessment of diastolic function (Rivas-

Gotz et al., 2003; Wang et al., 2007). Additionally, analysis of

diastolic function through STE removes Doppler-associated

angulation errors and tethering artifacts of other diastolic

measurement techniques (Choudhury A et al., 2017).

In summary, STE is the superior method of in vivo analysis of

the tiers of heart performance, providing indices that measure

not only heart structure, but cardiovascular performance and

heart performance. Most importantly, STE is a nonterminal

procedure that can provide indices of contractility not

previously been accessible to basic research via

echocardiography.

4 Conclusion

The purpose of the heart is to pump blood to meet the

metabolic demands of the body. In order to meet these

demands, the heart needs healthy components of all aspects

of function, including proper systolic and diastolic function

and contractility. Proper evaluation of all the tiers are essential

for the determining mechanism of action, the development,

and progression of heart disease. A critical hallmark and

determining factor of heart disease is a blunted contractility

(Houser and Margulies, 2003), which significantly contributes

to systolic function, heart performance, and cardiovascular

performance. Thus, elucidating all contributing factors to

heart function (i.e., systolic and diastolic function and

contractility) is significant to understand how well the

heart is performing, mechanistic studies, and the possibility

to develop heart disease in animal models. STE is an accurate

and reliable method to measure all facets of cardiac

performance with one all-encompassing measurement.

Most importantly, STE is a noninvasive and nonterminal

procedure that can be repeated at multiple time points to

provide indices of contractility through longitudinal studies.

5 Equations

Ejection Fraction(EF) � EDV − ESV
EDV

*100% (1)
Mean Arterial Pressure � CO*Total Peripheral Resistance

� 2
3
DBP + 1

3
SBP (2)

Stroke Volume (SV) � EDV − ESV (3)
Cardiac Output(CO) � SV*Heart  Rate (4)

Fractional Shortening(FS) � (LVIDd − LVIDs)
LVIDd

*100% (5)

Cardiac Strain � L(t) − L(t0)
L(t0) *100% (6)

Cardiac Strain Rate � ΔL(t)−L(t0)
L(t0)
Δt

(7)
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