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Introduction: Pulse rate variability (PRV) refers to the changes in pulse rate

through time and is extracted from pulsatile signals such as the

photoplethysmogram (PPG). Although PRV has been used as a surrogate of

heart rate variability (HRV), which is measured from the electrocardiogram

(ECG), these variables have been shown to have differences, and it has been

hypothesised that these differences may arise from technical aspects that may

affect the reliable extraction of PRV from PPG signals. Moreover, there are no

guidelines for the extraction of PRV information from pulsatile signals.

Aim: In this study, the extraction of frequency-domain information from PRV

was studied, in order to establish the best performing combination of

parameters and algorithms to obtain the spectral representation of PRV.

Methods: PPG signals with varying and known PRV content were simulated, and

PRV information was extracted from these signals. Several spectral analysis

techniques with different parameters were applied, and absolute, relative and

centroid-related frequency-domain indices extracted from each combination.

Indices from extracted and known PRV were compared using factorial analyses

and Kruskal-Wallis tests to determine which spectral analysis technique gave

the best performing results.

Results: It was found that using fast Fourier transform and the multiple signal

classification (PMUSIC) algorithms gave the best results, combined with cubic

spline interpolation and a frequency resolution of 0.0078 Hz for the former; and

a linear interpolation with a frequency resolution as low as 1.22 × 10−4, as well as

applying a fifth order model, for the latter.

Discussion: Considering the lower complexity of FFT over PMUSIC, FFT should

be considered as the appropriate technique to extract frequency-domain

information from PRV signals.
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Introduction

Pulse rate variability (PRV) describes the changes in pulse

rate (PR) through time when it is measured from pulsatile signals

such as the photoplethysmogram (PPG) (Mejía-Mejía et al.,

2020). PRV has been proposed as an alternative to heart rate

variability (HRV), which refers to the changes in heart rate (HR)

through time, and is obtained from electrocardiograms (ECG)

(Task Force of the European Society of Cardiology and The

North American Society of Pacing and Electrophysiology, 1996;

Schäfer and Vagedes, 2013; Mejía-Mejía et al., 2020). PRV has

become more popular recently, mainly due to the widespread use

of PPG sensors in wearable devices, and to the non-invasive, cost-

effective and non-intrusive nature of acquiring PPGs (Kyriacou,

2021).

PRV and HRV originate from the same physiological

process, i.e., the autonomic regulation performed on the sino-

atrial node, which controls the pumping rate of the heart

(Rangayyan, 2002; Shaffer and Ginsberg, 2017). In fact, HR

and PR have been shown to be good surrogates (Schäfer and

Vagedes, 2013). However, the relationship between HRV and

PRV is not entirely understood, and although they show similar

trends, there is evidence of differences between these two

variables, especially when measured from non-healthy, non-

resting or elderly subjects (Schäfer and Vagedes, 2013; Mejía-

Mejía et al., 2020).

Two hypotheses have been proposed to explain these

differences. Some authors argue that the differences between

HRV and PRV are mainly explained by physiological aspects. It

has been observed that stress and diseases affect PRV in a

different way than HRV (Giardino et al., 2002; Charlot et al.,

2009; Khandoker et al., 2011; Mejía-Mejía et al., 2021), whereas

other aspects such as pulse transit time, external forces on the

arteries and the different nature of ECG and PPG have also been

proposed as physiological differences that may explain the

dissimilarity between HRV and PRV (Gil et al., 2010;

Trajkovic et al., 2011; Chen et al., 2015). These and the fact

that PRV has been observed in the absence of HRV (Constant

et al., 1999; Pellegrino et al., 2014) suggest that there are different

processes affecting PRV that are not related to HRV.

An alternative hypothesis is that the agreement between

HRV and PRV is affected by technical aspects when PRV is

extracted from pulsatile signals (Posada-Quintero et al., 2013;

Hemon and Phillips, 2016; Choi and Shin, 2017; Béres et al.,

2019; Mejía-Mejía et al., 2022). This is a particularly crucial issue,

considering that there are no published guidelines for the

extraction of PRV from pulse waves and the standardisation

of the related analyses. Therefore, most methodologies for PRV

studies are based on the guidelines for HRV assessment from

ECG signals (Task Force of the European Society of Cardiology

and The North American Society of Pacing and

Electrophysiology, 1996). Moreover, most studies performed

to understand the effects of technical aspects on PRV are

based on the comparison between PRV and HRV, which

might introduce further biases since PRV is affected

differently to HRV by certain physiological processes.

Most studies related with PRV have been based on the

extraction of frequency-domain indices, due to their known

relationship with sympathetic and parasympathetic activity

(Shaffer and Ginsberg, 2017; Mejía-Mejía et al., 2020).

However, there is a lack of understanding of how different

spectral analysis techniques can affect the obtained results,

although it is known that classical and modern approaches for

spectral analysis deliver different results and can be affected by

several parameters, such as sampling rate, the number of data

points used for computing the spectra and the order of the model

(Semmlow and Griffel, 2014). Moreover, interbeat intervals are

not evenly sampled, which implies that the trends need to be

interpolated in order to have an evenly-sampled time-series to

which classical and modern methods can be applied to (Clifford,

2006). However, the effects of this interpolation on the measured

spectra and the related indices is not clear, and there is no

standard approach to apply this interpolation to the data. The

aim of this study was then to determine the best combination of

parameters for the extraction of frequency-domain indices from

PRV, in a first attempt to establish guidelines for the extraction of

frequency-domain information from PRV trends. In this first

study, this was done using PRV trends extracted from simulated

PPG signals with simulated PRV information, which was

considered as gold standard. The main advantages of using

simulated signals were 1) the availability of larger amounts

and more heterogeneous data, and 2) the comparison of

obtained results to a known gold standard rather than HRV,

which could introduce additional errors and physiologically-

induced differences.

Materials and methods

The aim of this study was to determine the best combination

of parameters for the extraction of frequency-domain indices

from PRV, considering PPG signals simulated with a properly

selected sampling rate and applying the best performing

combination of inter-beat intervals (IBIs) detection algorithm

and fiducial points (Mejía-Mejía et al., 2022). The simulation and

processing of photoplethysmographic signals was performed in

MATLAB (version 2020b), while statistical analyses were done in

RStudio (version 1.4.1717).

Signal simulation

PPG signals were simulated using the model described by

Mejía-Mejía et al. (2022). This model is based on the work

proposed by Tang et al. (2020b) and Tang et al. (2020a),

where each cardiac cycle is simulated using the sum of two
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Gaussian functions, with parameters set to simulate excellent and

acceptable quality PPG signals. The resulting model for a single

PPG cycle is shown in Eq. 1, where θ corresponds to the four

quadrant inverse tangent of the cosine and sine functions of the

duration of the cycle; ai, b, and μi correspond to the height, width

and mean values of the Gaussian function; and r is a parameter

that can be selected to control the relationship of the amplitudes

of both Gaussians. This is the main parameter that differentiates

between excellent and acceptable quality PPG cycles, and

determines the amplitude of the dicrotic notch. In this study,

two groups of PPG signals with different values for the r

parameter were simulated. Excellent quality PPG signals were

simulated with ratios of r = 2, while acceptable quality PPG

signals were considered as those with r = 4. Figure 1 shows the

base cardiac cycles used for the simulation of excellent and

acceptable quality signals.

z � a(e
− θ−μ1( )2

2b2
1 ) + 1

r
a(e

− θ−μ2( )2
2b2
2 ) (1)

The simulated cardiac cycles were then appended to create a PPG

signal with a determined length. The duration of each of the cardiac

cycles, i.e., the width of the summation of the Gaussians, was

modified in order to include PRV information on the PPG signal.

The duration of cardiac cycles was randomly generated by simulating

PRV information as a sum of sinusoidal waves with parameters that

fall inside plausible physiological values for PRV. The ranges for these

parameters are shown in Table 1. It is worth mentioning that this is

not the only possible way to generate PRV information, and other

models could modify the behaviour of the obtained signal.

The resulting function for the randomly generated PRV

information is shown in Eq. 2. As can be seen, a total of four

sinusoidal waves are summed, each of them with different

fundamental frequencies, two for each of the main frequency

bands in PRV analysis (LF(i) and HF(i)). This was done to

increase the variability of the frequency spectrum and to alter the

area of each of the frequency bands.

PRV � PR + SD∑
2

i�1
sin 2πLF i( )t( ) + sin 2πHF i( )t( )( ) (2)

For this study, a total of 200 excellent quality and

200 acceptable quality PPG signals were simulated, each with

1,200 cardiac cycles and a sampling rate of 256 Hz. An example

of these signals is shown in Figure 2.

FIGURE 1
Photoplethysmographic cardiac cycles generated using the proposed mode, using ratios of value (A) r = 2 (excellent quality), and (B) r = 4
(acceptable quality). The blue and orange dotted lines illustrate the two Gaussian functions generated, while the black continuous line shows the
result of summing these two Gaussian functions, i.e., z.

TABLE 1 Ranges for the Pulse Rate Variability (PRV) parameters and the
generation of PRV gold standard values.

Parameter Range Units

Low frequency peak location (LF) 0.04–0.15 Hz

High frequency peak location (HF) 0.15–0.40 Hz

Average pulse rate (PR) 40–200 Beats per minute (bpm)

Standard deviation of pulse rate (SD) 0.05–0.08 s
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Inter-beat intervals

The cardiac cycles were detected from the simulated signals using

the algorithm described by Elgendi et al. ()elg2013, denoted as

D2Max, which has been shown to have a good performance for

PRV analysis (Mejía-Mejía et al., 2022). This algorithm is based on

the generation of blocks of interests based on two moving averages,

which are designed based on the expected duration of cardiac cycles

and the a point in the second derivative of the PPG signal. The

location of the systolic peak from the PPG signal is determined as the

location of the maximum point in each block of interest.

IBIs were then measured as the time difference between

consecutive a points detected from each of the identified cardiac

cycles. IBIs longer than 1.25 times the median duration of all the IBIs

were corrected by looking for additional cardiac cycles in each of

these longer windows. IBIs shorter than 0.75 times the median

duration of IBIs were also detected and discarded.

Spectral analysis

Several methodologies for spectral analysis were applied to

the extracted IBIs. Fast Fourier transform (FFT) and Welch’s

power spectral density (PWELCH) were used as classical

methods. For PWELCH, a Hamming window and a 50%

overlap between consecutive segments was considered. Yule-

Walker’s (PYULEAR), Burg’s (PBURG), covariance (PCOV),

and modified covariance (PMCOV) autoregressive models

were used to obtain model based methods, as well as the

multiple signal classification (PMUSIC) algorithm was used to

obtain a pseudo-spectrum. Finally, the Lomb-Scargle algorithm

(PLOMB) was also applied. In the case of classical and model-

based algorithms, the parameters presented in Table 2 were

optimized.

From the different combinations of parameters and the different

methods for spectral analysis, PRV frequency domain indices were

FIGURE 2
Example of photoplethysmographic (PPG) signals simulated using the proposed model and randomly generated pulse rate variability (PRV)
information. (A) PPG signal with excellent quality (r = 2). (B) PPG signal with acceptable quality (r = 4). (C) PRV information used for the generation of
these signals.
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extracted. The indices considered in this studywere: The power of the

very low frequency band (VLF); the absolute and relative power of

the low frequency band (LF and nLF); the absolute and relative power

of the high frequency band (HF and nHF); the total power of the

spectrum between 0.0033 and 0.4 Hz (TP); the ratio between LF and

HF (LF/HF); and the coordinates of the centroid of LF, HF and TP

(cLFx, cLFy, cHFx, cHFy, cTPx and cTPy).

These indices were also extracted from the power spectra

obtained from the simulated gold standard PRV signals. These

were calculated using FFT with 216 number of points (nFFT).

Table 3 summarises the PRV indices extracted from gold

standard PRV.

Statistical analysis

Factorial analyses were performed for each independent

spectral analysis method. This was done in order to evaluate

the effects of interaction among the studied factors, i.e., type of

interpolation used (A), the number of data points used for

obtaining the spectrum (B), the sampling rate used for

interpolation (C), and the order of the model (D). The

difference between the indices extracted from measured and

gold standard PRV trends were obtained. These differences

were then used for the statistical analysis, in which

independent factorial analysis were first performed in order to

obtain the combination of factors that gave the lowest differences

when spectra was obtained using each of the different methods,

except for the Lomb-Scargle periodogram, in which no

parameters needed to be modified. Then, the best

combination of factors was identified for each of the methods

and these were compared using a Kruskal-Wallis test, since data

did not follow a normal distribution according to the Lilliefors

test of normality of data. Using Wilcoxon rank sum tests with

Bonferroni correction, post hoc analyses were performed for the

indices in which the Kruskal-Wallis analysis showed statistically

significant differences among methods. The best combination of

method, interpolation technique, frequency resolution and

model order was then identified. Since data did not comply

with ANOVA assumptions for factorial analyses, Box-Cox

transformations were applied for the statistical analyses.

Cross-correlation and Pearson (XC Pearson) and Spearman

(XC Spearman) correlation analyses were used to compare the

frequency spectra obtained from measured and gold-standard

PRV. This was done to assess the similarity among spectra

extracted with the different combinations of parameters and

with the different methods. The cross-correlation was

characterized using the maximum value of cross-correlation

found (XC max), and the lag at which this maximum

occurred (XC lags). A similar process with factorial analyses

was performed with these indices, considering that a maximal

cross-correlation was desired.

Results

As explained, a factorial analysis was performed for each

independent spectral analysis method. This was done in order to

evaluate the effects of interaction among the studied factors,

i.e., type of interpolation used (A), the number of data points

used for obtaining the spectrum, which relates to the frequency

resolution (B), the sampling rate used for interpolation (C), and

the order of the model (D, for model-based approaches). The

TABLE 2 Combinations of parameters used for the extraction of frequency spectra from pulse rate variability trends. Frequency resolution: number of samples
used to calculate spectrum (nFFT) divided by the sampling rate of the signal.

Methods Interpolation Frequency Resolution (Hz) Order

Technique Sampling rate (Hz)

Classical Linear or cubic spline 4, 8, 16, 32, 64, 128, 256 0.01, 0.001, 0.0001 —

Model-based Linear or cubic spline 4, 8, 16, 32, 64, 128, 256 Hz 0.01, 0.001, 0.0001 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

TABLE 3Mean and standard deviation (SD) values for PRV indices extracted
from gold standard PRV.

Index Mean ± SD

VLF (ms2) 0.0555 ± 0.1430

LF (ms2) 1.9781 ± 0.3495

HF (ms2) 2.0024 ± 0.3639

TP (ms2) 4.0360 ± 0.6787

nLF 0.4925 ± 0.0489

nHF 0.4941 ± 0.0333

LF/HF 1.0078 ± 0.1833

cLFx (Hz) 0.0948 ± 0.0235

cLFy(ms2) 0.3501 ± 0.0803

cHFx (Hz) 0.2686 ± 0.0463

cHFy(ms2) 0.3313 ± 0.0864

cTPx (Hz) 0.1799 ± 0.0273

cTPy(ms2) 0.3410 ± 0.0445
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behaviour of indices extracted from excellent and acceptable PPG

signals was generally very similar.

In the case of FFT, the interaction between the three factors

(A × B × C) was significant for TP and XC lags, whereas it was

significant for HF, XC lags and XC Spearman. For both methods,

the interaction between the number of data points and sampling

rate used for interpolation (B × C) was the most significant,

whereas the interactions between the type of interpolation and

the other two factors were non-significant in most cases.

Centroid related indices were the less affected by the different

factors, showing significance on factor A only for cHFy when

measured using FFT and PWELCH, and on factor B for cLFy
when measured using PWELCH.

In the case of modern methods the behaviour was not as

clear, since each method showed different significant

interactions. In the case of PYULEAR and PMUSIC, the

interactions between the type of interpolation used, the

number of data points and the order of the model (A × B ×

D), as well as the interactions between the type of interpolation,

the sampling rate used and the order of the model (A × C × D)

were significant in the majority of the indices, while for PBURG,

PCOV, and PMCOV the maximum level of significance for most

of the indices was with two-factor interactions.

The best combination of factors that gave the lowest

difference for the measurement of each of the PRV indices, as

well as those that delivered maximal cross-correlation to gold-

standard spectra were determined for each of the methods that

allowed the selection of parameters, both for excellent and

acceptable quality PPG signals. Once the best combinations

were identified for each of the methods, these and the results

obtained using the Lomb-Scargle periodogram were compared

using a Kruskal-Wallis one-way analysis of variance for each

index. Tables 4, 5 summarize these results for PRV obtained from

excellent and acceptable quality PPG signals, respectively.

Figures 3–6 show the mean and standard deviation of the

differences of frequency-domain indices obtained between gold-

standard and measured PRV trends, considering the best

combinations of factors for each spectral analysis method, and

Figure 7 summarizes the correlation results after comparing

gold-standard and measured PRV spectra. The best spectral

analysis should have minimal differences to gold-standard

results, while achieving maximal correlation results.

It can be observed that the classical method with better

performance was FFT, while MUSIC showed the best

performance among modern methods. Both for excellent and

acceptable quality PPG signals, PMUSIC was the best performing

TABLE 4 Summary of results obtained from the Kruskal-Wallis one-way analysis of variance and post hoc comparisons for pulse rate variability obtained from
excellent quality PPG signals. ×: Significant differences. —: Non-significant differences.

Index Best results Significant differences

FFT PWELCH PYULEAR PBURG PCOV PMCOV PMUSIC PLOMB

VLF PMUSIC — — — — — — — ×

LF PWELCH — — × × × × × ×

HF FFT — × × × × × × ×

TP FFT — × × × × × × ×

nLF PMUSIC × × — × × × — ×

nHF PMUSIC × × × × × × — ×

LF/HF PMUSIC × × × × × × — ×

cLFx PMUSIC — — — — — — — —

cLFy PCOV × × — — — — — ×

cHFx PMUSIC — — — — — — — -—

cHFy PYULEAR × × — × — — — ×

cTPx PMUSIC × × — — — — — ×

cTPy PMUSIC × × — — — — — ×

XC lags PMUSIC × × × × × × — ×

XC max PLOMB × × × × × × × —

Spearman PCOV × × — — — — — —

Pearson PWELCH × — — — — — × —
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method for 9 and 8 of 17 indices, respectively. In terms of

classical methods, FFT showed better behaviour than

PWELCH. Also, it was found that the Lomb-Scargle

periodogram did not show good reliability for the extraction

of frequency-domain indices. Both for excellent and acceptable

quality PPG signals, the FFT showed better performances when

obtained after applying a cubic spline interpolation and

resampling PRV trends to 4 Hz, while an optimal number of

samples for measuring the spectrum was 512, which gave a

frequency resolution of 0.0078 Hz. In the case of the MUSIC

method, resampling PRV trends to 4 Hz using linear

interpolation and using a fifth order model gave the best

results both for excellent and acceptable quality signals. For

excellent quality PPG signals, a resolution frequency of

0.0078 Hz was also found to perform the best, although for

acceptable quality PPG signals a number of samples that gave

best results increased to 32,768, for a resolution frequency of

1.2207 × 10–4 Hz. Figure 8 exemplifies the behaviour of spectra

obtained using these spectral analysis techniques and the

corresponding parameters. Since FFT algorithm and

application is less complex than PMUSIC, and there were not

many significant differences between the best combinations of

these two methods, applying FFT with the recommended

parameters was found to be the best option for PRV spectral

analysis.

Discussion

Frequency-domain indices are probably the most used HRV

and PRV features since their relationship with specific processes

related to autonomic regulation have been shown in the literature

(Task Force of the European Society of Cardiology and The

North American Society of Pacing and Electrophysiology, 1996;

Billman, 2013; Shaffer and Ginsberg, 2017). However, at least for

PRV analysis, there is no consensus regarding how frequency

spectra should be derived from PRV time-domain trends, and

very little research has been done concerning this issue.

As is mentioned in the guidelines for HRV analysis, the

power spectral density (PSD) from HRV can be obtained using

non-parametric (classical, such as FFT) and parametric

(modern) methods (Task Force of the European Society of

Cardiology and The North American Society of Pacing and

Electrophysiology, 1996). However, there are multiple

algorithms and parameters that can be modified in order to

calculate this PSD both from HRV and PRV trends. Also,

TABLE 5 Summary of results obtained from the Kruskal-Wallis one-way analysis of variance and post hoc comparisons for pulse rate variability obtained from
acceptable quality PPG signals. ×: Significant differences. —: Non-significant differences.

Index Best results Significant differences

FFT PWELCH PYULEAR PBURG PCOV PMCOV PMUSIC PLOMB

VLF PMUSIC — — — — — — — ×

LF PWELCH — — × × × × × ×

HF FFT — × × × × × × ×

TP FFT — × × × × × × ×

nLF PMUSIC × × — × × × — ×

nHF PMUSIC × × × × × × — ×

LF/HF PMUSIC × × × × × × — ×

cLFx PMUSIC — — — — — — — —

cLFy PBURG × × — — — — — ×

cHFx PBURG — — — — — — — —

cHFy PYULEAR × — — — — — — ×

cTPx PMUSIC × × — — — — — ×

cTPy PMUSIC × × — × × × — ×

XC lags PMUSIC × × × × × × — ×

XC max PLOMB × × × × × × × —

Spearman PCOV × × — — — — — —

Pearson PWELCH × — — — — — × —
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FIGURE 3
Mean and standard deviations of the differences obtained by comparing pulse rate variability absolute power frequency-domain indices
obtained from extracted and gold-standard trends.
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FIGURE 4
Mean and standard deviations of the differences obtained by comparing pulse rate variability relative power frequency-domain indices obtained
from extracted and gold-standard trends.
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FIGURE 5
Mean and standard deviations of the differences obtained by comparing pulse rate variability x-coordinates of centroid-related frequency-
domain indices obtained from extracted and gold-standard trends.
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FIGURE 6
Mean and standard deviations of the differences obtained by comparing pulse rate variability y-coordinates of centroid-related frequency-
domain indices obtained from extracted and gold-standard trends.
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FIGURE 7
Mean and standard deviations of the correlation results obtained by comparing pulse rate variability spectra obtained from extracted and gold-
standard trends.
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research related to the optimisation of these parameters and their

suitability to obtain frequency domain indices from PRV is

scarce, hence reinforcing the need for such research (Li et al.,

2019). provided a useful summary of the different methodologies

used for spectral analysis from HRV trends. In the case of PRV

(Akar et al., 2013), applied several pre-processing techniques for

the extraction of PRV indices from PPG signals, and compared

the spectra obtained using the periodogram, Welch’s and Burg’s

algorithms. Although qualitative, their results showed differences

in the extracted spectra due to the methods used for its extraction

(Chen et al., 2018). evaluated the differences between frequency-

domain indices extracted from PRV trends re-sampled using

different sampling rates, concluding that, from data obtained

from wearable devices, better results were obtained using a 1 Hz

re-sampling rate for interpolating pulse rate information and

extracting frequency-related information. Other studies have also

suggested the extraction of frequency-related indices using novel

time-frequency techniques, such as empirical mode

decomposition (Abeysekera and Jaisankar, 2015; Chuang

et al., 2015). In this study, the aim was to determine the best

parameters for the extraction of spectral information from PRV

trends. It was found that the morphology of the spectra, assessed

by measuring cross-correlation indices between spectra obtained

from gold-standard and measured PRV trends, is affected, in

most cases, by all the factors considered for obtaining the PSD

and their interaction. However, PRV indices did not show this

behaviour. In the case of classical spectral analysis, indices were

mostly affected by the number of data points and the sampling

rate used for interpolation before extracting PSD. Both these

factors are related to the frequency resolution of the obtained

spectra, which was shown to be a critical factor for the assessment

of frequency-related information regardless of the algorithm

used for obtaining the spectra. The comparison of the

behaviour of indices extracted using different modern

methods is less straightforward, indicating the variability

among the mathematical foundations for each of these

algorithms. In the case of Yule-Walker and MUSIC

algorithms, three-way interactions including the type of

interpolation used and the order of the model showed

significant behaviour, while for the remaining methods two-

way interactions showed the most significant results.

It is noticeable that, in the case of centroid-related indices,

there were more significant interactions for indices related to the

y-coordinate, particularly for the centroid of the high-frequency

band. This could be indicating that the different methods for

assessing PRV frequency-content tend to be relatively stable for

the distribution of the frequency content, but there are

differences in terms of the amplitude of the spectra. Hence,

additional care should be taken when amplitude-related indices

are of interest. Also of interest is the fact that the Lomb-Scargle

algorithm did not show a better performance than the other

methods studied. This algorithm is based on probability

distributions and does not require a periodically-sampled

signal (Clifford, 2006). However, its lower performance might

be related precisely to the unpredictability of PRV trends, and the

largely variable parameters used for the simulation of PRV

information.

In general, it was found that MUSIC and FFT had the best

behaviour both for excellent and acceptable quality PPG signals.

In the case of MUSIC, the best behaviour was found when PRV

trends were resampled to 4 Hz using linear interpolation and

when a fifth order model was used, both for excellent and

acceptable quality PPG signals, with frequency resolution of

0.0078 and 0.000122 Hz respectively. In the case of FFT, the

FIGURE 8
Example of spectra obtained from gold standard PRV (black), FFT (blue) and PMUSIC (red), both from excellent and acceptable quality PPG
signals.
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best results regardless of quality of the signal were obtained after

applying a cubic spline interpolation to obtain a 4-Hz PRV trend,

and calculating the spectrum with 512 data points, for a

frequency resolution of 0.0078 Hz. Given the simplicity of

FFT, the computational load it has, and the easiness to

perform it in any platform, including embedded systems, it is

recommended to obtain spectral information from PRV trends

using this algorithm and these combination of parameters.

It is important to remark that the gold standard

measurements were extracted using FFT, hence a bias could

be present due to this. Non-etheless, the fact that the MUSIC

algorithm also showed a good performance, and that Welch’s

periodogram showed comparable results to FFT, indicate that the

results obtained are reliable. Moreover, the improved results

obtained using these algorithms can be explained from their

theoretical principles. The MUSIC algorithm, which is based on

the identification of eigenvalues and eigenvectors from a signal,

has been shown to be a high-resolution method particularly

suitable for analysing time series that are a sum of sinusoidal

waves, such as PRV, contaminated with Gaussian noise

(Fernando et al., 2003; Castanié, 2011). In the case of FFT,

this is the most direct and efficient digital implementation of

the Fourier transform, and hence is a suitable tool for the spectral

analysis of sine wave signals (Castanié, 2011; Semmlow and

Griffel, 2014). Also, when FFT is compared to other classical

methods, it has a higher resolution than other alternatives such as

Welch’s method (Semmlow and Griffel, 2014). In general, both

MUSIC and FFT could be expected to perform well when the

input signal exhibits a sine-like behaviour and when higher

resolution is required to observe the behaviour of the signal at

lower frequencies, as is the case of PRV.

This study has some limitations. Firstly, simulated PPG signals

with simulated PRV information were used in this study. This was

done with two main purposes. It is simpler to obtain larger number

of samples using simulated data, which gives statistical validity to the

experiment. The sample size for this study was estimated to observe

differences of 2% in the measurement of the indices, compared to

the gold standard. Also, by simulating PRV information it was

possible to obtain a gold standard that was not HRV information

obtained from the ECG. As mentioned, physiological aspects may

explain part of the differences between HRV and PRV, hence

comparing them in order to establish methodologies and

strategies for obtaining PRV information is not ideal. Regardless

of the benefits of using simulated signals, thesemay not represent the

entire variation of the PPG morphology, and the results from these

experiments need to be validated using real PPG data. The

simulation of PRV information may also affect the results

obtained. However, PRV was simulated using physiologically

feasible values, which may introduce larger variability of the PRV

but also simulate PRV information that could be obtained from

most of the healthy population. Future studies should optimise the

PRV model to have a better reflection of real PRV information,

applying alternative models such as the integral pulse frequency

modulationmodel (Candia-Rivera et al., 2021) or dynamical models

such as the one proposed by McSharry et al. (2003). Secondly, the

signals simulated were noiseless. This was done to have a controlled

way to modify the parameters, but the effect of noise in these results

need to be considered in future studies. Also, the agreement between

indices was not assessed. Future studies should investigate not only

the significance of the difference but also determine how the indices

agree using techniques such as Bland-Altman analysis. Finally, the

gold standard indices used in this study were extracted from PRV

trends using FFT, which could have had a bias on the results.

However, this was considered the optimal solution given the

response of FFT compared to the rest of the algorithms.

Conclusion

The relationship between PRV and HRV is not straightforward,

both due to physiological differences and to effects of technical

aspects on the extraction of PRV information from pulsatile

signals such as the PPG. The latter has not been thoroughly

studied and there is no consensus regarding the methodologies

for the extraction of PRV. In this study, a first approach for

determining the best combination of factors for the extraction of

frequency-domain indices from PRV information from simulated

PPG signals was presented. It was found that spectral analysis of PRV

information should be performed applying FFT and MUSIC

algorithms, each of them with specific parameters for the selection

of frequency resolution and interpolation of data. Future studies

should aim to validate these results using real data and to evaluate

how other technical aspects, such as the length of the recording and

the presence of noise may affect frequency-domain analysis

from PRV.
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