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Although the link between sleep and hematological parameters is well-described,

it is unclear how this integration affects the swimmer’s performance. The

parameters derived from the non-invasive critical velocity protocol have been

extensively used to evaluate these athletes, especially the aerobic capacity (critical

velocity—CV) and the anaerobic work capacity (AWC). Thus, this study applied the

complex network model to verify the influence of sleep and hematological

variables on the CV and AWC of young swimmers. Thirty-eight swimmers

(male, n = 20; female, n = 18) completed five experimental evaluations. Initially,

the athletes attended the laboratory facilities for venous blood collection,

anthropometric measurements, and application of sleep questionnaires. Over

the 4 subsequent days, athletes performed randomized maximal efforts on

distances of 100, 200, 400, and 800-m. The aerobic and anerobic parameters

were determined by linear function between distance vs. time, where CV relates to

the slope of regression andAWC to y-intercept.Weighted but untargeted networks

were generated based on significant (p < 0.05) correlations among variables

regardless of the correlation coefficient. Betweenness and eigenvector metrics

were used to highlight the more important nodes inside the complex network.

Regardless of the centrality metric, basophils and red blood cells appeared as

influential nodes in the networks with AWC or CV as targets. The role of other

hematologic componentswas also revealed in thesemetrics, alongwith sleep total

time. Overall, these results trigger new discussion on the influence of sleep and

hematologic profile on the swimmer’s performance, and the relationships

presented by this targeted complex network can be an important tool

throughout the athlete’s development.
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Introduction

The link between sleep and immunity is well-established

(Besedovsky et al., 2019), and poor sleep quality is associated with

diseases, that, in turn, may affect hematological variables (Lippi

et al., 2015; Nahrendorf and Swirski, 2015; Lee et al., 2017;

Thomas and Calhoun, 2017; Zheng et al., 2018). Moreover,

sleep apnea contributes to cardiovascular complications

(Gabryelska et al., 2018), metabolic diseases (Light et al.,

2018), and oscillations in sleep debt which have been

associated with the activation of innate inflammatory

pathways (Prather et al., 2009). Although the straight

association between sleep and blood cell profile was described

under pathologic conditions, it is unclear to what extent such

interaction affects the aerobic and anerobic capacity of athletes.

The aerobic and anerobic systems are influenced by a myriad

of factors, but reviews have gathered a large body of data

suggesting that sleep plays an important role in these

outcomes (Pilcher and Huffcutt, 1996; Fullagar et al., 2015;

Watson, 2017). However, the solid fundamentals of this

association remain in light of discovery, and a possible path

lies within the modulation of hematological parameters caused

by sleep disturbances. On the other hand, the assessment of sleep

and hematological variables yields large groups of results (e.g.,

sleep total time, efficiency, latency, sleepiness, and red and white

blood cells profile), and complex models can integrate this

information to verify its impact on the aerobic and anerobic

capacity inside the sports science field.

Complex networks have been applied in natural sciences and

revealed relevant topological structures regarding medical

purposes (Barabasi et al., 2011), metabolic changes across the

human lifespan (Barajas-Martinez et al., 2020), and also

concerning the sleep stages (Bashan et al., 2012). The

networks operate under an untargeted shape. In this scenario,

significant (p < 0.05) correlations among variables can be used to

identify the most influential nodes in the topological structure

(Gobatto et al., 2020; Cirino et al., 2021); within this analysis,

every node has the same relevance inside the network. Early

studies (Park et al., 2004; Li et al., 2017; Sousa et al., 2020),

however, inspired also to select targets inside the topology in a

pre-analytical context. Therefore, the “target nodes” have a

higher weight, providing headed information within the

complex network.

In the sports science field, the complex networks elucidated

variables affecting the fatigue process related to physical exercise

(Pereira et al., 2015) and also identify critical components for

different sports modalities (Pereira et al., 2018; Ribeiro et al.,

2019; Cirino et al., 2021; Breda et al., 2022), including swimming

(Pereira-Ferrero et al., 2019; Fiori et al., 2022). However, the

relationship between sleep and hematological variables, as well as

their impact on the aerobic/anerobic capacity of young

swimmers, was not explored. Both targeted and untargeted

networks can reveal relevant data in this context. While the

untargeted scenario can initially indicate relevant nodes in the

integrated system (i.e., sleep, hematologic, and aerobic/anaerobic

parameters), the target approach would confirm the impact of

these nodes restrictedly to the swimmer’s metabolisms.

To advance on the aerobic and anerobic data of young

swimmers, parameters accessible and robust to coaches and

athletes must be considered in the complex network.

Accordingly, the critical velocity protocol is a non-invasive

test that provides parameters widely adopted for swimming

training purposes (Toubekis et al., 2006; Zacca et al., 2010;

Neiva et al., 2011; Toubekis and Tokmakidis, 2013; Zacca

et al., 2016). The critical velocity (CV) was originally defined

as the velocity that can be maintained without exhaustion

(Wakayoshi et al., 1992a; Wakayoshi et al., 1992b; Wakayoshi

et al., 1992c). During exercise whose intensity is above CV, the

anerobic work capacity (AWC) represents a finite amount of

work performed until exhaustion (Jones et al., 2010).

Accumulated evidence has suggested that both parameters

FIGURE 1
Complex network was constructed according to the results
from the critical velocity protocol, sleep, and hematological
analyses. CV, critical velocity; AWC, anerobic work capacity; RBC,
red blood cells; Hb, hemoglobin; Hct, hematocrit; MCV,
mean corpuscular volume; MCH, mean corpuscular hemoglobin;
MCHC, mean corpuscular hemoglobin concentration; RDW, red
cell distribution width; PLT, platelet; MPV, mean platelet volume;
WBC, white blood cells; Seg.N, segmented neutrophils; EOS,
eosinophils; BAS, basophils; LYM, lymphocytes; MON, monocytes;
S.TT, sleep total time; S.E, sleep efficiency; S.L, sleep latency; PSQI,
Pittsburgh sleep quality index score; ESS, Epworth sleepiness scale
score.
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should be considered components of an integrated bioenergetic

system that provides a valid framework for understanding

exercise fatigue and intolerance (Poole et al., 2016). Not

surprisingly, CV and AWC are sensitive to performance-

enhancing manipulations and were suggested as promising

doping detection (Puchowicz et al., 2018).

Overall, the CV and AWC are relevant parameters to

prescribe exercise intensity and evaluate the physiological

enhancement of young swimmers. By gathering and

associating sleep and hematological profile with these

parameters, the complex network model may reveal relevant

outcomes and evidence of the interrelationships among these

data. Therefore, this study aimed to apply the complex network

model to verify the influence of sleep and hematological variables

on the critical velocity parameters.

Materials and methods

Experimental design and subjects

This is an experimental and controlled study associating

sleep and hematological variables with the parameters from

the critical velocity protocol via the complex network model

(Figure 1). Throughout the experiment, researchers instructed

athletes to keep the same individual hydration/food habits.

Thirty-eight young swimmers (male, n = 20; age = 15 ±

2 years; body mass = 61 ± 11 kg; height = 166 ± 16 cm;

female, n = 18; age = 14 ± 2 years; body mass = 55 ± 9 kg;

height = 160 ± 7 cm) completed five experimental evaluations. In

the first session, the swimmers attended the laboratory facilities

for venous blood collection, anthropometric measurements, and

application of sleep questionnaires. Over the 4 subsequent days,

athletes performed the critical velocity protocol for the

determination of the aerobic and anerobic parameters.

Swimmers completed the critical velocity bouts at the same

time of day, 48 h apart. Young swimmers were at the

beginning of the general preparatory period according to the

training periodization formulated by coaches. Researchers

instructed coaches to avoid having physical training during

the experimental period. Therefore, athletes only performed

light and recreational activities throughout critical velocity

protocol.

Critical velocity protocol

Swimmers performed four randomized maximal efforts on

distances of 100, 200, 400, and 800 m in a swimming pool (25-m)

during the critical velocity protocol. Efforts were performed on

different days at 48-h intervals (Figure 2). Researchers and

coaches instructed athletes to provide their best performances

throughout trials. The CV and AWC were determined by the

following linear equation:

D � CVpt + AWC. (1)

Eq. 1 Linear equation for CV and AWC determination

where D is equivalent to distance and t is related to time to

cover the distance. In this model, CV relates to the slope of

regression and AWC to y-intercept. The coefficient of

determination (R2) was used to indicate the reliability of the

linear adjustment.

Sleep analyses

The validated version (Bertolazi et al., 2011) for the

Portuguese language of the Pittsburgh Sleep Quality Index

(PSQI) (Buysse et al., 1989) consists of 19 questions divided

into components, including sleep quality, latency, total sleep

time, efficiency, disturbance, use of sleep medication, and

daytime dysfunction. Each component is equally weighted on

a 0–3 scale. The sum of the component scores results in the PSQI

global score. Scores ≤5 represent good sleep quality, whereas

scores >5 represent poor sleep quality. Researchers instructed

subjects and explained PSQI questions in case of doubts. Subjects

answered the PSQI in an isolated room without noise and visual

interference. The Epworth Sleepiness Scale (ESS) (Johns, 1994)

comprises eight questions on the usual chances of having dozed

FIGURE 2
Upper panel illustrates the maximal efforts performed at 100,
200, 400, and 800 m during the critical velocity protocol. Based
on the distances and the time to complete the efforts, linear
regressions were constructed for the determination of the
anerobic work capacity (AWC, y-intercept) and the critical velocity
(CV, the slope of the regression). The data refer to subject 1.
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off or fallen asleep while engaged in distinct activities. Each

question has a 4-point scale (0–3), and the sum of the scores

provide the ESS final score. Overall, PSQI score, sleep total time

(S.TT), sleep latency (S.L), sleep efficiency (S.E), and ESS score

were considered sleep variables in the complex network model.

Hematological analyses

Researchers instructed swimmers to avoid alcohol ingestion

or any unusual food or beverage over 3 days before blood

collection. An experienced nurse collected 5 ml of venous

blood for hematological analyses. Then, samples were taken to

a specialized laboratory, and the Coulter LH 750 hematology

analyzer (Beckman Coulter, Miami, FL, United States) (Igout

et al., 2004) assessed red blood cell (RBC) profile comprising the

following parameters: hemoglobin (Hb), hematocrit (Hct), mean

corpuscular volume (MCV), mean corpuscular hemoglobin

(MCH), mean corpuscular hemoglobin concentration

(MCHC), red cell distribution width (RDW), platelet (PLT)

and mean platelet volume (MPV). Likewise, white blood cells

(WBCs) like segmented neutrophils (Seg.N), eosinophils (EOS),

basophils (BAS), lymphocytes (LYM), and monocytes (MON)

were also determined.

Complex network and statistical analysis

Initially, untargeted and unweighted networks were adapted

from previous untargeted but weighted complex models adopted

in sports sciences (Pereira et al., 2015; Pereira et al., 2018). In the

present study, the criteria to obtain the network topology was

similar to those used by Gobatto et al. (2020), in which only

significant (p < 0.05) correlations among variables were

considered regardless of the correlation coefficient. Thus, each

variable that had an association with another one was

represented in the network as a node, and the associations

between nodes were represented by edges linking these nodes.

In the untargeted approaches, no distinction between nodes was

carried out, implying that all nodes started with the same weight

and, therefore, the calculated centrality scores reflect a general

systemic analysis. Then, inspired by earlier studies (Park et al.,

2004; Li et al., 2017; Sousa et al., 2020), weighted and targeted

complex networks were created to select targets inside the

topology, that is, CV or AWC. In these approaches, both

positive and inverse correlations were treated equally and

received positive weights regardless of the correlation direction.

Concerning the targeted betweenness approach, two

networks were assembled with the scores for the most

frequent nodes in the shortest paths between the CV or AWC

(targets) for all other nodes. Prior to this, the length of an edge

was calculated as the difference between the highest Spearman’s

correlation coefficient (1.0; constant value) and the Spearman’s

correlation coefficient between the nodes connected by the edge

(can vary from 0.01 to 1; higher means shorter). Thus, the edge

lengths were used as the distance between nodes in the

calculation of the target betweenness scores.

The target eigenvector approaches compute the centrality

of a node based on the centrality of its neighbors and the

weights of its edge connections. The edge weights were

calculated as the product of the edge degree of proximity to

the target node CV or AWC (can vary from 0.01 to 1; higher

means closer) and the Spearman’s correlation coefficient

between the nodes connected by the edge (can vary from

0.01 to 1; higher is better). Therefore, edges received a weight

equivalent to their respective correlation coefficient when they

are directly linked to the node of interest (CV or AWC).

Second-degree connections with the node of interest were

equivalent to 0.5 (half) of the correlation coefficients, while

third-, fourth-, and fifth-degree connections were equivalent

to 0.250, 0.125, and 0.0625, respectively. Thus, the edge

weights were used as the connection strength in the

calculation of the target eigenvector scores.

Centrality betweenness and eigenvector values were obtained

utilizing a Python (release 3.9.3) application, developed

specifically for the study, and NetworkX 2.5 library (Hagberg

et al., 2008). The Shapiro–Wilk test verified the data as non-

normal. Therefore, the correlation analysis was proceeded by the

Spearman approach. Data are expressed as mean ± standard

deviation. Confidence intervals were also calculated for standard

deviation with α = 0.05 (σ/√n).

Betweenness centrality analysis

The usual method to determine betweenness centrality in sports

sciences is computing the number of shortest paths passing through

some node using all nodes of the network as sources and also as

targets (Pereira et al., 2015; Gobatto et al., 2020).

cB(v) � ∑
s∈S,t∈T

σ(s, t/v)
σ(s, t) . (2)

Eq. 2 Betweenness centrality for a subset of nodes.

In Eq. 2, S is the set of sources, T is the set of targets, σ(s,t) is
the number of shortest (s,t)-paths, and σ(s,t|v) is the number of

those paths passing through some node v other than s,t. If s = t,

σ(s,t) = 1, and if v ∊, tσ(s,t|v) = 0 (Brandes, 2008).

Eigenvector centrality analysis

The eigenvector centrality for node i is the ith element of the

vector x defined by the equation where A is the adjacency matrix

of the graph G with eigenvalue λ. There is a unique solution x, all

of whose entries are positive if λ is the largest eigenvalue of the

adjacency matrix A (Newman, 2010).

Frontiers in Physiology frontiersin.org04

Kraemer et al. 10.3389/fphys.2022.948422

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.948422


Ax � λx. (3)

Eq. 3 Eigenvector centrality for a subset of nodes.

Results

Table 1 presents descriptive results from the critical velocity

protocol, sleep questionnaires, and hematological analyses. Time

to exhaustion increased as far as distances increased (p = 0.000),

and high R2 was obtained. Based on the correlation’s coefficients,

the untargeted (Figure 3) and targeted (Figures 4, 5) complex

networks were generated. Concerning the untargeted network,

monocytes, basophils, mean platelet volume, hematocrit, red

blood cells, and AWC appeared as the shortest paths to the

other nodes (Figure 3A). Except for monocytes, the same

variables along with hemoglobin and platelets were

highlighted in the eigenvector centrality (Figure 3B).

Restrictedly to the network considering CV as the target,

hematocrit, AWC, hemoglobin, basophils, and monocytes were

highlighted in this metric (Figure 4A). Regarding the eigenvector,

hematocrit appeared again as the most influential node, followed

by segmented neutrophils, red blood cells, hemoglobin, and

AWC (Figure 4B).

Basophils appeared as the most important path to reach

AWC in the betweenness analysis. Other hematological variables

(red blood cells, monocytes, and hemoglobin) along with sleep

total time appeared in the sequence (Figure 5A). The eigenvector

analysis showed that hematological variables (mean corpuscular

volume, basophils, red blood cells, mean corpuscular hemoglobin

TABLE 1 Outcomes from the critical velocity protocols, sleep questionnaires, and hematological analyses.

Critical velocity protocol Mean ± SD Range CI

100-m (s) 73 ± 9 56–93 7–11

200-m (s) 170 ± 16 138–217 13–21

400-m (s) 354 ± 43 279–492 35–56

800-m (s) 747 ± 84 576–946 68–109

CV (m/s) 1.05 ± 0.11 0.80–1.35 0.09–0.14

AWC (m) 25 ± 7 12–42 6–9

R2 0.999 ± 0.001 0.998–0.999 0.001–0.001

Sleep variables

PSQI (score) 4.8 ± 1.3 3–10 1.1–1.7

Sleep total time (min) 563 ± 116 285–810 95–150

Sleep latency (min) 20 ± 17 5–90 14–22

Sleep efficiency (%) 93 ± 8 68–100 6–10

ESS (score) 8.3 ± 4.2 0–17 3.4–5.4

Hematological variables

Red Blood Cells (106/ul) 4.83 ± 0.37 4.13–5.56 0.30–0.48

Hemoglobin (g/dl) 13.8 ± 1.01 12.0–15.5 0.82–1.31

Hematocrit (%) 42.8 ± 2.95 37.3–48.1 2.41–3.82

Mean corpuscular volume (fl) 88.6 ± 3.40 76.5–94.5 2.77–4.40

Mean corpuscular hemoglobin (pg) 28.7 ± 1.04 25.3–30.3 0.85–1.35

Mean corpuscular hemoglobin concentration (106/ul) 32.3 ± 0.5 31.3–33.4 0.4–0.6

Red cell distribution width (%) 13.4 ± 0.4 12.4–14.7 0.3–0.5

Platelet (109/L) 262.8 ± 49.3 175–400 40.1–63.8

Mean platelet volume (fl) 8.7 ± 1.03 6.9–10.7 0.84–1.33

White Blood Cells (109/ul) 6776 ± 1880 3500–11,000 1532–2432

Segmented neutrophils (109/L) 3462 ± 1332 1390–6826 1085–1723

Eosinophils (109/L) 198 ± 128 0–561 104–165

Basophils (109/L) 17 ± 15 0–58 12–19

Lymphocytes (109/L) 2597 ± 660 1579–4049 538–853

Monocytes (109/L) 501 ± 169 270–870 137–218

CV, Critical velocity; AWC, Anaerobic work capacity; PSQI, Pittsburgh sleep quality index score; ESS, Epworth sleepiness scale score; SD, Standard deviation; CI, confidence interval.
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concentration, and mean hemoglobin concentration) were the

most influential for AWC (Figure 5B).

Discussion

The complex network model adopted in this study

provided new insights into the link between sleep and

hematologic profile and their association with the

parameters derived from the critical velocity protocol.

While the untargeted approach offered a broad view of the

relationship between the studied data, the targeted analysis

revealed the most important parameters for the CV and

AWC. To the best of our knowledge, the relationships

presented by this targeted complex network are pioneers in

the swimming science field.

Untargeted networks have revealed integrative and global

visualization of complex structures, enabling further advances in

distinct areas of knowledge (Strogatz, 2001; Palla et al., 2005),

including physical exercise science (Pereira et al., 2015; Pereira

et al., 2018; Cirino et al., 2021; Breda et al., 2022; Fiori et al.,

2022). In this study, the untargeted approach offers insights

for scientists to investigate, in future studies, the proper

impact of the connections presented in the graph. The

untargeted network is limited in deeply exploring the

revealed associations, but without this analysis, such

outcomes would remain unknown to swimming science. In

the betweenness metric, for instance, hematological data have

stood out. However, AWC has also appeared as a common

path for the remaining data in the network, which is

interesting given the debate regarding its physiological

significance (Dotan, 2022). Hematological parameters were

also highlighted as the most important nodes inside the

eigenvector metric, but future studies are required to

explore their impact on the other variables inserted in the

untargeted network.

FIGURE 3
Centrality measurements from the untargeted complex network model; (A) betweenness analysis; (B) eigenvector analysis.
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The higher scores for some hematological data in the

untargeted approach may have resulted from the correlations

between the hematological variables. This network has a systemic

and not directed score that could indicate whether the bias

introduced by the different classes of parameters was

suppressed in the targeted approach. In this sense, the sleep

total time of young swimmers was positively associated with sleep

efficiency (r = 0.45; p = 0.004) and inversely correlated with sleep

latency (and r = −42; p = 0.008). However, among these variables,

only sleep total time was significantly associated with basophils

(r = −0.33; p = 0.040), which in turn, appeared as an influential

node in both centrality metrics of the networks with CV or AWC

as targets (Figures 4, 5). Sleep loss affects the white blood cells and

is associated with inflammatory processes (Simpson and Dinges,

2007). On this matter, Short et al. (2018) experimentally

manipulated the sleep total time of adolescents and estimated

9.35 h to avoid sleep deficits. The young swimmers who were part

of this study reported sleep duration close to this and other

(Owens, 2006; Campbell et al., 2018) estimations, sustaining the

inverse association between this result and basophils. Thus, by

only looking at the direct associations, one may consider that

sleep total time does not influence CV or AWC. However, the

complex network allows suggesting that as far as sleep duration is

adequate, sleep efficiency seems to positively modulate the

latency (r = −0.67; p = 0.000), which in turn, may affect the

basophils and, ultimately, AWC and CV.

FIGURE 4
Centrality measurements from the targeted complex network model; (A) betweenness analysis considering the critical velocity (CV) as the
target node. The thickness of the edge is directly related to the “distance” between the nodes connected by the edge (lower thickness means closer
distances); (B) eigenvector analysis considering the critical velocity (CV) as the target node. The thickness of the edge is directly related to the
strength of the edge connection (lower thickness means weaker connections).
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Sleep quality (i.e., PSQI) did not appear as an influent node in the

targeted networks. On the other hand, it is interesting to note that

basophils and this variable were positively associated (r = 0.43; r =

0.006). In patients with distinct levels of obstructive sleep apnea,

basophils and the apnea-hypopnea index were significantly

correlated (Fan et al., 2019). On the other hand, none of the

evaluated young swimmers reported sleep apnea. Moreover, only

23% of the young swimmers presented scores higher than the five

cutoffs, indicating that most of our patients had good sleep quality

(Buysse et al., 1989). Thus, although the PSQI global score is a reliable

measure of sleep quality (Mollayeva et al., 2016), further studies are

required not only to better comprehend its association with basophils

but also to verify if the sleep quality provided by the PSQI may affect

the targeted network topology described in this study.

Another interesting result is that RBC was highlighted in almost

all target networks (except for the betweenness analysis with CV as

the target). However, all direct connections of this parameter

emerged from the red blood profile, and no relationship with

sleep variables was observed. On the other hand, the excessive

daytime sleepiness (i.e., ESS) was associated with PLT (r = 0.50; p =

0.001) and MPV (r = −0.34; p = 0.035), with the former directly

linked to RBC (r =−0.33; p= 0.044). Literature has demonstrated the

link between sleep pathologies and platelet count and volume

(Alonso-Fernandez et al., 2020; Chang et al., 2020). On the other

hand, we retake that none of the evaluated young swimmers

reported any sleep disorder. Thus, it is possible to suggest, in a

non-pathologic condition, that ESS affects PLT, which in turn is

associated with RBC that is directly linked with AWC.

FIGURE 5
Centrality measurements from the targeted complex network model; (A) betweenness analysis considers the anerobic work capacity (AWC) as
the target node. The thickness of the edge is directly related to the “distance” between the nodes connected by the edge (lower thickness means
closer distances); (B) eigenvector analysis considers the anerobic work capacity (AWC) as the target node. The thickness of the edge is directly related
to the strength of the edge connection (lower thickness means weaker connections).
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Apart from the sleep variables, both metrics identified

hematocrit as the gatekeeper and the most influential node to

reach CV. The ‘paradox of hematocrit’ is regularly debated by

hemorheologists given its ambiguous aspect for oxygen supply

(Brun et al., 2018). During exercise, the enhanced blood oxygen

content may be functional when the hematocrit is suboptimal;

thus, further circulatory functions should be accounted for the

optimized oxygen transport (Boning et al., 2011). Accordingly,

the targeted networks slightly advanced on this matter by

demonstrating the overview of interactions between

hematocrit and other hematological parameters, but most

importantly, how they affect the network as a whole to reach

CV. AWC also appeared as an important node inside

betweenness and eigenvector metric developed to explore CV.

Both parameters were inversely correlated (r = −0.42; p = 0.008),

which agrees with the suggestion that these act in bioenergetic

congruence during exercise (Poole et al., 2016). We are not aware

of any published data relating red/white blood cells to these

parameters, and our design cannot promote further insights into

these relationships. However, the centrality metrics efficiently

demonstrated some connection between these variables, and

further experimental studies are required to advance on this

matter.

The results of this study must be cautiously interpreted. The

untargeted network provided a broad view of the connections

between hematological, sleep, and physical performance data of

young swimmers. Scientists from distinct areas can find valuable

information in this analysis without focusing on the CV or AWC,

for instance. Regarding the exercise physiology context, the

associations revealed by the targeted network should not be

considered to cause and effect. The targeted approaches were

idealized for delivering personalized centrality scores which

highlight the most important nodes to a selected target in the

network. In this context, it is important to emphasize that such

an analysis was not an arbitrary manipulation but yet obtained by

pondering the network edges systematically or directing the

destiny node.

Furthermore, evaluations comprised the third week of

training after vacation. Thus, we cannot affirm that young

swimmers had already huge physiological improvements; also,

responsiveness to training is individual (Pickering and Kiely,

2019). Moreover, puberty timing and tempo vary substantially

among adolescents (Roemmich and Rogol, 1995) and play an

important role in circulating hormones (Varlinskaya et al., 2013;

Livadas and Chrousos, 2016), with some affecting physical

performance (Handelsman, 2017). Therefore, in light of these

limitations, future studies should conduct further networks and

explore if and how these factors may affect the described

associations. Further designs involving psychological and

nutritional data are also welcome to create a higher

topological structure and demonstrate the interrelationship

with the sleep and hematologic results, but ultimately, with

CV and AWC.

Conclusion

The untargeted approach revealed new connections among

the studied data. This characterization paves the way for further

research in an attempt to understand the proper relationship

between hematological, sleep, and performance variables of

young swimmers. In a more focused context, the Hct, AWC,

Hb, BAS, and MON appeared as the shortest paths

(i.e., betweenness metric) to link CV with the remaining

variables. Some of these variables (Hb, BAS, and MON) were

also short paths to reach AWC, but RBC and S.TT were also

highlighted in this analysis. Although the betweenness metric

revealed important paths to reach the nodes of interest, the

eigenvector metric efficiently indicated those that may have a

greater influence on CV and AWC. In this way, RBC seems to

impact both aerobic and anerobic parameters. However, while

Hct, Hb, MON, and the AWC primarily influenced CV, a distinct

scenario was observed for AWC, which was affected by MCV,

BAS, MCHC, and MCH. These results trigger new discussions

surrounding the relevance of each highlighted parameter in the

performance of young swimmers, which must be deeper explored

in future studies.
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