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CTG (cardiotocography) has consistently been used to diagnose fetal hypoxia. It

is susceptible to identifying the average fetal acid-base balance but lacks

specificity in recognizing prenatal acidosis and neurological impairment.

CTG plays a vital role in intrapartum fetal state assessment, which can

prevent severe organ damage if fetal hypoxia is detected earlier. In this

paper, we propose a novel deep feature fusion network (DFFN) for fetal

state assessment. First, we extract spatial and temporal information from the

fetal heart rate (FHR) signal using a multiscale CNN-BiLSTM network, increasing

the features’ diversity. Second, the multiscale CNN-BiLSM network and

frequently used features are integrated into the deep learning model. The

proposed DFFN model combines different features to improve classification

accuracy. The multiscale convolutional kernels can identify specific essential

information and consider signal’s temporal information. The proposed method

achieves 61.97%, 73.82%, and 66.93% of sensitivity, specificity, and quality index,

respectively, on the public CTU-UHB database. The proposedmethod achieves

the highest QI on the private database, verifying the proposed method’s

effectiveness and generalization. The proposed DFFN combines the

advantages of feature engineering and deep learning models and achieves

competitive accuracy in fetal state assessment compared with related works.
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1 Introduction

Many studies confirm that fetal hypoxia and acidosis are more likely to occur during

childbirth, leading to fetal asphyxia, brain damage, and even death (Muccini et al., 2022),

(Kanagal and Praveen, 2022), (Giussani, 2021). Continuous fetal monitoring during birth is

crucial for detecting early signs of fetal hypoxia and preventing irreversible damage. CTG

(cardiotocography) is a combined recording of fetal heart rate (FHR) and uterine contractions

(UC). These time-series signals comprise the features of fetal state. When FHR features

indicative of fetal oxygen deficiency are identified early, they can aid in fetal state prediction

(Gupta et al., 2022), (Al-Yousif et al., 2021) and decrease respiratory acidosis in newborns and

fetal brain injury (Castro et al., 2021), (Miller et al., 2021), (Gunaratne et al., 2022). CTG is

sensitive in predicting the acid-base balance of fetuses but lacks specificity in identifying fetal
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acidosis and neurological disorders. Due to the complexity of CTG

signals, visual interpretation based on guidelines result in diagnostic

errors. Additionally, owing to observer variability, the false-positive

rate of CTG is relatively high, leading to an increase in unnecessary

Cesarean deliveries (Garabedian et al., 2017), (Ogasawara et al.,

2021). The computerized data-driven analysis of CTG can assist

obstetricians in reducing subjective errors and making objective

medical decisions. There are two classification methods for CTG

signals: machine learning and deep learning (Georgieva et al., 2019).

Machine learning identifies essential morphological features by

imitating obstetricians’ inspection techniques (Nunes and Ayres-de

Campos, 2016). Baseline, acceleration, deceleration, and variability

are visual morphological features that represent the macroscopic

aspects of FHR pattern (Akkanapalli and Mudigonda, 2022).

Furthermore, several statistical approaches are used with machine

learning methods to recognize potential features of CTG signal

(Ponsiglione et al., 2021). On the one hand, there are several signal-

based approaches as follows. Nonlinear features, such as

Approximation Entropy (ApEn) (Pincus, 1995), Sample Entropy

(SampEn) (Richman et al., 2004), and Lempel Ziv Complexity

(LZC) (Lempel and Ziv, 1976), have been employed as diagnostic

features primarily for analyzing the nonlinearity and complexity of

FHR signal. Fetal heart rate variability (FHRV) offers essential

information on acidosis during delivery (Gatellier et al., 2021).

Long-Term Variability (LTV) and Short-Term Variability (STV)

have been developed mainly for FHRV analysis (Malik, 1996). On

the other hand, transform-based methods such as empirical mode

decomposition, discrete wavelet transform, and Fourier transform

have been applied to extract implicit CTG features (Cömert et al.,

2018b). Fetal state assessment also utilizes the features derived from

fast Fourier transform and continuous wavelet transform (Bursa and

Lhotská, 2017).

Machine-learning algorithms are applied to classify fetal states

after features are extracted and selected. Several classifiers have been

used, such as support vector machine (SVM), logistic regression,

K-nearest neighbors, random forest, and decision tree. Karabulut

and Ibrikci. (2014) classified CTG recordings using a decision tree.

Spilka et al. (2016) categorized fetal states by adopting a sparse subset

of features. Likewise, Subasi et al. (2020) conducted a study with the

same purpose while using more machine learning methods.

Differently, Cömert and Kocamaz. (2016b) sought to categorize

hypoxic fetuses. Cömert et al. (2018b) assessed fetal state through

SVM. They proposed an innovative image-based time-frequency

feature extraction method (IBTF) (Cömert et al., 2018a). Zeng et al.

(2021) used time-frequency features and an ensemble cost-sensitive

SVM classifier to classify CTG recordings. Nevertheless, machine

learning algorithms involve intricate feature engineering. The

model’s performance is primarily determined by the quality of

feature engineering, which has a heavy workload and is prone to

ignoring correlations between features.

Deep learning is a form of sophisticated machine learning that

employs neural networks. Deep learning does not require feature

extraction and selection, whose models extract useful features

automatically by training data. Li et al. (2018) and Ogasawara

et al. (2021) compared and analyzed the performance of

convolutional neural network (CNN) and traditional machine

learning algorithms for fetal state assessment. Their studies

indicated that CNN algorithms outperformed conventional

machine learning algorithms. Petrozziello et al. (2018) compared

the performance of RNN andCNN in assessing fetal states, and their

research suggested that CNN was more advantageous. Cömert and

Kocamaz. (2018) proposed using a short-time Fourier transform to

convert a signal into a visual for fetal state evaluation through CNN.

Zhao et al. (2019b) combined recursive graph and CNN in order to

turn signals into images that could be used to categorize fetal states.

It was shown that transforming signals into images and processing

them was a more effective way of predicting fetal hypoxia than

merely processing the signals. Das et al. (2018) then presented a

Long Short-TermMemory (LSTM) network to adjust the weights of

normal and pathological recordings and improve detection

accuracy. Ogasawara et al. (2021) employed CNN and LSTM

architecture for analyzing CTG time series. Liu et al. (2021)

proposed a CNN-BiLSTM network based on attention to

obtaining the complex nonlinear spatial and temporal

relationships of FHR. However, using a single-scale convolution

kernel in CNN may neglect some of the signal’s latent and timing

information. Unlike traditional CNN, the Multiscale Convolutional

Neural Network (MSCNN) network retains global and local

information synchronously. Moreover, MSCNN is capable of

increasing the accuracy of medical image segmentation and

provides an effective solution (Teng et al., 2019). Most studies

use single feature engineering or deep learning. Clinicians are

more likely to base their diagnosis on physiological parameters,

given the complexity of physiological phenomena influencing fetal

heart rhythm. Computer-aided CTG analysis can be a potential

solution for improving CTG interpretation accuracy (Sbrollini et al.,

2017).

Toward accurate and practical fetal state assessment, a

feature fusion network is introduced to capture the complex

features frow CTG signals. The chief contributions are

summarized as follows. 1) As far as we know, this work is the

first to use a deep feature fusion network (DFFN) that combines a

multiscale CNN-BiLSTM model with linear and nonlinear

features to improve the classification performance. 2) The

multiscale CNN-BiLSTM model simultaneously derives spatial

features and temporal information from CTG signals to capture

complex fetal vital signs. 3) We construct the JNU-CTG database

and use it to validate the generalizability of the proposed method.

Compared to other researches, the present method has the best

generalization performance.

2 Materials and methods

The public CTG database CTU-UHB and the private CTG

database Jinan University cardiotocography (JNU-CTG) are
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employed to demonstrate the validity of methods. We propose a

novel DFFN for fetal status assessment. A multiscale CNN-

BiLSTM network extracts spatial and temporal information

from FHR signal. The multiscale CNN-BiLSM features

combined with linear and nonlinear features is used to classify

fetal states.

2.1 Database description

In this study, we use 552 recordings from the public database

and 784 recordings from the private database for fetal state

assessment. There are two types of recordings: normal and

pathological. The recordings with pH < 7.15 are considered

pathological, while the rest are considered normal. CTU-UHB

is unable to provide UC signals of sufficient quality for this

experiment. This problem is also mentioned in the study of Zeng

et al. (Zeng et al., 2021), which select 469 UC signals from 552 UC

signals that meet the signal quality requirements (i.e., some UC

signals are available) and directly delete the missing parts of

469 UC signals, resulting in a discontinuity in the signal. For the

following reasons, UC signals are not used in this study: 1) A low-

quality UC signal will severely reduce classification accuracy. 2)

Most current studies use FHR signals for fetal state assessment. In

order to demonstrate the validity of the proposed method under

the same benchmark (i.e., without UC signal), we only use FHR

signal for fetal state assessment.

2.1.1 The public CTG database CTU-UHB
Based on clinical and technical criteria, the 552 recordings

are chosen from 9164 intrapartum recordings obtained at the

University Hospital in Brno, the Czech Republic (Chudáček et al.,

2014). The raw data recordings are publicly available in

Physionet (https://physionet.org/content/ctu-uhb-ctgdb/1.0.0/).

A summary of patient and labor outcome measure statistics is

also available in the database. Table 1 lists the statistical

properties of CTU-UHB database. The signal has a sampling

frequency of 4 Hz and a maximum recording time of 90 min. All

the records are singleton pregnancies with a signal loss of 50% or

less per 30-min time window and gestational weeks longer than

36 weeks.

2.1.2 The private CTG database JNU-CTG
The JNU-CTG database is developed to help with CTG

classification and fetal state evaluation. We use JNU-CTG

database to develop, test, and compare algorithms for automatic

CTG analysis. Table 2 summarizes the statistical properties of JNU-

CTG database. The recordings in JNU-CTG database were collected

between 2015 and 2020 at the obstetrics ward of the first affiliated

hospital of Jinan University. Intrapartum CTG recordings and

medical records are two main components of the data. The OB

TraceVue®system (Philips) stores all CTG recordings in an

electronic format in a proprietary form. Furthermore, the system

uses the anonymized unique identifier generated by the hospital

information system to match the CTG recordings and medical

records. To ensure the integrity and correctness of the database, data

that does not fit clinical criteria are removed. The selection

procedure is depicted in Figure 1.

Step 1: Unqualified recordings should be excluded according

to the following guidelines. 1) Recordings that lack maternal or

fetal medical records are eliminated. 2) A fetal state classification

involves pH value, which determines whether CTG recording is

normal or pathological. The fetal medical records without the

fetal umbilical artery blood pH are excluded.

TABLE 1 The statistical properties of CTU-UHB database.

Term Mean (Median) Minimum Maximum

Mother’s age (years) 29.6 18 46

Parity 0.43 0 7

Gravidity 1.43 1 11

Gestational age (weeks) 40 37 43

Gestational diabetes (True/False) 515/37

Delivery VB: 506 CS: 46

pH 7.23 6.85 7.47

BE −6.38 −26.80 −0.2

BDecf (mmol/L) 4.60 −3.40

Apgar 1 min 8.26 1 10

Apgar 5 min 9.06 4 10

Neonate’s weight (g) 3408 1970 4750

Neonate’s sex (Female/Male) 259/293

Signal Length (min) 60 55 95

Abbreviations: VB, vaginal birth; CS, cesarean section; BE, base excess; BDecf, base deficit in extracellular fluid.
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Step 2: We use the following criteria to determine which

CTG recordings should be included in the final database. 1)

Maternal age: Although maternal age plays a significant role in

the risk of congenital disorders, there are no significant

differences at delivery. The records with a low maternal age

(under 18 years) are excluded since there may have been an

adverse effect. 2) Gestational weeks: Fetal maturity

significantly impacts the morphology and behavior of FHR

before and during delivery. Thus, full-term fetuses are chosen

based on their last menstrual count (37 weeks of gestation),

determined by ultrasound measurements during prenatal

examinations.

Step 3: CTG recordings should comply with the following

rules to ensure quality. 1) The recording time for CTG is more

than 60 min 2) The loss rate of fetal heart rate signals is less than

15% per 30 min.

2.2 Signal preprocessing

In this paper, we use the FHR signal 20 min before delivery,

detect and interpolate the outliers, and finally obtain the FHR

signal required for the experiment. The 20-min FHR signal is

usually used to assess the state of a fetus in clinical practice since

TABLE 2 The statistical properties of JNU-CTG database.

Term Mean (Median) Minimum Maximum

Mother’s age (years) 29.3 18 44

Parity 0.26 0 2

Gravidity 1.61 1 8

Gestational age (weeks) 39 37 41

Gestational diabetes (True/False) 189/595

Delivery VB: 549 CS: 295

pH 7.20 6.82 7.42

Apgar 1 min 8.79 4 10

Apgar 5 min 9.87 5 10

Neonate’s weight (g) 3192 2000 4450

Neonate’s sex (Female/Male) 489/295

Signal Length (min) 186.7 60 545.6

Abbreviations: VB, vaginal birth; CS, cesarean section.

FIGURE 1
JNU-CTG database selection procedure.
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FHR signals closer to delivery are highly associated with fetal

hypoxia (Chudáček et al., 2011). In our study, we use 20-min

CTG recordings at the end of the first stage of labor. The signal is

divided into 20-min segments, has 4,800 samples, and is sampled

at a rate of 4 Hz.

Preprocessing is an essential step in almost all biomedical

signal processing applications. The value of extracted features

and classification performance are both affected by this

process. The main preprocessing processes are signal

fragment selection, outlier detection, and interpolation. Our

work uses the same FHR signal preprocessing method as AH

del’Aulnoit et al. (de l’Aulnoit et al., 2019) for outlier detection

and interpolation. These anomalous data points are

recognized first, eliminated, and replaced with a linear

interpolation between valid data points. Invalid data points

are defined as follows. 1) The signal values are outside the

acceptable range (50–220 bpm). 2) Abrupt and large

deviations in FHR signal (absolute value of two adjacent

points exceeding 25 bpm). A comparison of a signal (No.

1008 FHR signal) before and after preprocessing is shown

in Figure 2. It suggests that this interpolation technique is

capable of effectively removing noise.

2.3 Deep feature fusion network

A deep neural network works like a feature learning

process, where the initial input is abstracted step-by-step

through a hidden layer. As a result, it can extract more

valuable features from the original input data. An end-to-

end deep learning model extracts latent representation vectors

from the input FHR signal and automatically assesses the fetal

status based on this information. The proposed DFFN’s

structure is shown in Figure 3. The feature fusion network

receives the preprocessed FHR signal as input. The complex

invisible features in the FHR signal are extracted using a

multiscale CNN-BiLSTM network. The multiscale CNN-

BiLSTM network is used to obtain the deep neural network

feature vector. The multiscale features then are spliced with

the linear and nonlinear features. The fused features are

transmitted to the fully connected layer. A 32-dimensional

vector is extracted from the multiscale CNN-BiLSTM network

via a fully connected layer with 32 nodes. Training and testing

are relatively straightforward with the DFFN since multiscale

features and feature fusion are integrated into a network. The

DFFN framework consists of two stages of training. In the first

stage, we obtain the optimal model for each scale, and then we

extract the features of the residual block of each scale. In the

second stage, the multiscale, linear, and nonlinear features are

combined to train a new model. The fused features are input

into a new model that learns more discriminative features for

final classification. The hierarchy information in parallel is

used to calculate the corresponding weight through learning.

Consequently, the fused features tend to favor the features that

are useful for classification, which is the weight that indicates

the importance of multiscale features.

FIGURE 2
A comparison of a signal (No. 1008 FHR signal) before and after preprocessing. (A) is the original signal, whereas (B) is the denoised signal.
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2.4 Extracting multiscale CNN-BiLSTM
features

Figure 4 depicts the architecture of the multiscale CNN-

BiLSTM hybrid network. Multiscale CNN provides a greater

diversity of features than CNN. The multiscale CNN-BiLSTM

network contains one multiscale layer and three convolutional

layers. A batch normalization (BN), an exponential linear unit

(ELU), an average pooling layer, and a dropout layer follow each

convolutional layer. Dropout is valuable to the hybrid network

since it reduces overfitting and improves the model’s

generalization capabilities. The rate of dropout is 0.25. The

FIGURE 3
The proposed deep feature fusion network’s structure.

FIGURE 4
The architecture of multiscale CNN-BiLSTM network.
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hybrid neural network receives the preprocessed FHR signal as

input.

FHR signals have various waveforms, resulting in huge

differences between them. Therefore, it is difficult to choose a

suitable convolution kernel size for the convolution operation.

The single-scale convolutional kernel size limits network feature

extraction. FHR signals with more global information

distribution prefer larger convolution kernels, and FHR

signals with more local information distribution prefer smaller

convolution kernels. In multiscale layers, convolution kernels of

different sizes are employed to extract different information from

the FHR signal, and these operations are performed in parallel

and then merged to provide a more accurate representation. In

this paper, two convolution kernels of different sizes (KS = 32,

64) are used to extract features from the FHR signal, and the

extracted features are dimensionally spliced to fuse features of

different scales.

There is a particular type of recurrent neural network known

as LSTM, which is capable of solving the vanishing gradient

problem and learning long-term dependencies in neural

networks. The FHR signal is a time series. The classification

results will be more robust if information from past and future

time points is taken into account simultaneously. In standard

LSTM networks, sequences are processed chronologically, but

future point-in-time information is not considered. In this paper,

two independent hidden LSTM layers are combined in opposite

directions as BiLSTM to compensate for this weakness. With this

structure, the output layer is able to utilize information from past

and future time points. The spatial features of the FHR signal are

extracted using the multiscale CNN to enhance the variety of

features. The temporal information features are extracted using

the BiLSTM. The residual connection efficiently merges the

spatial and temporal information features. The gate

mechanism determines the transmission of information and

can learn relevant information regarding the current

information. The forget gate determines which information is

irrelevant for classification and should be discarded, the input

gate determines which information requires updating, and the

output gate decides which information to output.

2.5 Linear features

It has been a consensus for a long time that linear features

have been regarded as the primary indicators for evaluating FHR

signals. FHR linear features are the most efficient prognostic

indicators for detection of fetal distress (Cömert and Kocamaz,

2016a). The morphological and time-domain features constitute

the conventionally used linear features essential for interpreting

FHR signals (Cömert et al., 2018a) (Akkanapalli et al., 2022)

(Fergus et al., 2018).

Morphological features are the significant indicators to

ascertain fetal state in clinical practice. Obstetricians have

attempted to identify specific FHR patterns that can be seen

visually as morphological features (Haweel et al., 2021). Baseline,

acceleration, deceleration, and variability in short and long terms

represent the gross features of the FHR patterns (Cömert et al.,

2018a). In this paper, they are calculated based on FIGO

guidelines (Ayres-de Campos et al., 2015).

Stationary information of CTG signals is often measured

with time-domain features. In clinical practice, time-domain

features are easy to understand and recognize by clinicians

since they have good clinical interpretability. The time-

domain features are formulated as follows (Cömert and

Kocamaz, 2016a) (Zhao et al., 2018). Time-domain features

are physiologically closely related to physiological activities

such as fetal control mechanisms, sympathetic and

parasympathetic nerve activity, fetal movement, and fetal

respiration (Akkanapalli et al., 2022), (Feng et al., 2018).

FHRmean denotes FHR’s mean value, whereas FHRstd denotes

FHR’s standard deviation. x(i) is an FHR signal of lengthN, i = 1,

. . . , N.

FHRmean � �x � 1
N

∑N
i�1

x i( ) (1)

FHRstd �

�����������������
1

N − 1
∑N
i�1

x i( ) − �x( )2
√√

(2)

LTV and STV are two kinds of FHRV. LTV is critical to

determining the stability of fetal heart rate. A large LTV of the

FHR signal within 10 min may contribute to the instability of the

fetal intrauterine environment (Gonçalves et al., 2007). First, the

FHR signal is separated into 60-s segment blocks denoted by v(i)

to calculate LTV. The difference between these fragment blocks’

maximum andminimum values is then calculated as a sum. After

that, M is used to divide this value. The M represents the total

amount of minutes.

LTV � 1
M

∑M
i�1

max
i∈M

v i( )( ) −min
i∈M

v i( )( )[ ]] (3)

The difference in FHR signal between 2.5 s connected within

a minute is used to calculate STV, reflecting the FHR signal’s

variability due to beat-by-beat differences (Dawes et al., 1992).

Low STV has a direct correlation with the occurrence of

metabolic acidemia and imminent intrauterine death

(Kouskouti et al., 2018). The FHR signal is first divided into

2.5-s fragment blocks to calculate the STV. The mean sm(i) is

calculated for each fragment block, consisting of 10 sample

points. FHR signal frequency is 4 Hz. The difference between

the mean sm(i) and sm (i + 1) of two consecutive fragment blocks

is then calculated as the sum of the differences. Finally, M is

divided by this value.

STV � 1
24M

∑24M
i�1

|sm i + 1( ) − sm i( )| (4)
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LTI identifies a long-term irregularity. Calculate the square

root of the sum of sm(i) and sm (i + 1).M is divided by this value.

LTI � 1
24M

∑24M
i�1

����������������
sm i + 1( ) + sm i( )( )√

(5)

The interval index, denoted by II, indicates FHR variability

over a short period.

II � FHRstd

std sm i( )[ ] (6)

The absolute value of the FHR signal x(i) from the mean

value of the FHR signal. FHRmean is averaged to get FHRmean AD.

FHRmeanAD � 1
N

∑N
i�1

|x i( ) − �x| (7)

The deviation between the FHR signal value x(i) and the

median of the FHR signal (x(N)) is computed, followed by the

median of the absolute magnitude of the deviation FHRmedian AD.

FHRmedianAD � median |x i( ) −median x N( )( )|( ) (8)

2.6 Nonlinear features

Nonlinear analysis is conducted to identify the essence of

complex phenomena, effectively addressing the complexity of the

FHR time series. A nonlinear approach may reveal relevant

clinical information of FHR that cannot be revealed by

conventional time series analyses, such as abnormalities in

heart rate (Spilka et al., 2012). The methods of ApEn,

SampEn, and LZC for the analysis of nonlinear time series

have been found to increase the accuracy of the fetal status

assessment significantly (Zhao et al., 2019a), (Usha Sri et al.,

2020), (Marques et al., 2020). These features allow for the

measurement of FHR variability, which is beneficial for

clinically interpreting the fetal wellbeing during the final stage

of delivery (Georgoulas et al., 2006).

2.6.1 Approximate entropy
The degree of data disbandment in a system is calculated by

ApEn. ApEn is a nonlinear parameter that measures the

unpredictability and regularity of physiological time series. It

is used to assess the internal complexity of time series and

anticipate the possibility of new information arriving in them.

AN-length time series indicated by xn is divided by a collection of

m-length vectors represented by um(i). The um(i) and um(j)

vectors are then written as nmi (r) in terms of Euclidean sense

d[um(i), um(j)]≤ r. As stated Cm
i (r) � nni

N−m+1, the number is

used to compute the possibility of vectors being near. Define

the function: Φm(r) � 1
N−m+1∑N−m+1

i�1 lnCm
i (r). ApEn is defined

as follows.

ApEn m, r( ) � lim
N→∞

Φm r( ) −Φm+1 r( )[ ] (9)

2.6.2 Sample entropy
For the SN time series, SampEn is calculated by the same

process and metrics as ApEn. It provides a quantitative measure

of the complexity of time series, similar to ApEn. The

fundamental difference between the two methods is that

ApEn considers self-matches, whereas SampEn does not.

SampEn also has fewer biases. Due to the elimination of self-

matches, SampEn requires a lower computational time and is

remarkably independent of signal length. Its definition is as

follows.

SampEn m, r( ) � lnΦm r( ) − lnΦm+1 r( ) (10)

The m and r parameters are set to the same values as with

ApEn in our work: m = 4, r = 0.15, and r = 0.2.

2.6.3 Lempel ziv complexity
LZC predicts recurring patterns in time series. It is applicable

in the non-stationary signal. As a result, each time series may be

described with fewer data. The number of patterns in the

sequence is counted, and each time a new pattern emerges,

the complexity value c(n) increases by one. The upper

constraint on the complexity c(n) is known from the current

work, which is limn→∞c(n) � b(n) � N
logaN

, where a represents

the number of distinct patterns in the time series. To address the

issue of varying complexity caused by sequence length, the LZC is

defined as follows.

LZC � c N( )
b N( ) (11)

Our experiment use a 20-min FHR signal with a rate of 4 Hz

and a total data length of 4,800. N is set to 4,800 for

calculating LZC.

2.7 Performance metrics

Four umbilical artery pH cutoffs are used to categorize

fetuses as acidemic or non-academic: 7.05, 7.10, 7.15, and 7.20

(Castro et al., 2021). The pH value of 7.15 is determined as the

threshold value in this paper after extensive research

(Sholapurkar, 2020) (Singh et al., 2021). Blood with a pH of

less than 7.15 is regarded as hypoxia, whereas blood with a pH of

more than 7.15 is considered normal. This work uses a sigmoid

function to do binary classification for fetal status assessment

since its results are in two categories (hypoxia and normal). The

function’s input is the integrated expression of FHR signal

features fz. The p denotes the output. The function is

calculated as follows. The weight matrix is WP, and the bias

matrix is bP.
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P � sigmoid WP · fz + bP( ) (12)

The cross-entropy cost function is the loss function in the

training process. The expected output is y, and _y is the actual

output.

Loss � − y log _y + 1 − y( )log 1 − _y( )( ) (13)

We use the Sensitivity (SE), Specificity (SP), and Quality

Index (QI) calculated from the confusion matrix to assess the

proposed method’s performance. SP is the percentage of normal

samples that are correctly recognized. SE measures the

discriminative power of the model on hypoxic samples. QI is

defined as the geometric mean of SE and SP. An unbalanced

database can harm the overall performance of any classifier. The

ratio of normal to hypoxic samples is about 4:1 in this study. As a

result, QI is used to assess overall classification performance.

These metrics are formulated as follows:

SE � TP

TP + FN
(14)

SP � TN

TN + FP
(15)

QI � ������
SE · SP√

(16)

Where TP, FP, FN, and TN represent true positive, false

positive, false negative, and true negative.

3 Experimental results

The proposed DFFN is built using Python, the Keras library,

and TensorFlow as a backend. The model is trained and tested on

a computer with a 2.60 GHz CPU, an NVIDIA

GeForceRTX2080Ti GPU, and a 128 GB memory stick. Signal

preprocessing is performed in MATLAB Aulnoit et al. (2019).

3.1 Determination of class weight and
network parameters

It is generally acknowledged that neural networks contain many

factors that might influence their performance. The settings are

tweaked in the following method in our experiment. The network is

trained for 130 epochs with an initial learning rate of 0.01, which

declined by ten at 15 and 90 counts. The network is optimized using

stochastic gradient descent with momentum, with the momentum

set at 0.9 in this experiment. To assess the algorithm’s accuracy, we

employ a 10-fold cross-validation procedure. The complete FHR

signal of the CTU-UHB database is randomly divided into 10 folds.

Stratified sampling is used to combine nearly the same proportion of

normal and pathological samples in each fold. The training set

consists of 90% of recordings (395 normal and 101 pathological),

while the remaining 10% (44 normal and 12 pathological) are

utilized to test the proposed approach’s performance. The

process is repeated ten times, reinitializing and testing the model

with a new subset of data before averaging the final findings. The

weights of normal and pathological sample categorization are

changed in this experiment due to data imbalance (the number

of normal and pathological samples is roughly 4:1). To verify the

generalization of methods, JNU-CTG database is used as an

independent test dataset.

Experiments are carried out using various classification weights,

as indicated in Table 3. Furthermore, QI is used as the final metric

for evaluating model performance. Higher QI values indicate better

performance. This experiment shows that the QI values vary for

different classification weights. The model’s QI increases as the

weight of normal samples decreases. Themodel’s QI decreases as the

weights of pathological samples increase further. The proposed

DFFN focuses on recognizing hypoxia FHR recordings when the

weight of pathological samples increases and the detection rate of

normal samples is dramatically lower. When the classification

weights ratio is 0.21 : 0.79, the QI value is the highest. The

DFFN with a ratio of 0.21 : 0.79 enhances the likelihood of

identifying aberrant signals while preserving its capacity to detect

normal signals. It maintains sensitive detection of both normal and

pathological samples. As a consequence, 0.21 : 0.79 is chosen as the

classification weight.

The DFFN parameters are modified layer by layer based on

the QI value. The parameters for each layer in Figure 3 are listed

in Table 4. Table 4 lists the parameters for each layer in Figure 3.

Figure 5 depicts experimental results obtained with the settings in

Table 4. For imbalanced data sets, Precision-Recall (P-R) curves

outperform receiver operation characteristic curves in comparing

the performance of different models. Consequently, the P-R

curve has been used to illustrate the experimental results.

Figure 5A depicts the confusion matrix for the test set,

whereas Figure 5B depicts the P-R curve for the test set.

3.2 Performance of different features

Experiments are conducted on the public CTU-UHB

database to compare the outcomes of fetal state classification

TABLE 3 Performance of DFFN on CTU-UHB database with different
class weights.

Class weights (N:P) SE (%) SP(%) QI (%)

0.22: 0.78 57.58 ± 17.06 76.32 ± 5.55 65.54 ± 11.19

0.21: 0.79 61.97 ± 16.47 73.82 ± 5.35 66.93 ± 10.20

0.20: 0.80 61.97 ± 16.47 68.57 ± 4.47 64.49 ± 9.69

0.19: 0.81 65.61 ± 19.64 65.84 ± 5.05 64.75 ± 10.42

0.18: 0.79 67.42 ± 16.62 62.19 ± 4.95 64.17 ± 8.14

0.17: 0.83 70.91 ± 18.10 55.14 ± 3.63 61.95 ± 8.46

0.16: 0.84 71.74 ± 17.30 49.89 ± 4.33 59.33 ± 8.03

Note: N represents normal samples, and P represents pathological samples.
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for different features. A SVM classifier is derived from structural

risk minimization theory. It transforms the classification

problem of samples into the optimization problem of

classification hyperplane in the sample feature space. Table 5

compares performance utilizing SVM for linear and nonlinear

features and their combinations. Linear and nonlinear features

TABLE 4 Network parameters.

Layer name Size Input Output

Number Stride Padding Feature map

Signal input − − − − 4,800 × 1

Conv1 32 × 1 8 1 SAME 4,800 × 8

Conv2 64 × 1 8 1 SAME 4,800 × 8

Concat − − − − 4,800 × 16

Conv3 32 × 1 24 1 SAME 4,800 × 24

Average pooling 4 × 1 − 4 VALID 1200 × 24

Dropout − 0.25 − − 1200 × 24

Conv4 32 × 1 24 1 SAME 1200 × 24

Average pooling 8 × 1 − 8 VALID 150 × 24

Dropout − 0.25 − − 150 × 24

Conv5 32 × 1 24 1 SAME 150 × 24

Average pooling 16 × 1 − 16 VALID 9 × 24

Dropout − 0.25 − − 9 × 24

BiLSTM 1 9 − − 9 × 24

Add − − − − 9 × 24

Flatten − − − − 1 × 216

Fully connection 32 − − − 1 × 32

Dropout − 0.5 − − 1 × 32

Feature input − − − − 1 × 16

Concat − − − − 1 × 48

Dropout − 0.25 − − 1 × 48

Fully connection 1 − − − 1 × 1

Sigmoid − − − − 1 × 1

FIGURE 5
The experimental results of the test set. (A) is the confusion matrix using the parameters listed in Table 4, whereas (B) is the P-R curve using the
parameters listed in Table 4.
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have a QI of 61.12% and 57.70%, respectively, for the evaluation

index for fetal status assessment. The performance of linear

features outperforms that of nonlinear features in the SVM

classifier. Additionally, the QI value for their combination is

64.90%, which suggests that combining both features could

increase the accuracy of fetal status assessment. And their

combination achieves highest SE. The SP of linear features

reaches the highest value, 80.87%, which indicates that the

linear feature can discriminate hypoxic samples

exceptionally well.

Logistic Regression classifiers are normalized linear

regression models that incorporate a logistic function based

on linear regression. Table 6 shows the classification

performance of different feature sets in the logistic regression

classifier. The QI of linear and nonlinear features is 61.72% and

59.87%, respectively. The QI value of 63.91% indicates that

combining linear and nonlinear features improves fetal state

classification accuracy. The SP of linear features also reaches the

highest value in logistic regression, 74.95%, indicating that linear

features can distinguish hypoxic samples extremely well. In the

logistic regression classifier, nonlinear features achieved the

highest SE, 58.48%. This indicates the use of nonlinear

features can be beneficial in identifying normal fetuses.

As shown in Tables 5, 6, logistic regression classifier

outperforms SVM classifier for classification using just linear

or nonlinear features. SVM classification is superior to logistic

regression when used with their combination.

3.3 Performance of various networks
structures

The classification performance of different network

structures on CTU-UHB database is shown in Table 7. CNN

has been found to outperform traditional machine learning

methods for image processing in previous studies. The CNN

is capable of not only extracting low-level features and local

features from the original signal, but also integrating those

features into high-level features for analysis. The overall

outcome of FHR signal diagnosis is closely related to some

local waveforms. The purpose of CNN is to extract visible

waveform features from the raw waveform signal and

integrate these features into high-level features related to fetal

hypoxia. Compared with CNN, multiscale CNN can increase the

diversity of features. The experimental results prove that the

classification performance of multiscale CNN(i.e., 65.12%)

outperforms that of CNN (i.e., 63.90%). BiLSTM networks are

widely used in time series forecasting and classification research

because of their unique ability to capture long-term and short-

term temporal relationships. The multiscale CNN-BiLSTM

achieves the best performance (i.e., 65.74%) and is senstive to

recognize pathlogical recrodings (i.e., 66.92%), indicating the

model can integrate both spatial and temporal information

features of the FHR signal to maximize the classification

performance.

3.4 Performance of related works on two
databases

We present a neural network with feature fusion to assist

obstetricians in making objective clinical judgments on fetal

state. In order to analyze the experimental results of this

paper more comprehensively, Table 8 presents the results of a

comparison between the proposed methods and previous works

on the CTU-UHB database. Numerous variables, such as the

FHR signal properties and the selection of signal fragments from

the database, lead to varied experiment outcomes. The research

evaluated in Table 8 employs the identical processing steps: signal

preprocessing, feature extraction, feature selection, and final

classification. To verify the validity of the proposed method,

the work of (Liang and Li, 2021), (Li et al., 2018), (Zhao et al.,

2019b), and (Baghel et al., 2022) are repeated in this paper.

Experiments are conducted under identical settings and identical

databases.

We employ a multiscale network to classify the fetal state and

compare it to other works on the public database.

TABLE 5 Performance of SVM on CTU-UHB database.

Features SE (%) SP (%) QI (%)

Linear Features 47.20 ± 15.84 80.87 ± 6.28 61.12 ± 11.38

Nonlinear Features 54.02 ± 14.08 63.28 ± 8.61 57.70 ± 7.84

Linear and Nonlinear Features 55.08 ± 16.81 78.13 ± 5.19 64.90 ± 10.66

TABLE 6 Performance of Logistic Regression on CTU-UHB database.

Features SE (%) SP (%) QI (%)

Linear Features 52.65 ± 19.68 74.95 ± 3.46 61.72 ± 12.28

Nonlinear Features 58.48 ± 13.61 62.38 ± 5.58 59.87 ± 7.26

Linear and Nonlinear Features 56.97 ± 17.47 73.35 ± 3.79 63.91 ± 10.20

TABLE 7 Performance of different network structures on CTU-UHB
database.

Network Structure SE (%) SP (%) QI (%)

CNN 66.29 ± 14.46 62.65 ± 7.77 63.90 ± 8.98

Multiscale CNN 65.45 ± 12.40 65.38 ± 4.92 65.12 ± 7.94

Multiscale CNN-BiLSTM 66.29 ± 13.37 65.84 ± 5.90 65.74 ± 8.65
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1) Comparing with (Cömert et al., 2018a), (Cömert et al.,

2018b), the proposed multiscale model is more effective

since it did not use complicated features. The proposed

multiscale CNN-BiLSTM model has the highest SE and

slightly lower SP for the same FHR signal classification

criterion. The evaluation index QI is increased by 1.09%

and 2.3% compared with the IBTF and BFS + DWT

techniques, respectively, highlighting the hybrid model’s

benefits.

2) (Liang and Li, 2021) and (Li et al., 2018), who separate the

FHR signal into several sub-segments before processing the

data in parallel using CNN. After that, the fetal status is

determined utilizing a voting system. The difference is that

(Liang and Li, 2021) utilized a system based on weighted

voting. Using the same deep learning method (CNN), the QI

and SE for fetal hypoxia detection of the proposed multiscale

model are much superior to their method.

3) (Zhao et al., 2019b) employ recursive graphs to turn signals

into images and CNN for fetal status evaluation. All the

metrics of the proposed multiscale model are higher than

RP + CNN, indicating that the multiscale model suggested in

this study could capture the FHR signal’s hidden features

more sensitively.

4) The direct input of the FHR signal is used to assess the fetal

state by a neural network and automatically learn essential

features in the work of (Baghel et al., 2022). We apply the

same procedure and employ a multiscale model that can

account for spatial features and temporal data extraction. The

SP, SE, and QI of the proposed multiscale model are higher

than their method, showing that our work is more accurate in

fetal status classification.

We propose the DFFN, including linear and nonlinear

features with the multiscale CNN-BiLSTM network. The

experimental results of DFFN and other work on the public

database are shown in Table 8.

1) (Cömert et al., 2018a), (Cömert et al., 2018b), utilize some

time-domain, and nonlinear features. These features perform

better for fetal hypoxia identification (i.e.,SE) but are less

efficient for normal fetal detection (i.e.,SP). We integrate

more complex features automatically retrieved by deep

learning to increase the model’s capacity to recognize

normal fetuses while retaining superior performance for

fetal hypoxia identification.

2) In comparison to (Liang and Li, 2021), (Li et al., 2018), (Zhao

et al., 2019b), and (Baghel et al., 2022), who all utilize the deep

learning approach. Deep learning is sensitive for normal fetal

detection but less sensitive for fetal hypoxia detection. The

proposed DFFN contains both linear and nonlinear features.

Therefore, the expressive capacity of DFFN and the model’s

ability to identify fetal hypoxia have been improved.

Meanwhile, the performance of normal fetal detection has

been preserved.

3) The proposed DFFN in this study has the highest

classification accuracy compared to previous fetal state

assessment methods. It overcomes the constraints of a

single model and compensates for the shortcomings of

feature engineering and deep learning model. In addition,

the performance of the proposed feature fusion approach is

superior to that of the proposed multiscale CNN-BiLSTM

network. The QI of the proposed DFFN method is 66.96%,

1.22% higher than the multiscale CNN-BiLSTM network.

The generalization of the proposed DFFN and multiscale

CNN-BiLSTM network is tested by an independent test set of

JNU-CTG database. The experimental results are shown in

Table 9. The experiment is more challenging in the

independent test set. However, the proposed DFFN still

performs best on the test set with a QI of 53.60%. The

generalization ability of the fusion network is enhanced

compared to other methods. The SE and SP of the proposed

DFFN method are 43.94% and 65.53%, respectively. The

TABLE 8 Performance of previous works on CTU-UHB database.

Author Method Performance (%)

Extraction Selection Classifier SE SP QI

Cömert et al. (2018b) BFS + DWT — LS-SVM 57.42 70.11 63.44

Cömert et al. (2018a) IBTF GA LS-SVM 63.45 65.88 64.65

Liang and Li. (2021)* CNN — — 33.48 77.46 50.35

Baghel et al. (2022)* 1D-FHRNet — — 50.15 61.26 54.32

Zhao et al. (2019b)* RP + CNN — — 54.17 61.73 57.22

Li et al. (2018)* CNN — — 52.12 74.93 61.02

Ours Multiscale CNN-BiLSTM — — 66.29 65.84 65.74

Ours DFFN — — 61.97 73.82 66.93

Note: * is the reproduction method of this article. BFS, basic feature set; DWT, discrete wavelet transform; IBTF, image-based time-frequency features; GA, genetic algorithm; RP, recursive

graph.
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proposed models are capable of identifying both normal and

hypoxic fetal states.

4 Discussion

Previous studies have pointed out that imbalanced dataset is a

problem for machine learning since they are biased toward majority

classes and tend to miss minority class cases (Ahsan and Siddique,

2022). Therefore, we focus more on SE (i.e., the minority cases)

when evaluating classification performance. We propose a DFFN

model to classify CTG recordings. The model includes multiscale

feature extraction, fusion, and classification and automatically fuses

different features through end-to-end learning.

In this work, we integrate linear and nonlinear features. The

combination of linear and nonlinear features can achieve better

classification performance compared to a single feature set, as

shown in Tables 5, 6. Tables 5, 6 show the performance of logistic

regression and SVM on the public database. There is a relatively

high accuracy rate for classifying normal fetuses but poor

accuracy for classifying acidosis fetuses for two classifiers. This

difference is more pronounced when experiments are conducted

using private databases (see Table 9). According to Tables 5, 6, 9,

SVM outperforms logistic regression with combined features on

the public dataset, while on the private dataset, logistic regression

outperforms SVM. It suggests that machine learning and

traditional features are not very feasible. One of the

limitations of machine learning is its instability. Classifiers

that perform well on old data rarely perform consistently on

new data, necessitating continual model development and

tuning. The experimental results on the public database are

presented in Tables 5, 6, 8. They demonstrate that (Cömert

et al., 2018a) uses IBTF features, which can distinguish normal

and acidic fetuses more accurately than other machine learning

methods (combination of linear and nonlinear features, BFS +

DWT). It is temporarily unable to test (Cömert et al., 2018b) and

(Cömert et al., 2018a) on the private database since the essential

details of their works are unavailable.

The experiments on two databases clearly demonstrate that

our proposed model is superior to other deep learning-based fetal

state classification models, as shown in Tables 8, 9. In the

experiment of the public dataset (Liang and Li, 2021), and

multiscale CNN-BiLSTM perform best at identifying normal

fetuses and acidic fetuses, respectively. And DFFN has the

highest QI value. The model of (Baghel et al., 2022)

outperforms other methods on the private database when

identifying normal fetuses, while DFFN outperforms other

methods when identifying acid fetuses and has the highest QI

value. Based on the experimental results of two databases,

(Cömert et al., 2018a), (Zhao et al., 2019b), and DFFN are

more capable of distinguishing normal and acid fetuses.

Despite having good accuracy in identifying normal fetuses,

the studies of (Baghel et al., 2022), (Liang and Li, 2021) and

(Li et al., 2018) are grossly insufficient in identifying acid fetuses.

The proposed multiscale CNN-BiLSTM network and DFFN

achieve higher classification accuracy when compare to the

single-scale networks used by (Zhao et al., 2019b), (Baghel

et al., 2022), (Liang and Li, 2021), and (Li et al., 2018). It is

attributed to the fact that many regional features in FHR signal

are preserved during multiscale feature fusion process. These

features are weighted and calculated as the final features of fetal

status classification. (Cömert et al., 2018a), (Zhao et al., 2019b),

DFFN, and multiscale CNN-BiLSTM network are better able to

capture the timing-related information of FHR signals. The

signal is transformed into a picture by (Cömert et al., 2018a)

and (Zhao et al., 2019b), from which time-frequency features can

be extracted that more accurately reflect the non-stationarity of

FHR. The proposed multiscale CNN-BiLSTM network and

DFFN have a BiLSTM module that extracts forward and

backward information simultaneously from the FHR signal

sequence. Rather than treating the data having time steps,

CNN treats it as a sequence that can be read using

convolutional operations. Consequently, it is difficult for CNN

to acquire the time-domain features of FHR signals

automatically. By incorporating BiLSTM, FHR signals can be

classified more accurately and time-series features can be

TABLE 9 Performance of different methods on JNU-CTG database.

Author Method SE (%) SP (%) QI (%)

Baghel et al. (2022)* 1D-FHRNet 11.97 ± 5.05 81.56 ± 3.85 30.47 ± 5.60

Liang and Li. (2021)* CNN 27.62 ± 7.69 79.96 ± 5.00 46.29 ± 5.34

Li et al. (2018)* CNN 27.77 ± 10.01 81.35 ± 5.63 46.44 ± 6.87

Zhao et al. (2019b)* RP + CNN 40.05 ± 4.86 65.36 ± 4.37 50.95 ± 1.80

Ours Linear and Nonlinear Features 21.24 ± 2.39 78.61 ± 1.24 40.78 ± 2.13

Ours (SVM) 34.72 ± 2.16 73.59 ± 0.96 50.52 ± 1.55

Ours Multiscale CNN-BiLSTM 37.15 ± 3.44 76.35 ± 1.49 53.18 ± 2.21

Ours DFFN 43.94 ± 2.39 65.53 ± 2.60 53.60 ± 0.60

Note: * is the reproduction method of this article. RP, recursive graph.

Frontiers in Physiology frontiersin.org13

Xiao et al. 10.3389/fphys.2022.969052

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.969052


captured. The QI value of DFFN is higher than that of multiscale

CNN-BiLSTM network on two databases. The DFFN can more

precisely express the original features of signal because feature

fusion realizes the complementary advantages between features.

Computerized CTG analysis can reduce the inter- and intra-

observer variability caused by pattern recognition based solely on

existing guidelines. However, most proposed models focus only on

improving classification accuracy, ignoring the clinical relevance of

parameters and the obstetrician’s decision-making mechanism. In

clinical decision-making, obstetricians are more inclined to make

diagnoses based on objective parameters of specific physiological

significance. Obstetricians are unlikely to trust black-box deep

learning model. In this study, traditional and multiscale network

features are combined for the first time, maximizing fusion features

and improving fetal state accuracy significantly. Morphological

features, which are used in clinicians’ diagnoses, are combined in

order to provide interpretability of proposed fetal status assessment

model.Meanwhile, the experimental results validate the generalization

of DFFN, making it more applicable in clinical practice.

We intend to integrate clinical parameters into deep learning

algorithms in the future, such as maternal tachycardia and maternal

pyrexia, which are collected frommaternal records. Further research

can include UC and FHR signals as inputs to the neural network.

The more comprehensive input information may allow network

models to extract more valuable features Furthermore, we hope to

study our model on a larger dataset to develop a lightweight

algorithm that can be applied to large-scale data. Since the two

databases have similar selection criteria, further workmight increase

the model’s generalization using data of diverse quality.

5 Conclusion

This paper proposes a novel deep feature fusion network for

diagnosing fetal acidosis from FHR signals. A multiscale CNN-

BiLSTM hybrid network is developed to extract the signal’s

temporal and spatial features adequately. In order to account

for clinical physiological parameters and assessment accuracy, a

feature fusion network is used to splice the multiscale CNN-

BiLSM features, as well as the currently popular linear and

nonlinear features. Encouraging results are obtained, with a

SE of 61.97%, SP of 73.82%, and QI of 66.93% on the public

database. The proposed DFFN has the highest QI value on two

databases, which indicates that the proposed feature fusion

model has good generalization. The experimental results on

two databases show that DFFN achieves better performance

than previous works. The accuracy of fetal state classification

as well as the generalization of DFFN are improved by merging

the FHR features frommultiscale layers with the extra features. In

the future, we will work to optimize the interpretability of our

model as well as its accuracy and generalizability. Through these

advancements, we will be able to gain a deeper understanding of

particular disease state of the fetus.
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