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Ultrasound (US) imaging is a mature technology that has widespread

applications especially in the healthcare sector. Despite its widespread use

and popularity, it has an inherent disadvantage that ultrasound images are prone

to speckle and other kinds of noise. The image quality in the low-cost

ultrasound imaging systems is degraded due to the presence of such noise

and low resolution of such ultrasound systems. Herein, we propose a method

for image enhancement where, the overall quality of the US images is improved

by simultaneous enhancement of US image resolution and noise suppression.

To avoid over-smoothing and preserving structural/texture information, we

devise texture compensation in our proposed method to retain the useful

anatomical features. Moreover, we also utilize US image formation physics

knowledge to generate augmentation datasets which can improve the training

of our proposed method. Our experimental results showcase the performance

of the proposed network as well as the effectiveness of the utilization of US

physics knowledge to generate augmentation datasets.
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1 Introduction

Ultrasound imaging is one of the most extensively utilized medical imaging

procedures. Among the various benefits of the US imaging, the most prominent ones

are its radiation-free and non-invasive nature. It is considered to be a versatile tool for

scanning almost all body tissues with its applications in cardiology, gynecology, obstetrics,

vascular imaging, and abdominal imaging among others. Despite its many benefits,

ultrasound imaging technology has a significant image quality disadvantage when
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compared to other medical imaging modalities like x-rays,

magnetic resonance imaging, and computed tomography

(Sanches et al., 2012). Ultrasound images are typically noisy

to the observer, and good correlation of anatomy/disease to the

acquired ultrasound images necessitates extensive and long-term

training.

Commercially available US systems/scanners generate

images using the echo imaging principle. Pulses of acoustic

waves with frequencies ranging from 1 MHz to 20 MHz are

transmitted into the target tissues by means of a handheld

transducer/probe which acts as a transceiver. The transmitted

acoustic waves then interact with the tissues and some of the

transmitted energy is reflected back and detected by the US

transducers. Some key advantages of US imaging systems over

other radiography/medical imaging methods can be:

• Low-cost systems as compared to computed tomography

and magnetic resonance imaging

• Can work in real-time

• Noninvasive and radiation-free

• Compact and portable

Key limitations of the US imaging systems include their

limited penetration into the tissue and the requisite skill of

the sonographer or physician is required to have useful

insights from the examination.

The presence of speckle noise in US images makes them

appear noisy, which can mask pathological changes in the body

and lead to diagnostic mistakes. As a result, since the early days of

ultrasound imaging, the problem of speckle reduction in

ultrasound images has been a focus of research for many

academic and industrial research organizations, and it is

predicted to continue so, given its impact on this technology

(Loizou and Pattichis, 2015). Blood capillaries and cells in the

extracellular space operate as scatterers, while tissue interfaces

and large blood arteries act as speckular reflectors (Burckhardt,

1978;Wagner et al., 1983). As a result, image deterioration occurs

in ultrasound imaging.

Early approaches to address the problem of noise reduction

in US images include Anisotropic diffusion methods (Yu and

Acton, 2002; Sun et al., 2004; Aja-Fernández and Alberola-López,

2006; Liu et al., 2011), Probabilistic Patch-Based (PPB) filtration

(Deledalle et al., 2009), bilateral filter (Balocco et al., 2010; Tang

et al., 2010), and the non-local means (NLM) (Zhan et al., 2014).

Most of such contemporary techniques lack in performance due

to sensitivity to signal dynamic-range and noise level, selection of

patches, selection of algorithm parameters, computational

complexity of the algorithm, etc. Among the NLM filtering

techniques, a few NLM filtering approaches designed

primarily for general image processing applications use low-

rank information such as noise reduction in images (Gu et al.,

2014), multispectral image denoising (Xie et al., 2016), and image

deblurring (Dong et al., 2015). A major limitation of

conventional methods is that they are designed to remove

specific noise only, and doesn’t not improve the overall image

quality e.g., resolution. Therefore, such methods might not be

suitable for variable resolution images and may perform inferior

to reduce speckle noise in US images. Furthermore, as there is no

specific method to find candidate patches of the speckle patterns

present in US images, global filtration may introduce blurring. In

this regard, a low-rank non-local filtering-based speckle removal

system is presented (Zhu et al., 2017; Li et al., 2018) which utilizes

a guidance image that can assist the selection of candidate

patches for non-local filtering, however, it is an iterative

optimization-based method which is computationally very

expensive.

Many researchers have examined deep learning approaches

for US image enhancement challenge as a result of recent

breakthroughs in AI, and have claimed that deep learning-

based strategies can improve real-time image interpretation to

enable quick and efficient decisions (Shokoohi et al., 2019). The

recent finding of a close relationship between deep neural

networks and Hankel matrix decomposition (Ye et al., 2018)

prompted a major effort related to efficient ultrasound imaging

utilising deep learning. The research revealed that the receiver-

transmit (Rx-Xmit) and receiver-scan-line (Rx-SL) domains have

considerable redundancy, resulting in a low-rank Hankel matrix

(Jin et al., 2016). Convolutional Neural Networks (CNN) are

preferred to be applied to the Rx-Xmit domains to utilise the

redundancy in the RF domain (Yoon et al., 2018). In a similar

direction, the work in (Khan et al., 2020a) presents the first deep

learning-based adaptive and compressive beamformer for high-

resolution ultrasound imaging. Recently, the studies in (Huh

et al., 2020; Khan et al., 2021d) described some theoretically

justified unsupervised algorithms for ultrasound image

enhancement. The work in (Dietrichson et al., 2018) puts

forward a deep convolutional generative adversarial network-

based real-time ultrasound speckle noise reduction approach

where three alternative sized generator networks were tested

to analyze the performance-run-time trade-off. A fully

convolutional neural network-based ultrasound B-mode

imaging approach for producing speckle-reduced B-mode US

images that uses a log-domain normalization-independent loss

function in training is presented in (Hyun et al., 2019).

In contemporary methods, denoising often causes blurring in

the final output subsequently reducing the resolution which is

already limited due to the fundamental limitations of US physics. A

variety of strategies have been proposed to address this problem,

ranging from adaptive beamforming (Khan et al., 2020a) for side-

lobe suppression to deconvolution ultrasonicmethods (Duan et al.,

2016). Because resolution loss is caused by a variety of reasons such

as restricted bandwidth, speckle noise, and the number of

channels, as a result, adaptive and tunable deep learning can be

applied in this case (Khan et al., 2021b). Furthermore, when

imaging physics is fully or partially known, such as when a

blurring kernel or point-spread function (PSF) is understood,
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an explainable AI can be created to increase quality characteristics

such as resolution (Khan et al., 2021d). Bind deconvolution is a

method for predicting PSF and high-resolution images (also

known as tissue reflectivity function (TRF)) from low-

resolution images. Model-based deconvolution methods are

dependent on a number of assumptions and do not operate in

the presence of noise. A deep learning-based deconvolution

approach has recently been proposed that does not require PSF

estimate and can deconvolve RF data directly (Khan et al., 2020a).

Similarly, a theoretically justifiable deep learning aided ultrasound

image enhancement system is presented in (Khan et al., 2021d),

where artificial intelligence-based speckle denoising is performed

on phantom dataset for delay-and-sum (DAS) conventional

beamforming images. The abality of learning complex patterns

in a data-driven fashion motivated various researcher to exploit it

for US image enhancement tasks, a short summary of research

conducted on deep learning-based US imaging systems is

presented in Table 1.

Motivated by the recent trends in deep learning-based US

image enhancement, in this work, we propose a deep

convolution neural network (CNN) based US image

enhancement method where the task of noise suppression

and resolution enhancement are carried out simultaneously in

a single network. For the task of noise reduction, we use a

UNET-like architecture which is followed by a small

convolution network where multi-scale features are

incorporated to enhance the texture cues in the noise-free

image. Since US image datasets are generally small datasets

with only a limited number of real-world US images, the

performance of deep learning techniques might degrade as

such methods require large volumes of data. In order to

improve the performance of the proposed method, we also

devised an augmentation dataset which is designed by

incorporating US image formation physics information.

The rest of the paper is organized as; section 2 outlines the

proposed method, the experimental setup, performance

TABLE 1 A short summary of research conducted on deep learning-based US imaging.

Problem Technique References

Speckle Noise Reduction and Image Quality Enhancement Multi-Resolution CNN Vedula et al. (2017)

Speed of Sound Calibration Deep CNN Salehi et al. (2017)

B-Mode US Image Reconstruction Deep CNN Yoon et al. (2018)

US Artefact Reduction CNN Vedula et al. (2018)

US Super-Resolution SRGAN Choi et al. (2018)

Speckle Noise Reduction ResNet-based GAN Mishra et al. (2018)

Speed of Sound Estimation Deep CNN Anas et al. (2019)

Speckle Noise Reduction and Beamforming Deep CNN Hyun et al. (2019)

B-Mode US Tongue Feature Extraction Denoising AutoEncoder Li et al. (2019)

Speckle Noise Reduction Denoising Autoencoder Karaoğlu et al. (2020)

Phase Aberration Correction Deep Auto-Encoder Jeon and Kim. (2020)

Phase Aberrator Profile Estimation Deep CNN Sharifzadeh et al. (2020)

Super Resolution of B-Mode US Images Deep CNN Temiz and Bilge. (2020)

US Image Artefact Removal Optimal Transport-Driven Unsupervised Deep CNN Huh et al. (2020)

Speckle Noise Reduction Mixed attention mechanism-based residual UNet Lan and Zhang. (2020)

Speckle Noise Reduction and Contrast Enhancement MimickNet (based on GAN) Huang et al. (2020)

B-Line Assessment in Point-of-Care US Deep CNN Baloescu et al. (2020)

Assisted Diagnosis of Lung Disease in Point-of-Care US Deep neural network Roy et al. (2020)

Cardiac Point-of-Care US Image Quality Enhancement Constrained CycleGAN Jafari et al. (2020)

US Image Quality Enhancement Unsupervised Deep Deconvolution Model Khan et al. (2020b)

Estimation of Ultrasound Echogenicity Map from B-Mode Images UNet Convolutional Neural Network Shen and Yang (2020)

Speckle Noise Reduction and Beamforming Deep CNN Khan et al. (2021b)

Speckle Noise Reduction and Image Quality Enhancement Deep CNN Ma et al. (2021)

Contrast and Resolution Enhancement in POCUS Self-consistent CycleGAN Khan et al. (2021a)

US Artefact Removal Unsupervised Optimal Transport CycleGAN Khan et al. (2021d)

Accelerated Echocardiography with Artefact and Speckle Reduction Unsupervised CycleGAN Khan et al. (2021c)

Phase Aberration Correction Self Supervised Learning Khan et al. (2022)

Enhanced 3D ultrasound Switchable CycleGAN Huh et al. (2023)

Resolution and contrast enhancement OT-drived CycleGAN Huh et al. (2022)
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evaluation parameters, and results are presented in section 3

followed by conclusion in section 4.

2 Materials and methods

In this section, we present our proposed deep CNN-based US

image enhancement method. The contributions made in this

work are two-folds; 1) we present a novel deep CNN based

architecture for US image enhancement, 2) we also propose to

incorporate US image formation physics into the training dataset

to achieve better overall image quality. First, we need a denoising

model for US image speckle noise reduction. Second, the output

of the denoising model will be fed to our proposed resolution

enhancement model; however, since resolution enhancement is

susceptible to noise amplification, we suggest that the noise be

reduced prior to the resolution enhancement task. Finally, we can

combine both models to design an end-to-end deep CNN model

that can remove speckle noise and improve resolution. The

authors believe that the proposed approach is one-of-a-kind

in two ways; first, the presence of densely connected

convolution blocks using skip pathways enable efficient and

accurate training of the proposed desnly-connected UNET-

type CNN as suggested by (Huang et al., 2017), and secondly,

the use of a dedicated resolution enhancement network after the

densly connected UNET-like CNN.

2.1 US image formation physics informed
data augmentation

Since real-world US image datasets are usually small, hence

training deep learning models with such low volumes of data may

result in performance degradation as well as it can cause poor

generalization of the deep learning models due to overfitting. To

address these problems, we propose to perform data

augmentation by introducing the US image formation physics

information into the salient object detection (SOD) dataset

presented in (Xia et al., 2017). To obtain low-resolution and

noisy images, we corrupted the images from the SOD dataset

with different Rayleigh noise profiles and apply Gaussian

blurring with different variance profiles to obtain reflectivity

amplitude. Finally, we define a PSF and convolve it with the

reflectivity amplitude to obtain B-mode ultrasound-like images

with speckle noises as suggested in (Shen and Yang, 2020). The

US image formation physics informed dataset generation is

highlighted in Figure 1.

2.2 Proposed US image enhancement
method

The proposed deep CNN consists of a UNET-like network

followed by a resolution/texture enhancement network. The

architecture of the UNET-like network has a deep encoder-

decoder structure where the encoder and decoder networks

are densly connected by skip connections as shown in

Figure 2. The short skip connections are facilitated by the

concatenation blocks where the number of inputs to each

concatenation block increments by a 1 as we move from

input to the output which ensures the model training in an

accurate and efficient manner (Huang et al., 2017). Each

convolution block labelled as CB in Figure 2 contains two

stacked convolution layers and results in 3 outputs; one from

the stacked convolutions, one after a (2,2) maxpooling layer, and

the final one from a transposed convolution layer with a stride

size of 2. It can be seen in Figure 2 that the input dimensions are

reduced by a factor of 2 along the encoding path and it is

upsampled by the same factor by means of transpose

convolution in the decoding path. After the final CB, the

FIGURE 1
Ultrasound image formation physics informed dataset generation.
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number of channels are reduced to 1 using a (1,1) convolution

layer having only 1 filter. We also incorporate residual learning

by adding the output of the final (1,1) convolution layer with the

input by means of a long skip connection.

The output of the first model is then fed to the resolution/

texture enhancement network as shown in Figure 3. This

network takes two inputs; 1) the output of the densly

connected UNET-type CNN, and 2) the input image. Both the

inputs are concatenated and fed to a convolution layer. The

output of the convolution layer is then fed to a stack of multi-

resolution convolution blocks (MRCB). The architecture of the

MRCB is shown in Figure 4. Since denoising models usually blur-

out the high frequency texture information due to their high

correlation with speckle noise, we aim to preserve the texture

information using dilated convolutions in the MRCB. Varying

the dilation rate varies the size of the receptive field of the

convolutions and preserve texture information in the input

image (Zhang et al., 2021).

FIGURE 2
Densly connected UNET-type CNN.

FIGURE 3
Resolution/Texture enhancement network.
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As illustrated in the MRCB architecture depicted in

Figure 4, the input to the MRCB is passed onto a

convolution layer followed by the batch normalization and

activation (ReLU) layer. The output of the activation layer is

fed to stacks of 3 parallel convolutions with different dilation

rates. All 3 stacks of convolution layers have different dilation

rates that can ensure the extraction of the context information

at 3 different scales due to the variation in the size of the

receptive fields. The advantage of using different dilation

configuration is also two-folds; 1) it helps improving the

texture information, 2) it also helps in reducing the

number of parameters of the network as compared to using

the convolution layers with different filter sizes e.g. (3, 3), (5,

5), (7, 7), etc. The output of the final MRCB is forwarded to a

convolution layer with a kernel size of (1,1), and the output of

the final convolution layer is added with the input of the

resolution enhancement network to produce the final output

of the model. The overall framework of the proposed system is

presented in Figure 5.

3 Experimental setup and results

3.1 Training setup

In order to assess the effect of utilizing US image

formation physics knowledge in the training, we devised

two distinct training schemes. In the first scheme, scheme

1: we train our network only on the real-world breast US

(BUS) dataset presented in (Yap et al., 2017). The BUS dataset

comprises of 163 breast ultrasound images of which,

53 images are of malignant and 110 images are of benign

lesions. Since the objective of this work is to perform image

enhancement (image-to-image translation), we generated

label images (high resolution and low noise) using the

state-of-the-art non-local low-rank (NLLR) normal

filtration (Zhu et al., 2017).

For our second training scheme, scheme 2: we designed

the US image formation physics information-based

augmentation dataset described in section 2.1. The

augmentation dataset consists of 2000 images of which

1000 images are obtained from What is a salient object

(Image) and the remaining 1000 images from What is a

salient object (Ground) sets in the SOD dataset (Xia et al.,

2017). From here on, we will refer to the first set of

1000 images as SOD-image, and the second set as SOD-

ground. The objective behind using US image formation

physics into the augmentation dataset is to improve the

robustness towards different speckle profiles as well as

improving the generalization ability of the model. To avoid

biasness in results due to particular training set choice, and to

evaluate full dataset for both the training and testing purpose,

we utilize a K-fold cross validation method. Since number of

real ultrasound images are limited and high number of folds

e.g., 10-folds limit the test-set to just 10%. Therefore herein,

we performed training and testing using 5-fold cross-

FIGURE 4
The architecture of the multi-resolution convolution block.

FIGURE 5
The overall block diagram of the proposed method.
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validation, the 5-fold validation allow comprehensive

evaluation where dataset is divided into 5 equally

distributed sub -sets, and for each fold, the model is first

trained on four sets and remaining set is used for test. This way

complete dataset is utilized for both the training and testing

purposes and mean and standard deviation statistics of

performance metric are reported. The proposed model was

trained on mean-squared-error (MSE) loss optimized using

Adam optimizer with a learning rate of 1e − 4, and trained

with batch-size of 8 for 200 epochs with an early stopping

patience of 50 epochs.

Besides using different speckle profiles in the augmentation

dataset, we also introduced variations in the resolution of both

the datasets. The resolution of the images in both the datasets was

first fixed at (256 × 256). For both the training schemes, we

performed resolution reduction by simply resizing the images in

both the datasets to; (64 × 64) and (128 × 128), and resized both

versions back to (256 × 256) resulting in 4 separate datasets

having 2 different speckle profiles as well as 2 different resolution

profiles.

3.2 Results and discussion

The performance of our proposed method is evaluated

qualitatively by the visual inspection of the images, and

quantitatively using the standard peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM)

values. We also compared the performance of the

proposed US image enhancement model with 3 different

deep CNN models namely UNET++ (Zhou et al., 2018),

UNET (Ronneberger et al., 2015), and NMB-TCB (Zhang

et al., 2021). In order to evaluate the improvement in

resolution, we also calculated contrast (Tang et al., 2009)

using generalized contrast-to-noise ratio (GCNR)

(Rodriguez-Molares et al., 2018) for each training scheme

and respective datasets. The visual results of training scheme

1, where we train and test our proposed method with only

real-world US images with different noise and resolution

profiles are presented in Figure 6. It is evident from the

Figure 6C that the best visual performance for training

scheme 1 is obtained on the BUS dataset with resolution

profile I.

The qualitative results of cross-validation on training

scheme 2 are presented in Figure 7. It can be observed that

the proposed model performs relatively better with the

resolution profile I where the resolution of the input

images are reduced by a factor of 4. Observing the outputs

of other noise and resolution profiles closely also reveals that

the noise and texture has improved but is not as promising as

the visual results in Figure 6C and Figure 7E for training

scheme 1, 2, respectively.

FIGURE 6
Visual results of the proposed US image enhancement model for training of the proposed network with only US image data (training Scheme 1).
(A) Input image (B) training and testing on BUS dataset with resolution profile II (64 × 64 to 256 × 256) (C) training and testing on BUS dataset with
resolution profile I (128 × 128 to 256 × 256) (D) Label image filtered using non-local low-rank (NLLR) normal filtration (Zhu et al., 2017).

Frontiers in Physiology frontiersin.org07

Moinuddin et al. 10.3389/fphys.2022.961571

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.961571


3.2.1 Analysing the effect of proposed US
image formation physics-informed
dataset augmentation

To investigate the performance of the proposed method as

well as the effectiveness of the proposed US image formation

physics-informed dataset augmentation, we designed an ablation

study for our proposed method. First, we evaluate the

performance of our proposed method with US image

formation physics knowledge introduction in the

augmentation dataset. Table 2 presents the PSNR, SSIM, and

GCNR results for the ablation study on the effect of the proposed

FIGURE 7
Visual results of the proposed US image enhancement model for training and testing of the proposed network with US image data as well as US
image formation physics informed augmentation dataset (training scheme 2). (A) Input image (B) training and testing on noise profile I (Rayleigh noise
variance = 0.2, Gaussian filter standard deviation = 0.8) with resolution profile II (64 × 64 to 256 × 256) (C) training and testing on noise profile II
(Rayleigh noise variance = 0.1, Gaussian filter standard deviation = 0.7) with resolution profile II (64 × 64 to 256 × 256) (D) training and testing on
noise profile I (Rayleigh noise variance = 0.2, Gaussian filter standard deviation = 0.8) with resolution profile I (128 × 128 to 256 × 256) (E) training and
testing on noise profile II (Rayleigh noise variance = 0.1, Gaussian filter standard deviation = 0.7) with resolution profile I (128 × 128 to 256 × 256) (F)
Label image filtered using non-local low-rank (NLLR) normal filtration (Zhu et al., 2017).
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US image formation physics informed augmentation in the

training of the proposed model. We present the results for a

specific noise and resolution profile (noise profile II, resolution

profile I) in order to best describe the effect of using US image

formation knowledge in the training of an image enhancement

model. It can be easily observed that the PSNR, SSIM, and GCNR

have improved with the proposed training setup where we

suggested to incorporate US image formation physics

knowledge in to the model training.

3.2.2 Analysing model performance on
different resolution profiles

We designed the second ablation study to investigate the effect

of different resolution profiles on the model performance. In this

ablation study, we only present the results of training with US image

formation physics-based augmentation only to have a better

understanding of the effect of different resolution profiles on the

model performance. This ablation study is summarized in Table 3. It

is evident from the ablation study presented in Table 3 that there is

2.76%, 1.39%, and 0.16% improvement in PSNR, SSIM, and GCNR

respectively for the resolution (128 × 128). For the resolution of

(64 × 64), there is 3.48%, 5.97%, and 0.302% improvement in PSNR,

SSIM, and GCNR, respectively. This shows the robustness of our

model against different resolution profiles.

3.2.3 Analysing the robustness of
proposed method against different noise
levels

The third ablation study was designed to assess the

performance of our proposed method with variation in the

noise profiles. Table 4 presents the findings of this ablation

study. It can be seen from the ablation study that there is

3.48%, 5.97%, and 0.302% improvement in PSNR, SSIM, and

GCNR, respectively for the noise profile I. For the noise profile II,

there is 2.87%, 5.64%, and 0.44% improvement in PSNR, SSIM,

and GCNR respectively. It can be concluded from the ablation

study that the best performance combination is to train the

model with US image formation physics knowledge-based

augmentation with noise profile I and a resolution of 64 × 64.

3.2.4 Analysing the robustness of
proposed method against different
contrast levels

To further analyze the robustness of the proposed model, a

simulation phantom is designed that consist of an arbitrary

shape of hyper-echoic region and hypo-echoic background.

Using the simulated phantom, input images of different

degradation levels were generated. In particular, in a 256 ×

TABLE 2 PSNR, SSIM, and GCNR result for the ablation study on the effect of US image formation physics informed data augmentation. (Input PSNR =
32.1392 ± 2.7026, Input SSIM = 0.9279 ± 0.0252, Input GCNR = 0.9974 ± 0.0017).

Training Method Output PSNR Output SSIM Output GCNR

Without Augmentation 32.6381 ± 2.1588 0.9198 ± 0.0279 0.9958 ± 0.0030

With Augmentation 33.0270 ± 3.0317 0.9408 ± 0.0247 0.9990 ± 0.0008

TABLE 3 PSNR, SSIM, and GCNR result for the ablation study on the effect of different resolution profiles on themodel performance. (128 × 128 Input
PSNR = 32.1392 ± 2.7026, Input SSIM = 0.9279 ± 0.0252, Input GCNR = 0.9974 ± 0.0017) (64 × 64 Input PSNR = 26.0071 ± 2.3083, Input SSIM =
0.7098 ± 0.0761, Input GCNR = 0.9936 ± 0.0039).

Resolution Profile Output PSNR Output SSIM Output GCNR

128 × 128 33.0270 ± 3.0317 0.9408 ± 0.0247 0.9990 ± 0.0008

64 × 64 26.9112 ± 2.3025 0.7522 ± 0.0635 0.9966 ± 0.0026

TABLE 4 PSNR, SSIM, and GCNR result for the ablation study on the effect of different resolution profiles on the model performance. (Noise Profile I
(Rayleigh noise variance = 0.2, Gaussian filter standard deviation = 0.8). Noise Profile II (Rayleigh noise variance = 0.1, Gaussian filter standard
deviation = 0.7). Input PSNR = 26.0071 ± 2.3083, Input SSIM = 0.7098 ± 0.0761, Input GCNR = 0.9936 ± 0.0039).

Noise Profile Output PSNR Output SSIM Output GCNR

I 26.9112 ± 2.3025 0.7522 ± 0.0635 0.9966 ± 0.0026

II 26.7547 ± 2.3758 0.7498 ± 0.0611 0.9980 ± 0.0017
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256 clean image first a Rayleigh noise is added followed by

compression (256 × 256 → 64 × 64) and re-expansion (64 ×

64 → 256 × 256) steps and finally the low-resolution noisy

version is further blurred with the help of Gaussian filtration.

The noise variance is varied from 0.25 to 1.95 units with the

step-size of 0.05 units, for each noise level, the Gaussian

blurring standard deviation is also varied accordingly

staring from 1.25 to 2.95 units with the step-size of

0.05 units, respectively. The noisy images are filtered using

the proposed model trained on noise profile I (Rayleigh noise

variance = 0.2, Gaussian filter standard deviation = 0.8) and

contrast-recovery (CR) scores are compared for input and

output images. A comparison of baseline and proposed

contrast recovery curves is shown in Figure 8. The Python

colab-notebook implementation of the proposed algorithm

along with the simulation setup used for this experiment is

available at author’s GitHub page (https://github.com/

Shujaat123/MUSI_Enhancement_TCMR_CNN).

3.2.5 Analysing model sensitivity over
hyper-parameters

In order to evaluate the performance variation with

different hyperparameters in the proposed method, an

ablation study to assess the effect of various convolution

kernel sizes, number of kernels, inference time, and the

effect of different pooling techniques is also presented. In

this ablation study, we first present the effect of Max Pooling

and Average Pooling on the performance of the proposed

technique. The results of this ablation study are presented in

Table 5. The results in the table present the mean output PSNR

results of the three datasets used in this study. It can be

observed from the mean output PSNR results from the

model with Maxpooling layer instead of average pooling

layer can result in better output PSNR with various model

hyperparameter combinations.

The ablation study results presented in Table 5 also reveal

that using maxpooling with 64 kernels of size 5 × 5 result in the

best mean output PSNR. However, using this configuration of

hyperparameters can be computationally expensive. Table 6

present the number of parameters and mean inference time

for the various hyperparameter configurations. All

experiments were conducted on a Google colab-pro

notebook using Intel(R) Xeon(R) CPU @ 2.20 GHz

processor and NVIDIA Tesla K80 GPU. For full ablation

study study it took less than 3 days to complete. The total

training time varies with the early stopping condition, batch-

size and input image resolution and noise levels, etc.

Furthermore, the training and testing time also varies with

the size of model, however, for Max and Average pooling, the

computation time was statistically identical, whereas for

number of channels it increases linearly, and for kernel-

size, it increases exponentially. A detailed ablation study

showing inference time for each configuration is shown in

Table 5. Although the ablation study presented in Table 5

suggests the use of the model hyperparameter configuration

presented in the last row (Pooling:Max, Kernel size:5 × 5,

Number of kernels: 64), but this configuration results in

11.05× more parameters compared to the configuration

(Pooling:Max, Kernel size:3 × 3, Number of kernels: 32), as

presented in Table 6. Also, the mean inference time of the

former configuration is 2.428× higher than that of the latter

with only 2.089% degradation in mean output PSNR.

3.2.6 Comparison with contemporary
deep learning-based solutions

The PSNR and SSIM results for both the training schemes

the noise profiles, and the resolution profiles were compared

with UNET++ (Zhou et al., 2018), UNET (Ronneberger et al.,

2015), and NMB-TCB (Zhang et al., 2021). For fair

comparison, we perfomed 5-fold cross validation for these

models with the same learning rate, number of epochs, and

early stopping patience for training as used with proposed

model and report mean PSNR and SSIM results. Table 7

presents a comparison of the mean PSNR and SSIM values for

the datasets, and also enlists the GCNR results for the SOD-

Ground dataset. Although, the PSNR values for BUS dataset

do not show a significant improvement, it can be seen that

FIGURE 8
Contrast recovery curve for the proposed model trained on
noise profile I (Rayleigh noise variance = 0.2, Gaussian filter
standard deviation = 0.8)
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using the proposed method and the US image formation

physics knowledge in the training can bring noticeable

improvements in the SSIM values for BUS dataset.

Moreover, it is also evident from the comparative results

that the proposed method outperforms all the other methods

in-terms of both PSNR and SSIM. It can also be seen that the

PSNR and SSIM values of the proposed method on the SOD

datasets also improved greatly using the proposed method

which advocates the robustness of our proposed method.

We also calculated GCNR for the SOD-ground dataset to

evaluate the improvement in contrast in the output images of

the proposed method compared to the other methods. GCNR

is an image quality index based on the overlap area of the

probability density function inside and outside the target area

(Rodriguez-Molares et al., 2018). The GCNR results are

presented in Table 7. It is evident from the table that the

proposed method outperforms all other deep CNN models in-

terms of GCNR. To summarize, it can be observed from the

ablation studies and comparative results that the proposed

deep CNN-based US image enhancement method can not

only perform speckle noise reduction, but can also preserve

the texture information by leveraging the fusion of receptive

fields of different sizes in the resolution enhancement

network. It can also be concluded from the results that

augmenting US image formation physics informed data

with the real-world US datasets can improve the

performance as well as generalization ability of deep

learning-based US image enhancement methods.

3.2.7 Comparison with conventional
speckle-denoising methods

To provide a comparison with conventional ultrasound

speckle denoising techniques, different algorithms are

selected to represent diverse filtration techniques, herein

TABLE 5 Mean PSNR results for the ablation study on the effect of different pooling techniques on the model performance. (Mean input PSNR =
13.3726 ± 0.9174).

Pooling Technique Kernel Size No. of Kernels Mean Output PSNR

Average Pooling 3 × 3 16 28.2198 ± 2.7456

32 28.6411 ± 2.9074

64 28.9790 ± 3.0236

5 × 5 16 28.7586 ± 2.8746

32 29.2008 ± 2.7406

64 29.1355 ± 2.8385

Max Pooling 3 × 3 16 29.1414 ± 2.7476

32 29.1743 ± 2.7404

64 29.6820 ± 2.7956

5 × 5 16 29.0112 ± 2.7417

32 29.4757 ± 2.7501

64 29.7968 ± 2.8557

TABLE 6 Mean inference time and model parameters for various hyperparameter configurations.

Kernel Size No. of Kernels Inference Time (Seconds) Model Parameters

CPU GPU

3 × 3 16 0.390 0.016 107,650

32 0.978 0.021 427,266

64 3 0.045 1,702,402

5 × 5 16 1 0.033 297,090

32 2 0.051 1,182,978

64 9 0.121 4,721,154
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we implemented three popular methods namely Probabilistic

Patch-Based filter (PPB) (Deledalle et al., 2009), speckle-

reducing anisotropic diffusion (SRAD) algorithm (Yu and

Acton, 2002; Aja-Fernández and Alberola-López, 2006) and

image filtered using non-local low-rank (NLLR) normal

filtration (Zhu et al., 2017) and compare them with the

proposed model trained on noise profile II (Rayleigh noise

variance = 0.1, Gaussian filter standard deviation = 0.7). The

FIGURE 9
Comparison of the proposed image enhancement method with conventional speckle denoising methods. (A) Input image (B) Probabilistic
Patch-Based filter (PPB) (Deledalle et al., 2009) filtered image using 2 levels of 3 × 3 filters (C) results of speckle-reducing anisotropic diffusion (SRAD)
algorithm (Yu and Acton, 2002; Aja-Fernández and Alberola-López, 2006) (D) image filtered using NLLR (Zhu et al., 2017), and (E) Proposed model
trained on noise profile II (Rayleigh noise variance = 0.1, Gaussian filter standard deviation = 0.7)

TABLE 7 Comaprison of PSNR, SSIM, and GCNR results. Themean input PSNR for BUS dataset is 26.0071 ± 2.3083 dB, SOD-image dataset is 12.1587 ±
0.7839 dB, and SOD-Ground dataset is 12.5272 ± 0.8243 dB. The mean input SSIM for BUS dataset is 0.7098 ± 0.0761 dB, SOD-image dataset is
0.5570 ± 0.1205 dB, and SOD-Ground dataset is 0.1556 ± 0.1451 dB. The mean input GCNR for SOD-Ground dataset is 0.9936 ± 0.0039.

Method Dataset Output PSNR Output SSIM Output GCNR

NMB-TCB (Zhang et al., 2021) BUS 22.9819 ± 2.5252 0.6171 ± 0.0661 —

SOD-Image 11.2623 ± 2.2623 0.3052 ± 0.1153 —

SOD-Ground 11.3659 ± 1.0254 0.1448 ± 0.1424 0.9835 ± 0.0101

UNET (Ronneberger et al., 2015) BUS 26.8307 ± 2.2531 0.7434 ± 0.0645 —

SOD-Image 12.0692 ± 1.0108 0.3507 ± 0.0908 —

SOD-Ground 11.8374 ± 0.7337 0.1265 ± 0.1192 0.9880 ± 0.0135

UNET++ (Zhou et al., 2018) BUS 26.1576 ± 2.1916 0.7111 ± 0.0629 —

SOD-Image 11.5688 ± 0.9111 0.3056 ± 0.1073 —

SOD-Ground 12.1533 ± 0.7603 0.1426 ± 0.1370 0.9849 ± 0.0141

Proposed BUS 26.9112 ± 2.3025 0.7522 ± 0.0635 —

SOD-Image 25.5275 ± 2.9712 0.6946 ± 0.1267 —

SOD-Ground 32.4719 ± 2.6179 0.8785 ± 0.0766 0.9966 ± 0.0026
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codes for PPB and NLLR are downloaded from their official

sites while for SRAD the official MATLAB built-in functions

of specklefilt is used. For SRAD, default settings were used

whereas for PPB, the noise levels are set to 2, and filter size of

3 × 3 was used, while for NLLR, the same configuration i.e.,

beta = 10, and H = 5 is used for generating ground truths is

used here as well.

As mentioned earlier, a major limitation of conventional

image denoising methods is that they are designed to remove

specific noise only, and do not improve the overall image quality

e.g., resolution, contrast, etc. From the results in Figure 9 it can be

seen that the proposed method does not only reduce speckle but

also improves the overall quality and enhances the anatomical

structural detail and overall contrast. The contrast-recovery (CR)

scores for each method are shown with their corresponding

results. For contrast-recovery calculation mean pixel

intensities of two regions-of-interest (ROIs) are compared, the

ROIs are shown in blue/orange masked region of input images.

In comparison, the Probabilistic Patch-Based filter (PPB)

dramatically reduces the speckle, however, it also smooths out the

structural details. On the other hand the speckle-reducing

anisotropic diffusion (SRAD) algorithm preserves edges but

also introduces blurring specially in low-resolution case.

Although, the NLLR shows relatively better performance in

terms of preserving structural detail and reduce noise,

however, none of the aforementioned classical methods

improve spatial information (which is expected) because they

are not designed to perform that task. The ability to improve the

overall quality both in terms of nose reduction and resolution

enhancement makes our image enhancement scheme unique,

which suppresses the noise to improve contrast but doesn’t

compromise on resolution. Moreover, to compare resolution

gain and edge preservation, the axial speckle profile is plotted

from the lateral mid-point of images in Figure 10. The speckle

profile results for both resolution settings shows a noticeable

resolution gain.

4 Conclusion

In this paper, we proposed a deep CNN-based ultrasound

image enhancement method. Since ultrasound images usually

have low-resolution and high noise content such as speckle

noise. The proposed deep CNN architecture is divided into

two parts; first, a deep encoder-decoder or a UNET-like model

with densly connected skip pathways aim to remove the

speckle noise. This noise suppression network is followed

by a resolution enhancement network which utilizes several

dialted convolutions as well as residual learning to enhance

the image quality by capturing the texture/content

information. We propose to use the fusion of different

dilation configurations in order to preserve high frequency/

texture information by varying the size of the receptive fields.

Besides the deep CNN network, we also propose to leverage

ultrasound image formation physics to generate an

augmentation dataset to aid the training as well as improve

the generalization of the deep CNN model. The experimental

results also showcase the superiority of the proposed method

FIGURE 10
Comparison of speckle profile for two resolution settings. (top):speckle profile from the lateral mid-point of in-vivo sample shown in Figure 9,
(bottom):zoomed-in view of the highlighted region shown in (top) figures.
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for image enhancement both in-terms of visual quality as well

as the PSNR, SSIM, and GCNR results.
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