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Background: Accurate assessment of fetal descent bymonitoring the fetal head

(FH) station remains a clinical challenge in guiding obstetricmanagement. Angle

of progression (AoP) has been suggested to be a reliable and reproducible

parameter for the assessment of FH descent.

Methods: A novel framework, including image segmentation, target fitting and

AoP calculation, is proposed for evaluating fetal descent. For image

segmentation, this study presents a novel double branch segmentation

network (DBSN), which consists of two parts: an encoding part receives

image input, and a decoding part composed of deformable convolutional

blocks and ordinary convolutional blocks. The decoding part includes the

lower and upper branches, and the feature map of the lower branch is used

as the input of the upper branch to assist the upper branch in decoding after

being constrained by the attention gate (AG). Given an original transperineal

ultrasound (TPU) image, areas of the pubic symphysis (PS) and FH are firstly

segmented using the proposed DBSN, the ellipse contours of segmented

regions are secondly fitted with the least square method, and three

endpoints are finally determined for calculating AoP.

Results: Our private dataset with 313 transperineal ultrasound (TPU) images

was used for model evaluation with 5-fold cross-validation. The proposed

method achieves the highest Dice coefficient (93.4%), the smallest Average

Surface Distance (6.268 pixels) and the lowest AoP difference (5.993°) by

comparing four state-of-the-art methods. Similar results (Dice coefficient:

91.7%, Average Surface Distance: 7.729 pixels: AoP difference: 5.110°) were

obtained on a public dataset with >3,700 TPU images for evaluating its

generalization performance.
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Conclusion: The proposed framework may be used for the automatic

measurement of AoP with high accuracy and generalization performance.

However, its clinical availability needs to be further evaluated.

KEYWORDS

angle of progression, transperineal ultrasound image, pubic symphysis, fetal head,
image segmentation, deep learning

Highlights

• A framework for evaluating fetal head descent is proposed.

• The framework includes image segmentation, target fitting

and measurement of the angle of progression (AoP).

• A novel double branch network (DBSN) is proposed based

on a U-shaped architecture.

• Experimental results show that the proposed DBSN

outperforms existing networks in computing AoP.

1 Introduction

The high risk of maternal and perinatal morbidity is

associated with longer labor duration due to the slow

progression of fetal descent (Fitzpatrick et al., 2001), but

accurate assessment of fetal descent by monitoring the fetal

head (FH) station remains a clinical challenge in guiding

obstetric management (Simkin, 2010). Based on clinical

findings (Zhang et al., 2010; Segel et al., 2012; Hamilton

et al., 2016), the transvaginal digital examination is the most

commonly used clinical estimation method of fetal station

(Oboro et al., 2005; Boyle et al., 2013; Cohen et al., 2017).

However, this traditional approach is very subjective, often

difficult, and unreliable (Sherer et al., 2002; Dupuis et al.,

2005). The need of an objective diagnosis found its solution

in the use of transperineal ultrasound (TPU) able to assess

FH station by measuring the angle of progression (AoP) that

is the extension the FH goes through in its descent

(Figure 1). The AoP first described in 2009 (Barbera

et al., 2009; Kalache et al., 2009) is defined as the angle

between the long axis of the pubic symphysis (PS) and a line

from the lower endpoint of PS drawn tangential to the FH

contour (Ghi et al., 2009; Dückelmann et al., 2010; Youssef

et al., 2013). Several studies have suggested that AoP is an

objective, accurate, reliable and reproducible parameter for

the assessment of FH descent to provide the best diagnosis

that will support the clinician in his/her daily decision

(Montaguti et al., 2018; Dall’asta et al., 2019; Brunelli

et al., 2021; Youssef et al., 2021).

FIGURE. 1
Schematic diagram of the angle of progression (AoP) that is measured with our proposedmethod. (A) AoP is defined as the angle between a line
through the long axis of the pubic symphysis (PS) and a second line from the inferior end of the symphysis pubis tangentially to the contour of the
fetal head (FH). (B) Images are firstly obtainedwith the transperineal ultrasound (TPU) probe. (C) Areas of PS and FH are segmented with the proposed
method. (D) Segmented areas are fitted with elliptic equations and thereby three key points for computing AoP are determined. Comparedwith
ground truths (GTs) (E), the proposed method is evaluated with several metrics (F).
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The AoP computed from the two-dimensional TPU images is

based on the areas of PS and FH (Burgos-Artizzu et al., 2020).

Although the pipeline is easy to handle, the following

disadvantages still exist. On the one hand, high variability

between and within operators, especially for novices, results in

subjective inaccuracy. On the other hand, it is time-consuming

for real-time measurement when AoP changes need to be

monitored during the second stage of labor. For FH descent

monitoring, manual measurement of AoPs and examination

bring huge difficulty and decrease the efficiency. Developing

an automatic AoP measurement algorithm would be a

possible solution to alleviate these problems. Conversano et al.

(2017) first proposed a novel method, which used the

combination of morphological filters and pattern recognition

methods to identify PS-FH and calculate AoPs from videos. For

each video, the ultrasound standard plane was first selected based

on geometrical features and the gray level. Bone structures were

secondly determined for the first image or the subsequent images.

PS-FH for the first image was segmented based on the pixel

position and gray value intensities, whereas PS-FH for the

subsequent images was detected based on morphological

images from the first acquisition session or pattern tracking

methods for images from subsequent acquisition sessions.

Thirdly, segmented results were manually selected to co-

registrant coordinates for PS-FH. Finally, AoP was measured.

Unlike Conversano et al. (2017), Zhou et al. and Lu et al.

proposed a deep learning-based framework for segmenting the

region of PS-FH and locating the landmark of PS endpoints from

ultrasound standard planes. The central axis of PS was then

obtained with the localization of the landmarks, while the tangent

of FHwas computed. Finally, AoP wasmeasured from the central

axis and the tangent point (Zhou et al., 2020; Lu et al., 2022a).

It is worth noting that the error of AoP measurement greatly

depends on the size and shape of the segmented PS-FH that are

easily affected by TPU image quality. On the one hand, it is the

small object semantic segmentation for PS relative to FH and

there are two endpoints in segmented PS for computing AoP.

Therefore, the weak features of the PS should be considered. On

the other hand, PS-FH regions are mostly non-rigid and the

coordinates of three points for AoP calculation are easily affected

by the shape of segmented PS-FH. Therefore, the traditional

rectangular convolution may be limited to model unknown

deformations, especially boundaries. In this case, the effective

receptive field of these networks will be reduced. In many studies

(not only for PS-FH), super-pixel fusion (Ibrahim and El-

kenawy, 2020) and region growing (Withey and Koles, 2007)

have been used to provide prior information in deep networks,

while spatial transform networks (Jaderberg et al., 2015) and

deformable part models (Dai et al., 2017) are two advanced

methods to solve the limitation of rectangle convolution kernels.

Therefore, a double branch segmentation network (DBSN)

to consider weak features in PS-FH was proposed based on the

UNet. The DBSN was composed of a shared encoder, a dual-

branch decoder, a collaborative loss and parameter selection. In

the dual-branch decoder, the upper branch was designed to

extract all features for PS-FH segmentation, whereas the lower

branch was designed to learn high-level semantic information

(e.g., the shape of targets) further and distinguish targets

(refinement). Between the lower decoding branch and the

upper decoding branch, attention gates (AGs) were used to

constrain the feature map input from the lower decoding

branch to the upper decoding branch to learn more valuable

features, while deformable convolution blocks in the decoding

upper branch were also used to adapt to the geometric

deformation of targets. The collaborative loss was proposed

to effectively combine outputs of the upper and lower branches

to enhance the weak features of PS-FH. In the optimization

stage, critical parameters for the collaborative loss were

selected. The significant contributions of this paper are

summarized as follows:

• We proposed a new framework for AoP measurement. The

framework includes image segmentation, target fitting and

AoP calculation.

• We proposed a novel double branch network (DBSN) for

PS-FH segmentation. In the dual-branch decoder, the lower

branch with attention gates (AGs) provides high-level

semantic information to refine the segmented areas of

the upper branch.

• We introduced deformable convolution (DC) blocks to

adapt to the geometric deformation of targets.

• We validated the effectiveness of the proposed methods

using a small private dataset with 313 images and tested its

generalization performance using a large public dataset

with more than 3,700 images.

2 Materials and methods

In order to automatically compute AoP (Figure 1A), original

TPU images were firstly preprocessed (Figure 1B), target areas

(i.e., FH and PS) were secondly segmented with the proposed

DBSN (Figure 1C), and these areas were thirdly fitted with elliptic

equations and thereby three key points for computing AoP were

determined (Figure 1D). Compared with GTs (Figure 1E), the

performance of our method was evaluated with several metrics

(Figure 1F).

2.1 Dataset

Experiments were conducted on our private dataset (Zhou

et al., 2020) and the public JNU-IFM dataset (Lu et al., 2022b).

Our private dataset was used to train and validate the proposed

method, while the public JNU-IFM dataset was used to test its

generalization performance.

Frontiers in Physiology frontiersin.org03

Bai et al. 10.3389/fphys.2022.940150

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.940150


In our private dataset, 313 TPU images with a resolution of

1,295 × 1,026 were collected from 84 patients by Zhou et al.

(2020) to form a dataset for AoP calculation and were annotated

by seven doctors with more than 10 years of ultrasound

experience. Therefore, the dataset includes original TPU

images and corresponding GTs that are composed of areas of

FH and PS, the coordinates of the upper (Ut) and lower (Lt)

endpoints of PS, PS’s long axis (Xt) and manually measured AoP

(AoPt) (Figure 1D). The 5-fold cross-validation procedure was

conducted to split the training dataset into 5 folds. The first

4 folds were used to train our model and the holdout fifth fold

was used as the test set. Since each patient had multiple TPU

images, the data was randomly split so that all TPU images from

each unique patient were only in one of the training and

validation sets. This process was repeated and each of the

folds was given an opportunity to be used as the holdout test

set. The performance of our model was calculated as the mean of

these runs.

In the public JNU-IFM dataset, 6,224 high-quality images

with four categories were annotated using the Pair software and

validated by two experienced radiologists. Over 3,700 images can

be used to calculate AoP (Lu et al., 2022b). However, GTs include

areas of FH and PS, but not manually measured AoP (AoPt).

Therefore, pseudo labels of AoP were computed according to its

definition based on the areas of FH and PS (Supplementary Data

Sheet S1).

2.2 Pre-processing

For each original TPU image, its size was adjusted from

1,295 × 1,026 to 512 × 384 as well as its pixel values were

normalized to [−1,1]. In order to increase the amount of data

without affecting target segmentation and AoP calculation, these

preprocessed images were randomly rotated by an angle between

-30° and 30° and artificially flipped to generate new data. These

new data were used to promote the training of the proposed

model but did not lead to overfitting.

2.3 Image segmentation via the proposed
double branch segmentation network

In the process of acquiring the TPU image, the ultrasound

probe cannot be accurately placed in a suitable place for a long

time. Therefore, the target area in the acquired TPU image is

blurred, the target boundary is not obvious and the target

deformation is large. Other tissues or organs in the acquired

TPU image further increase the difficulty of the segmentation

task. In addition, the segmentation area in the TPU image has a

large area and regular shape, and the small-area feature map

containing high-level semantic information can also represent

the segmentation area clearly. To accurately segment PS-FH, we

proposed a double branch segmentation network (DBSN) to

consider these weak features. Based on U-net, we added the

decoding lower branch that performs decoding operations on the

multi-channel small-area feature maps containing high-level

semantic information. We used the decoded feature map of

the decoding lower branch as the input of the decoding upper

branch and made the decoding upper branch obtain higher-level

semantic information. In addition, an attention mechanism was

used to constrain the feature map input from the lower decoding

branch to the upper decoding branch and thereby useful features

in the feature map of the lower decoding branch can be learned

by the upper decoding branch. Furthermore, in order to reduce

the impact of the geometric deformation of the target region in

the TPU image on the segmentation performance, we used

deformable convolution blocks in the decoding upper branch

to adapt to the geometric deformation of the input image. In

detail, the proposed DBSN framework (Supplementary Table S1)

is made up of four parts (Figure 2):

2.3.1 Shared encoder
The shared encoder is made up of five convolution blocks

denoted as [F1, F2, F3, F4, and F5]. For F1, F2, F3, and F4, each

block is followed by the 2 × 2 Max pooling and has two layers

[each layer is composed of a 3 × 3 convolution operator (3 ×

3 Conv), a group normalization (GN) and the rectified linear unit

(ReLU)]. Different from F1, F2, F3, and F4, F5 is not followed by

the 2 × 2 Max pooling. The output of the block Fi is the input of

the block Fi+1, but the number of channels of Fi+1 is twice that of

Fi. Therefore, the size of feature map of F5 is 32 × 24 and its

channel number is 512, as shown in Figure 2A.

2.3.2 Dual-branch decoder
The input of the decoder is feature maps with a size of 32 ×

24, its structure includes the upper branch (U) and the lower

branch (L), and attention gates (AGs) are used to fuse feature

maps between U and L, as shown in Figure 2B.

The lower branch (L) is composed of five convolution blocks

denoted as [L1, L2, L3, L4, and DL]. For L1, L2, L3, and L4, each

block has two layers (each layer is composed of 3 × 3 Conv, GN

and ReLU) and the channel number of its output is half of its

input. DL is made up of 1 × 1 Conv and the Softmax unit. The 1 ×

1 Conv is used to reduce the channel number from 32 to 3, while

the Softmax unit is used to generate a probability map of the three

channels for areas of PS, FH and background. The size of feature

map of UD is 32 × 24.

The upper branch (U) consists of five blocks denoted as [U1,

U2, U3, U4 and DU]. U1 has two parts: one comes from the output

(denoted as in_encode) of F4 and the other one comes from the

output (denoted as in_lower) of L1 after a series of processing

(i.e., Up-sampling + 3 × 3 Conv + GN + ReLU). Each of the

following three blocks (i.e., U2, U3 and U4) is made up of

in_encode, the output (in_upper) of the former block after a

series of processing (i.e., (3 × 3 Conv + GN + ReLU) × 2) and the
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output (in_ag) of the corresponding AG. The input of AG

consists of in_upper after these processing (i.e., Up-sampling

+3 × 3 Deformable Convolution (DC) + GN + ReLU) and

in_lower after these processing (i.e., Up-sampling +3 ×

3 Conv + GN + ReLU) at the same layer. Similar to DL, DU is

composed of 1 × 1 Conv and the Softmax unit, but the size of

feature map of DU is 512 × 384, as is shown in Figure 2B.

2.3.3 Collaborative loss
The collaborative loss (Loss) fuses the two output branches of

the proposed framework. The Dice (D) loss is used for each

branch, as follows:

D � 1 − 2∑N
i�1∑C

j�1yi,jpi,j∑N
i�1∑C

j�1 yi,j + pi,j( ) (1)

where y is the ground truth map, p is its corresponding predicted

map, N is the number of pixels and C is the number of classes

(excluding the background).

There are two decoder branches in the DBSN, so the total loss

consists of two components-one for the lower branch (DL) and

the other for the upper branch (DU), as shown in (Figure 2C).

Loss � wUDU + wLDL (2)
where wU and wL are the weights for the upper and lower

branches.

2.3.4 Parameter mining
Parameters (wU and wL) of the Eq. 2 were determined

through a series of hyperparameter analysis. Although there

are two decoder branches in the DBSN, the final segmented

results are from the upper branch. Therefore, the loss for the

upper branch (DU) is mainly used to optimize the network,

whereas the loss for the lower branch only acts as an auxiliary

optimization. In extreme cases, the network can be trained

only with the loss from the upper branch (DU) and thereby wU

is set to be one at the beginning. In order to assess the relative

role of the upper (DU) and lower (DL) branches, we keep

increasing the supporting effects of the lower (DL) branch

without changing the upper (DU) branch by changing wL

from 0.1 to 0.2, 0.3, 0.5 and 1.0. Effects of wL on the

segmentation performance were evaluated with accuracy

and Dice scores. As is shown in Supplementary Table S2,

the best performance of DBSN is obtained when wL is 0.2.

Therefore, wU = 1.0 and wL = 0.2 are used in the proposed

model, as shown in (Figure 2D).

2.4 Post-processing

In the present study, we only used the output of the upper

branch. The output includes segmented regions of PS and FH.

The ellipse contours of segmented regions were firstly fitted with

FIGURE. 2
Overview of the proposed Double Branch Segmentation Network (DBSN) structure. This DBSN architecture is composed of a shared encoder
(A), a dual-branch decoder (B), the collaborative loss (C) and the parameter mining (D). In the dual-branch decoder, featuremaps between the upper
(U) and lower (L) branches are fused with attention gates (AGs). In each block of the upper (U) branch, feature maps come from the encoder
(In_encoder), the upper decoder (In_upper) and the AG (In_ag) that consider the feature map of the lower decoder (In_lower).
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the least square method (Gander et al., 1994). The ellipse

equation is

F a, x( ) � Ax2 + Bxy + Cy2 +Dx + Ey + F � 0 (3)
where a = [A B C D E F]T and x = [x2 xy y2 x y 1]T. A B C D E F are

parameters, x and y are the coordinate horizontal and vertical

positions.

The quadratic constraint (i.e., aTCa = 1) is used to fit ellipses.

aT

0
0
2
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
0
0
0
0

2
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a � 1 (4)

The coordinates of the two endpoints (i.e., Up and Lp) of PS

were secondly determined by the major axis (denoted as Xp) of

the elliptic curve of the area of PS. Thirdly, the right tangent

(denoted as Tp) connected to Lp was determined based on the

elliptic curve of the area of FH. Finally, AoPp is calculated with

the three points (i.e., Up, Lp, and Tp), as is shown in Figure 1D.

2.5 Evaluation

In order to evaluate the proposed DBSN, different metrics

were used for image segmentation, endpoint location and AoP

calculation, as is shown in Figure 1F.

2.5.1 Image segmentation
Accuracy (Acc), Dice scores and average surface distance

(ASD) were used to evaluate the segmentation performance.

Acc � TP + TN

TP + FP + TN + FN
(5)

Dice � 2TP
2TP + FP + FN

(6)

where TP, FP, FN, and TN denote true positive, false positive,

false negative and true negative, respectively. In the present

study, Dice scores include DicePS for segmented PS, DiceFH for

segmented FH and Diceall for both targets.

Let S(A) denote the set of surface voxels of A. The shortest

distance of an arbitrary voxel v to S(A) is defined as:

d v, S A( )( ) � min
sAϵS A( ) v − sA‖ ‖ (7)

where ‖.‖ denotes the Euclidean distance. The ASD is then

given by:

ASD A, B( ) � 1
S A( )| | + S B( )| | ∑

sAϵS A( )
d sA, S B( )( ) + ∑

sBϵS B( )
d sB, S A( )( )⎛⎝ ⎞⎠

(8)

2.5.2 Endpoint location of pubic symphysis
The Euclidean distance (ED) between the predicted endpoint

coordinate and the corresponding GT’s coordinate and the angle

(Ax) between the predicted long axis (Xp) and the GT’s long axis

(Xt) were used to evaluate the performance of different methods

for endpoint location. Here, we assume that the predicted

coordinates are Up (xUp, yUp) for the upper endpoint and Lp
(xLp, yLp) for the lower endpoint, and the predicted long axis is

Xp
��→ � [xLp − xUp, yLp − yUp]. The corresponding GTs are Ut

(xUt, yUt), Lt (xLt, yLt) and Xt
�→ � [xLt − xUt, yLt − yUt].

Therefore, EDU, EDL and Ax are computed as follows:

EDU � [(xUt − xUp)2 + (yUt − yUp)2]0.5 (9)
EDL � [(xLt − xLp)2 + (yLt − yLp)2]0.5 (10)

Ax � cos−1Xp
�→ · Xt

�→
Xp
�→∣∣∣∣∣ ∣∣∣∣∣ Xt

�→∣∣∣∣∣ ∣∣∣∣∣ (11)

2.5.3 Angle of progression calculation
The AoP difference (ΔAoP) between the predicted AoP

(AoPp) and the GT’s AoP (AoPt) was used to evaluate the

performance of different approaches for AoP calculation.

ΔAoP � AoPp − AoPt

∣∣∣∣ ∣∣∣∣ (12)

here, mean (ΔAoP_Mean), median (ΔAoP_Median) and

standard deviation (ΔAoP_Std) of ΔAoP also are used as

evaluation metrics.

2.6 Experimental setup

Based on PyTorch, the methods investigated in the

present study are run on an E5-2680 v4 CPU system with

128 GB memory and an NVIDIA GTX2080Ti GPU. The

learning rate is set to be 0.0001 and the Kaiming

algorithm is used to initialize the network weights. The

proposed model is trained for 200 epochs with a batch

size of 1 and evaluated with 5-fold cross-validation

(Fushiki, 2011). The final score is generally the average of

all the scores obtained across the 5-folds.

3 Results

Three sets of comparative experiments were designed to

illustrate the effectiveness of our method. The role of different

parts of the DBSN in feature extraction was investigated (Section

3.1), the performance improvement of key components used in

our model was quantified in the first sets of comparative

experiments (Section 3.2), the generalization performance of

the proposed models was also evaluated on the public dataset
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(Section 3.3) and comparison of our method with the existing

deep learning approach was also performed in Section 3.4.

3.1 Feature maps in different branches of
the double branch segmentation network

As is shown in the proposed DBSN (Figure 2), there are four

important parts: a shared encoder (In_encoder), a dual-branch

decoder (including the upper (In_upper) and lower (In_lower)

branches) and AGs (In_ag) used for fusing feature maps between

two decoder branches. To investigate the role of four parts

(i.e., In_encoder, In_upper, In_lower and In_ag) in feature

extraction, the learned feature maps in the level with

32 channels are shown in Supplementary Figure S1. Given a

randomly selected TPU image (Supplementary Figure S1A), four

examples of feature maps of each part (i.e., In_encoder, In_upper,

In_lower or In_ag) (Supplementary Figure S1B) are compared to

the corresponding GT (Supplementary Figure S1C). The feature

maps of In_encoder (Figure 3Bi) contain most of the details of the

original TPU image (Supplementary Figure S1A). Different from

feature maps of In_encoder (Supplementary Figure S1Bi), each of

the feature maps of In_upper only includes part information of

the original TPU image, and features for FH, PS and the

background are separated from the original TPU image

(Supplementary Figure S1Bii). Different from features of

In_upper (Supplementary Figure S1Bii), features maps of

In_lower only contain FH and (or) PS, the deformation of

target areas (i.e., FH and PS) is larger, and their detailed

information is not retained (the contours of the target regions

are relatively irregular and it is almost impossible to observe the

Fan-shaped contour of the original TPU image) (Supplementary

Figure S1Biii). Compared with feature maps of In_upper

(Supplementary Figure S1Bii) and In_lower (Supplementary

Figure S1Biii), areas of FH and (or) PS of feature maps of

In_ag (Supplementary Figure S1Biv) are more obvious.

Detailed information of FH and PS of In_ag is more than that

of In_lower but less than that of In_upper. Moreover, the

contours of the target areas similar to ellipses are close to that

of GT (Supplementary Figure S1C). Therefore, micro (In_upper)

and macro (In_lower) semantic information can be fused to

generate feature maps (In_ag) similar to GT. These results are

associated with key components of the DBSN and should be

further investigated.

3.2 The performance improvement of key
components

In order to explain the effectiveness of the proposed method,

we designed an ablation experiment to investigate the effects of

key components of DBSN on the automatic measurement of

AoP. As is shown in Supplementary Figure S2, four different

architectures are the proposed DBSN model with the lower

FIGURE 3
Four examples (#1, #2, #3 and #4) of segmentation and AoP calculation. From left to right, original images as input (A), ground truth (GT, (B) and
results of four different networks are shown. DBSN (C), DBSN-AG (D), DBSN -LB (E) andDBSN-DC (F) denotes, double branch segmentation network
(DBSN), DBSN without the attention gate (AG), DBSN without the lower branch (LB) and DBSN without deformable convolution blocks (DC),
respectively.
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branch (LB), attention gate (AG) and deformable convolution

(DC) (Supplementary Figure S2A), DBSN without AG (DBSN-

AG) (Supplementary Figure S2B), DBSN without LB (DBSN-LB)

(Supplementary Figure S2C) and DBSNwithout DC (DBSN-DC)

(Supplementary Figure S2D). The performance of the four

models is listed as follows:

Segmentation performance of these models on Acc, Diceall,

DicePS and DiceFH presents in Supplementary Table S3. Compared

with the results of DBSN-AG, DicePS of DBSN is slightly improved,

indicating that the AGmodule increases the accuracy of segmented

PS of the upper branch of the DBSN. Compared with the results of

DBSN-LB, Acc, Diceall and DiceFH of M are increased, whereas

DicePS of DBSN is reduced. These results suggested that LB can

provide contour information for the upper branch and thereby the

overall segmentation accuracy (i.e., Acc, Diceall and DiceFH) is

increased. In addition, feature maps of LB can interfere with the

segmentation of PS by the upper branch (Supplementary Figure

S1B), resulting in a decrease in DicePS.Compared with the results of

DBSN-DC, the performance of DBSN on all metrics are improved

and these results demonstrated that DC could comprehensively

improve segmentation performance compared with traditional

convolution blocks. In summary, DC is suitable to deal with the

data samples used in the present study and AG can improve the

anti-interference ability of the upper branch (Supplementary Figure

S1B) and enhance the robustness of ourmodel. The LB has a double

effect. On the one hand, it provides high-level semantic information

and promotes the segmentation performance of the upper branch.

On the other hand, it brings interference that is not related to the

decoding task of the upper branch.

The performance of DBSN, DBSN-AG, DBSN-LB and

DBSN-DC on the computed accuracy of the upper and lower

endpoints of PS was further investigated. The computed accuracy

of endpoints of PS is associated with PS’s segmented accuracy

evaluated with DicePS. The higher DicePS (Supplementary Table

S3), the smaller EDU, EDL, and AX (Supplementary Table S4). In

the four models, the largest DicePS (Supplementary Table S3) and

the smallest AX (Supplementary Table S4) are obtained for the

DBSN-LB model. Especially, DicePS of DBSN-DC is lower than

that of DBSN-AG (Supplementary Table S3), but DBSN-DC’s AX

is larger than that of DBSN-AG (Supplementary Table S4). The

results demonstrated that the segmented PS by the upper branch

is more susceptible to interference from LB, resulting in the

deformation of the segmented PS (Supplementary Figure S1B)

and thereby larger AX.

We also investigated the performance of DBSN, DBSN-AG,

DBSN-LB and DBSN-DC on the computed accuracy of AoP. The

computed accuracy of AoP depends on three key points (i.e., two

endpoints of PS and the tangent point of FH contour) (Figure 1D).

As is shown in Figure 3, the accuracy of FH segmentation partly

determines AoP calculation. In detail, DBSN performs the best in

cases #1 and #3, whereas DBSN-LB performs the best in cases

#2 and #4. Moreover, DBSN-AG for cases #3 and #4, DBSN-LB for

the case #1, and DBSN-DC for the case #2 perform the worst,

respectively. Similarly, the accuracy and robustness of the DBSN

model in AoP measurement are better than other models,

especially for Δ AoP_Mean and Δ AoP_Std (Supplementary

Table S5). DBSN-LB has the best performance in Δ
AoP_Median and the second rank in Δ AoP_Mean. Compared

with DBSN-AG (DBSN with LB but without AG), the better Δ
AoP_Median and Δ AoP_Mean of DBSN-LB (DBSN without LB

and AG) is obtained. The results indicated that adding LB cannot

directly improve the performance of the AoP measurement.

Compared with DBSN-LB (DBSN without LB and AG), DBSN

contains LB and AG, and has better performance, showing the

combination of LB and AG can improve the accuracy of the AOP

measurement.

In summary, the performance of the DBSN model on all

metrics is not the best (Supplementary Tables S3–S5), but its

advantage is that it maintains not only high segmentation accuracy

(Supplementary Table S3) but also has obvious advantages in AoP

calculation (Supplementary Table S5). Its robustness is reflected by

avoiding the extreme cases of target segmentation, and stable AoP

calculation with lower Δ AoP_Mean and Δ AoP_Std.

3.3 Comparison of different deep learning
methods

To further investigate the effectiveness of DBSN used in the

present study, the results of DBSN are compared with other

methods used for AoP calculation. These methods include U-net,

attention U-net (attU-net), OTSU and the multitask attention

fusion network (MTAFN) (Zhou et al., 2020). Results of image

segmentation of different methods are listed in Table 1. The

proposed DBSN performs the best by achieving 98.7% of Acc,

93.4% of Diceall, 91.0% of DicePS and 93.7% of DiceFH. The best

segmentation performance makes DBSN accurately compute

AoP, resulting in the smallest difference (i.e., Δ AoP_Mean)

between predicted AoP and GT. This high segmentation

accuracy comes at the cost of higher model complexity and

more inference time. The most complex model is MTAFN, where

the model with the longest inference time is DBSN. As is listed in

Table 2, the proposed DBSN outperforms other methods by

achieving the smallest Δ AoP_Mean (5.993°) and Δ AoP_Std

(3.872°), but its Δ AoP_Median is slightly larger than that of

MTAFN and ranks second. Therefore, the above results indicate

that the proposed DBSN can effectively improve the AoP

measurement by segmenting FH and PS.

3.4 The generalization performance of the
proposed method

To verify the generalization of the proposed method, its

performance was evaluated by using the independent test dataset

(JUN-IFM). Here, we took the public dataset with >3,700 images
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as an independent test dataset, that is, these models are only

trained on our private dataset with 313 images and then tested on

the independent test dataset. For these models’ training, we used

5-fold cross-validation to train these models with our private

dataset, so we got five models. The final result on JUN-IFM is the

average of all the scores of these five models. The segmentation

performance of four models (DBSN, DBSN-AG, DBSN-LB and

DBSN-DC) on Diceall, DicePS and DiceFH presents in

Supplementary Table S6. The best results show the values of

Diceall, DicePS and DiceFH are 91.9% for DBSN-AG, 87.2% for

DBSN-LB and 92.4% for DBSN-DC, respectively. The

performance of these four models on the computed accuracy

of AoP was further evaluated. As is listed in Supplementary Table

S7, the computed AoP, Δ AoP_Mean, Δ AoP_Median and Δ
AoP_Std, respectively, reach 5.110° for DBSN-DC, 4.181° for

DBSN-DC, 4.338° for DBSN-LB. Compared to the performance

of the proposed method (i.e., DBSN model) on our private

dataset (Supplementary Tables S3–S5), its performance on the

public JUN-IFM dataset shows that both segmentation and AoP

calculation accuracy are slightly degraded (Table 3). In detail,

Diceall, DicePS and DiceFH reduced by 1.7% (from 93.38% to

91.8%), 4.1% (from 91.01% to 87.26%) and 1.4% (from 93.66% to

92.34%), respectively. ASD increased from 6.268 to 7.729 pixels.

Δ AoP_Mean decreased 0.82° (from 5.993° to 5.178°).

4 Discussion

Monitoring FH descent is important for taking necessary

interventions in time. Although the digital examination is a

traditional method, its limited accuracy and possible harm to

pregnant women limit its application (Rozenberg et al., 2004).

Recently, AoP as themore accurate parameter has been suggested

to provide the best diagnosis and management of a woman in

labor. Segmentation of PS-FH is crucial to automatically measure

AoP, but is challenging because of missing boundaries, low

signal-to-noise ratio, the speckle pattern, etc.

This present study is one of the few that implements the

automatic measurement of AoP based on data-driven deep

learning methods. The proposed framework includes two stages:

PS-FH segmentation at the first stage and determination of three key

points for the AoP measurement at the second stage. At the first

stage, the upper branch of the proposed DBSN outputs the

segmentation results, and the lower branch with DC blocks and

AGs provides the high-level semantic information to refine the

segmented areas of the upper branch. At the second stage,

segmented areas were ellipse-fitted and thereby coordinates of

three key points (including the endpoints of the long axis of PS

and the right tangent point of FH) were calculated for the AoP

measurement. In the all-existing approaches, most studies have

relied heavily on manual measurement, while a few studies

attempted to automatically measure AoP (Conversano et al.,

2017; Angeli et al., 2020a; Angeli et al., 2020b). Conversano et al.

(2017) combined morphological filters with pattern recognition

methods to identify PS and FH, and segmented targets were

used to calculate AoP. Similarly, Montaguti et al. (2018)

identified PS-FH and then measured AoP with a novel software

(Sono Labor & Delivery, GE Medical Systems, Zipf, Austria). These

approaches required a shape prior for initialization, but this

initialization was either based on assumptions from observing the

TPU images or manually generated. In contrast to the above two

TABLE 1 Comparison of segmentation results of different algorithms.

Model Acc Diceall DicePS DiceFH Size (M) Time (ms)

MTAFN 0.982 0.907 0.901 0.907 13.08 16.56

STU 0.980 0.895 0.887 0.898 — —

U-net 0.984 0.913 0.889 0.916 8.63 9.36

AttU-net 0.984 0.914 0.900 0.916 8.72 11.43

DBSN 0.987 0.934 0.910 0.937 10.34 76.80

TABLE 2 Comparison of computed AoPs of different algorithms.

Model Δ AoP_Mean (°) Δ AoP_Median (°) Δ AoP_Std (°)

MTAFN 7.60 4.68 8.85

STU 9.26 6.03 10.22

U-net 8.00 5.97 7.11

AttU-
net

7.50 5.99 6.33

DBSN 5.993 5.851 3.872

The best results are marked with the bold values.

TABLE 3 Performance of different methods on the public JNU-IFM
dataset.

Model Diceall DicePS DiceFH ASD Δ AoP_Mean
(°)

U-net 0.8667 0.8160 0.8730 12.693 8.900

AttU-net 0.8696 0.8219 0.8728 11.754 7.896

DBSN 0.9180 0.8726 0.9234 7.729 5.178
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methods, our approach does not need additional information apart

from TPU images or manual initialization for selecting ideal images.

Furthermore, the results of our approach showed high accuracy of

the PS-FH segmentation as well as significant improvements of the

AoP calculation.

The high accuracy of the AoP calculation may be attributed to

the PS-FH segmentation based on deep learning approaches. Due

to the straightforward, efficient and accurate characteristics, deep

learning approaches are widely used for TPU image segmentation

and classification (Drukker et al., 2020; Xie et al., 2020). Using

convolutional neural networks in many medical image

segmentation tasks, excellent segmentation results have been

achieved (LeCun et al., 2015). However, due to all semantic

information learned by the above networks, they lack the ability

to focus on the problem-oriented information-an aspect DBSN

excels at. The AoP measurement is based on the shape of PS-FH

FIGURE 4
The distribution of AoP difference (Δ AoP) between the predicted AoP and the GT’s AoP. (A) There is one case with Δ AoP > 20° in our private
dataset (n = 313). (B) 57 cases with Δ AoP >20° in the public dataset (n > 3,700).

FIGURE 5
Effects of incorrect results on the AoP measurement. (A) Incorrect segmented results (#1, #2 and #3) have little effect on the determination of
the three points, leading to a smaller Δ AoP (<20°). (B) Incorrect segmented results (#4, #5 and #6) have a significant impact on the determination of
any of the three points, resulting in a larger Δ AoP (>20°).
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and thereby the proposed method for PS-FH segmentation should

consider its ellipse-like shape. In this aspect, the proposed DBSN is

designed with a dual-pathway in the decoding part, higher-level

semantic information about shape features is provided by the

lower decoding branch for the upper decoding branch, and DC

blocks and the AGs are used to capture ellipse-like shape features

and help the decoding upper branch focus on more effective

feature regions. These modifications to Unet result in superior

performance (Supplementary Table S8), however, these

modifications increase the model complexity by 19.8% and the

inference time by 721%.

Although the proposed method was trained and validated

on our small private dataset with 313 TPU images (Zhou

et al., 2020) and good results were obtained, its generalization

performance was also evaluated on the public JNU-IFM

dataset with more than 3,700 TPU images that meet the

requirements of AoP measurement (Lu et al., 2022b) and

the Dice coefficient (Diceall) still exceeded 91% in the case of

slight decrease (<2%). The reduction of Diceall is mainly due

to the decrease of segmentation accuracy of PS. DicePS

significantly reduced by 4.1%, whereas DiceFH decreased

only slightly by 1.4%. Therefore, more attention needs to

be paid to the PS segmentation in the future. Nevertheless, the

proposed method trained on a small dataset can obtain such

performance on the public large dataset, illustrating that the

DBSN is a robust approach for PS-FH segmentation.

According to the distribution of Δ AoP, there is one case

with Δ AoP >20° in our private dataset (n = 313), whereas

57 cases with Δ AoP >20° in the public dataset (n = 3,700) are

found (Figure 4). The reason for this difference is partly that our

model is trained and validated on our private dataset (n = 313)

and tested on the public dataset (n = 3,700) without training. In

addition, if incorrect segmented results have little effect on the

determination of the three points (i.e., two endpoints of PS and

the tangent point of FH contour) and a smaller Δ AoP (<20°) is
obtained. If incorrect segmented results (#4, #5 and #6) have a

significant impact on the determination of any of the three

points, resulting in a larger ΔAoP (>20°) (Figure 5). As is shown
in Figure 5A, the contour of the right part of the fetal head is the

key to determine the tangent point for AoP measurement, and

an incorrect segmented result of the left side of the fetal head

has little effect on Δ AoP. However, if incorrect segmented

results are present in the right part of PS (related to the right

endpoint), the left part of PS (related to the left endpoint) and

(or) the right part of FH (related to the right tangent point), a

larger Δ AoP (>20°) is obtained. Therefore, further studies

should pay attention to the relationship between target

segmentation and key point identification.

Although DBSN has achieved good results, limitations and

possibilities in the future include: 1) Our method is tested on a

dataset from one center, so its effectiveness should be further

verified on more multi-center datasets; 2) The JNU-IMF dataset

only provided labels for target segmentation, and we used these

labels to compute AoP as pseudo labels for AoP prediction

(Supplementary Data Sheet S1). Special attention should be

paid to the part of evaluating the performance of our method

for AoP prediction on the JNU-IMF dataset. 3) Compared with

traditional convolution blocks, DC blocks require more

computing resources that will limit the application of our

method in medical equipment (Dai et al., 2017); and 4)

Inspired by the method of Conversano et al. (2017), the

relevance between images in the same patient can be

considered if our method will be applied to the real-time

monitoring of AoP.

5 Conclusion

This work studies the automatic measurement method of

AoP, and proposes a DBSN model for PS-FH segmentation from

TPU images. In the DBSN, DC blocks are adapted to consider the

geometric deformation of the data samples, the decoding

branches are designed to make the lower decoding branch

provide higher-level semantic information for the upper

decoding branch, and the AG is used to constrain the feature

map of the lower decoding branch to help the decoding upper

branch focus on more effective feature regions. Comprehensive

ablation experiments and comparative experiments

demonstrated the proposed approach can effectively segment

the target regions and is more suitable for the automatic

measurement of AoP based on the ellipse fitting algorithm. In

conclusion, our method is an important step toward the AoP

measurement based on deep learning.
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