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Type 2 diabetes mellitus is a complex and under-treated disorder closely

intertwined with obesity. Adolescents with severe obesity and type 2

diabetes have a more aggressive disease compared to adults, with a rapid

decline in pancreatic β cell function and increased incidence of comorbidities.

Given the relative paucity of pharmacotherapies, bariatric surgery has become

increasingly used as a therapeutic option. However, subsets of this population

have sub-optimal outcomes with either inadequate weight loss or little

improvement in disease. Predicting which patients will benefit from surgery

is a difficult task and detailed physiological characteristics of patients who do

not respond to treatment are generally unknown. Identifying physiological

predictors of surgical response therefore has the potential to reveal both

novel phenotypes of disease as well as therapeutic targets. We leverage data

assimilation paired withmechanistic models of glucose metabolism to estimate

pre-operative physiological states of bariatric surgery patients, thereby

identifying latent phenotypes of impaired glucose metabolism. Specifically,

maximal insulin secretion capacity, σ, and insulin sensitivity, SI, differentiate

aberrations in glucose metabolism underlying an individual’s disease. Using

multivariable logistic regression, we combine clinical data with data assimilation

to predict post-operative glycemic outcomes at 12 months. Models using data

assimilation sans insulin had comparable performance to models using oral

glucose tolerance test glucose and insulin. Our best performing models used

data assimilation and had an area under the receiver operating characteristic

curve of 0.77 (95% confidence interval 0.7665, 0.7734) and mean average

precision of 0.6258 (0.6206, 0.6311). We show that data assimilation extracts

knowledge from mechanistic models of glucose metabolism to infer future

glycemic states from limited clinical data. Thismethod can provide a pathway to

predict long-term, post-surgical glycemic states by estimating the
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contributions of insulin resistance and limitations of insulin secretion to pre-

operative glucose metabolism.
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1 Introduction

As obesity rates rise in the United States, so too does the

prevalence of type 2 diabetes mellitus (T2DM) in children and

adolescents (Skelton et al., 2009; Hales et al., 2017h). While a

number of pharmacotherapies exist to treat T2DM, there are

few options approved for use in younger patients, who

typically have more aggressive disease (TODAY Study

Group, 2021; American Diabetes Association Professional

Practice Committee, 2022). As such, bariatric surgery is

increasingly used as a treatment for severe obesity and

prevention or reversal of T2DM, despite risk of operative

complications (Hsia et al., 2012; Aung et al., 2016; Beamish

and Reinehr, 2017; Inge et al., 2018a; Armstrong et al., 2019;

Bolling et al., 2019; Karasko, 2019; Khattab and Sperling, 2019;

American Diabetes Association Professional Practice

Committee Draznin et al., 2022). Many patients benefit

with significant, sustained weight loss, improvement in

quality of life, and improvement of obesity-related

comorbidities (Inge et al., 2016; Rubino et al., 2016;

Beamish and Reinehr, 2017; Pedroso et al., 2018; Inge

et al., 2019). However, an ill-defined subset of this

population have sub-optimal outcomes (Montero et al.,

2011; Livhits et al., 2012; Toh et al., 2017; Inge et al.,

2018a; Inge et al., 2018b). Predicting which patients are

most likely to benefit from surgery and how they will

benefit is a current challenge aimed to minimize

unnecessary risk during a critical period of growth and

development.

The prevalence of impaired glucose metabolism (IGM)—

here referring to a heterogenous population with impaired

glucose tolerance (IGT), impaired fasting glucose (IFG),

prediabetes (preDM), or T2DM— is increasing in pediatric

populations, and may be underestimated (Sinha et al., 2002;

Lee et al., 2006; Nowicka et al., 2011; Buse et al., 2013; Dabelea

et al., 2014). IGM is progressive and often goes undiagnosed

until later in disease history. It is associated with insulin

resistance (IR), the need for more insulin to achieve

physiologic effects, i.e., peripheral glucose uptake and

suppression of hepatic glucose production (HGP). In the

obese state, IR is almost guaranteed as it is directly related

to visceral adiposity (Kahn and Flier, 2000), but the extent to

which the pancreas can compensate exists on a spectrum.

Insulin sensitivity (SI) is a measure of the effectiveness of

insulin in promoting glucose uptake. It is reciprocally related

to insulin resistance. In this context, T2DM is an example

extreme IGM, with significant IR coupled with β cell

dysfunction and resultant hyperglycemia (Prentki and

Nolan, 2006; American Diabetes Association Professional

Practice Committee, 2022). The extent to which function

can be rescued after progression to T2DM is modifiable to

some degree (Lim et al., 2011; Pajvani and Accili, 2015; Taylor

et al., 2019; Richter et al., 2020; Holst and Madsbad, 2021;

Bartolomé et al., 2022). Duration of disease negatively impacts

the probability of resolution, and lifestyle interventions

resulting in weight loss during the early prediabetic phase

are more likely to prevent progression (Knowler et al., 2002).

Reversal of preDM and prevention of T2DM are therefore

considered to be one of the major benefits of bariatric surgery

in this age group for which there are limited other options

(Aung et al., 2016; Armstrong et al., 2019; Bolling et al., 2019;

Khattab and Sperling, 2019; American Diabetes Association

Professional Practice Committee Draznin et al., 2022). Indeed,

when compared to pharmacologic or lifestyle interventions,

bariatric surgery is overall the most successful intervention

with respect to glycemic improvements and sustained weight

loss (Schauer et al., 2012; Courcoulas et al., 2014; Mingrone

et al., 2015). The specific surgery has clear impact on

outcomes. The three most prevalent bariatric surgeries in

the U.S. are adjustable gastric banding (AGB), Roux-en-Y

gastric bypass (RYGB), and vertical sleeve gastrectomy (VSG).

In AGB, an inflatable band is placed around the upper part of

the stomach creating a small pouch. In RYGB, the jejunum is

directly connected to a remnant small pouch of stomach,

thereby bypassing the majority of the stomach and the

duodenum. In VSG, the majority of the stomach is

removed along the greater curvature, creating a narrow

tube or sleeve. While AGB is thought to act through purely

restrictive mechanisms, VSG and RYGB restrict food intake

and increase malabsorption, alter secretion of gut hormones

related to satiety and insulin secretion, e.g., glucagon-like

peptide-1 (GLP-1) and ghrelin, and change bile acid

composition through the change in macronutrients present

in areas of the small intestine (Seeley et al., 2015; Mulla et al.,

2018; Akalestou et al., 2022). These differing effects can have

profound impact on insulin resistance in particular, and the

success of VSG and RYGB in comparison to AGB has led to

their increased usage (Mulla et al., 2018). Depending on how

remission is defined, meta-analyses have shown that 20–80%

of adults will have some degree of improvement in T2DM at

medium-to-long term follow up (Yip et al., 2013; Elbahrawy

et al., 2018; Tsilingiris et al., 2019; Purnell et al., 2021),
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although there is suggestion of continued impaired β cell

function and overestimation of success (Ramos-Levi et al.,

2013a; Laferrère and Pattou, 2018). Smaller prospective

studies focusing on adolescents suggest T2DM remission

may occur in up to 80–90% of patients and improvement

of preDM may occur in 70–80% of patients following Roux-

en-Y gastric bypass (RYGB), the most drastic surgery that is

recommended for adolescents with respect to metabolic

intervention and risk of complications (Inge et al., 2014;

Inge et al., 2017; Olbers et al., 2017; Stefater and Inge,

2017). However, small sample sizes and relatively

homogenous populations (> 70% non-Hispanic white) limit

generalizability of results. Predicting which patients are likely

to have remission or partial remission of IGM as a result of

surgery and thus not develop T2DM remains a challenging

task (Ramos-Levi et al., 2013b; Wang et al., 2015; Tsilingiris

et al., 2019).

Given the complexity of medical decision making in

adolescent bariatric surgery, accurately assessing benefits vs.

risks for an individual is critical for patients and their care

teams. Glucose dysregulation and obesity can compound

existing surgical risks and increase the chance of

complications. Although adolescents have lower complication

rates compared to their adult counterparts, they may still

experience wound infections, anastomotic strictures, leaks,

wound dehiscence, abdominal hernias, dehydration, and

venous thromboembolism (Lamoshi et al., 2020). In patients

with diabetes, poor wound healing and risk of infection are

serious considerations and can directly impact the success of the

surgery and need for revision (Keidar, 2011). In the long term,

patients also have significant malabsorption post-bariatric

surgery, resulting in multiple vitamin and mineral deficiencies

requiring lifelong supplementation (Bal et al., 2012; Lamoshi

et al., 2020). The consequences of this decreased nutrition can be

great in adolescents who are still undergoing their growth spurts

and accruing bone during their pubertal years (Lamoshi et al.,

2020; Weiner et al., 2020; Ou et al., 2022). Although

advancements have been made to minimize risk of post-

operative complications, improve wound healing, and

optimize post-operative nutrition, bariatric surgery remains an

aggressive measure taken to improve a patient’s health (Crossan

and Sheer, 2022; Dewberry et al., 2022). Therefore, providing

accurate information about a patient’s current diabetic state the

probability of improvement with surgery can allow for more

informed decision making.

Previous studies using statistical or traditional machine

learning techniques to predict T2DM outcomes have generally

focused on relatively homogenous adult populations who

underwent RYGB, with or without genetic information

included in analysis. Because available data are sparse,

these approaches are subject to error and are not often

validated in pediatric populations (Aminian et al., 2017;

Cao et al., 2020; Kam et al., 2020). Varying definitions of

what successful glycemic outcomes mean also complicate

prediction (Buse et al., 2009; Holst and Madsbad, 2021).

Outside of surgery type, other potential predictors include

anthropometrics (weight, height, body mass index [BMI]),

pre-operative disease severity, use of anti-diabetic

medications, and presence of comorbidities (DeMaria et al.,

2007; Livhits et al., 2012; Dixon et al., 2013; Robert et al., 2013;

Panunzi et al., 2015; Wang et al., 2015; Shen et al., 2019).

Associations are also seen with baseline biomarkers such as

fasting glucose, insulin, C-peptide, triglycerides (TG),

C-reactive protein (CRP), and hemoglobin A1c (HbA1c)

levels (Ortega et al., 2012; Courcoulas et al., 2013; Inge

et al., 2014; Pedersen et al., 2016; Yan et al., 2017). These

features, particularly pre-operative disease severity (as

measured by duration of disease, labs, and medications) are

more homogenous in adolescents, who frequently have

preDM rather than T2DM, and are therefore on fewer

medications, if any. Additionally, adolescents tend to have

lower HbA1c values at baseline prior to undergoing bariatric

surgery compared to their adult counterparts. As such,

features that are useful predictors in adult surgical response

are not necessarily translatable to adolescents.

To provide more personalized predictions, Pedersen, et al.

incorporated genetic and clinical information in an artificial

neural network to accurately predict short-term

discontinuation of diabetes medications at 30 days (Pedersen

et al., 2016). The majority of candidate genetic markers were

associated with insulin secretion, glucose clearance, or insulin

sensitization. While genetics certainly play a role in T2DM, pre-

operative genetic analyses are not currently practical for every

patient (Hatoum et al., 2011; Okser et al., 2013; Rouskas et al.,

2014).

These prior studies provide evidence that an individual’s

underlying physiology has long-term implications for

treatment outcomes, but existing methods to approximate

these physiological pathways may not be practical for use

in adolescents (Lee, 2007; Brown and Yanovski, 2014).

Glucose tolerance and insulin resistance are frequently

estimated using point or dynamic lab proxies due to the

expensive and invasive nature of the gold standard for

measurement, the hyperinsulinemic-euglycemic clamp

(Muniyappa et al., 2018). Oral glucose tolerance tests

(OGTTs) are one such approximation used to screen for

and diagnose dysglycemia (Olson et al., 2010; Muniyappa

et al., 2018; American Diabetes Association Professional

Practice Committee, 2022). After fasting (usually

overnight), patients are given a fixed dose of liquid glucose

(typically 75 g) after which glucose levels are measured at

timed intervals. OGTTs can vary in the types of labs drawn,

the frequency of sampling, and the duration of the procedure

(Muniyappa et al., 2018). In common clinical practice, glucose

is measured over two or three hours. Measurements of insulin

and C-peptide are not the standard of care; their assays are
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relatively costly and lack of standardization makes their

interpretation less straightforward (Manley et al., 2007;

Little et al., 2008; Miller et al., 2009; Tohidi et al., 2017).

As such, these labs are typically only collected in research

settings.

Fasting insulin and glucose measurements can be used to

calculate indices such as the homeostatic model assessment of

insulin resistance (HOMA-IR), which can approximate

parameters such as peripheral and hepatic insulin sensitivity

hepaSI as would be assessed in clamp studies or frequently

sampled intravenous GTTs (FSIVGTT), a silver standard

(Matthews et al., 1985; Bergman et al., 1987; Yeckel et al.,

2004). Interpretation of these indices can vary by patient

characteristics (e.g., age, sex, ethnicity, body habitus) (Wallace

et al., 2004; Gunczler and Lanes, 2006; Nathan et al., 2007; Shaibi

et al., 2011; Gutch et al., 2015; Arslanian et al., 2019; Tagi et al.,

2019; Kim et al., 2020). In particular, HOMA-IR may not be

sensitive to improvements in insulin sensitivity in adolescents

(Shaibi et al., 2011; Bryant et al., 2014).

Several mechanistic models of glucose and insulin

metabolism have been empirically developed and validated

against clamp or FSIVGTT studies to mathematically describe

glucose metabolism. Models such as the meal model (Dalla Man

et al., 2007), oral minimal model (Cobelli et al., 2014), and

ultradian model (Sturis et al., 1991) incorporate insulin

secretion rates and glucose elimination to estimate states over

varying timescales. Topp et al. developed a mechanistic model

that incorporates more granular β cell dynamics, which was

extended by Ha et al. to model the development of type 2 diabetes

over time and quantify the extent to which different insults in the

system contribute to disease (Topp et al., 2000; Ha et al., 2016; Ha

and Sherman, 2020). Represented as a system of ordinary

differential equations (ODEs), these models have the potential

to allow for patient-level characterization of glucose metabolism.

Extracting clinical knowledge from these models is not

straightforward, as both the models themselves and their

results are often viewed as too abstract for application in

clinical practice. However, within these mechanistic models

are clinically meaningful physiologic parameters when applied

to the appropriate problems, e.g. assessing insulin sensitivity’s

relationship with lipoprotein metabolism (Chung et al., 2022).

Furthermore, while clamp studies represent a patient’s

physiologic state and glucose excursions at a specific point in

time, mechanistic models have the potential to elucidate more

long-term physiologic states that are difficult to capture clinically.

Knowledge within mechanistic models of glucose

metabolism can be exploited via data assimilation, a family of

methods frequently used in meteorology and aerospace science

(Evensen, 2009; Law et al., 2015). Data assimilation leverages the

underlying information about the system contained in these

mechanistic models to update current and past states using

filtering and smoothing, updates that in turn provide the

ability to forecast future states by running the estimated

model forward in time. Various filters exist that allow for

parameterization and propagation of state uncertainty for

non-linear systems such as glucose homeostasis (Kalman,

1960; Wan et al., 2001; Julier and Uhlmann, 2004). In

previous work, we used the ultradian and meal models with

an unscented Kalman filter (UKF), a sequential method that

propagates uncertainty in non-linear systems, as well as

deterministic and stochastic optimization methods using

techniques such as Markov chain Monte Carlo (MCMC) to

estimate both states and parameters, generating a real-time,

personalized forecast from free-living data (Albers et al., 2017;

Levine et al., 2017). In the free-living data context where data are

sparse, we developed a constrained (Albers et al., 2019) version of

the ensemble Kalman filter (EnKF) method (Evensen, 2009) that

made state and parameter estimates more robust. We also

successfully applied these methods to real-time glucose

forecasting in the setting of T2DM with OGTT data

(Mulgrave et al., 2020). Whereas in the free-living case the

focus was accurate glucose state determination, the OGTT

case focused more on parameter estimates as a marker for

underlying disease.

Here, we take this prior work to further demonstrate the

validity of using physiologic parameters inferred from

mechanistic models of glucose metabolism to predict impaired

glucose metabolism (IGM) in adolescents at 12-months post-

bariatric surgery as compared to other clinical information. We

use data assimilation to estimate parameters from an extension of

the model initially proposed by Topp et al. incorporating β cell

mass (Ha and Sherman, 2020), partially represented in Figure 1.

We then train logistic regression models leveraging these

parameter estimates derived from data assimilation on a

cohort of adolescents who underwent vertical sleeve

gastrectomy (VSG) or laparascopic adjustable gastric banding

(AGB) at our institution between 2006 and 2020.

2 Materials and methods

2.1 Extraction of clinical data

Data were collected retrospectively from Columbia

University Irving Medical Center (CUIMC) from adolescent

patients aged 10–21 who had bariatric surgery between

2006 and 2020. Records were first selected based on the

presence of bariatric surgery procedure codes with a diagnosis

of obesity on the same day (n = 396), a 120-minute OGTT

measuring glucose and insulin (at 0, 30, 60, and 120 min) within

one year prior to surgery (n = 202), a pre-operative HbA1c within

120 days of the OGTT (n = 202), and at least one post-operative

outcome documented within 6–18 months post-surgery (n =

176). These patients were seen through the Center for

Adolescent Bariatric Surgery (CABS) at CUIMC. Patients with

diganosis codes associated with type 1, cystic fibrosis-related, or
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gestational diabetes mellitus were excluded. Features as outlined

above were extracted for patients who met criteria.

2.2 Data pre-processing and manual
feature selection

In addition to features necessary to include patients

(OGTT glucose and insulin measurements and HbA1c),

additional laboratory variables were selected a priori.

These labs were pre-operative thyroid stimulating

hormone (TSH), thyroxine (T4), free T4 (FT4),

triiodothyronine (T3), aspartate transaminase (AST),

alanine transaminase (ALT), total cholesterol (TC), high-

density lipoprotein (HDL), low-density lipoprotein (LDL),

triglycerides (TG), and C-peptide. Age was used as a

continuous variable. Categorical features included surgery

type, demographic data (self-reported race, ethnicity, and

sex), and pre-operative presence of specific comorbidities

associated with insulin resistance and T2DM: liver disease

(including non-alcoholic steatohepatitis [NASH] and non-

alcoholic fatty liver disease [NAFLD]), polycystic ovary

syndrome (PCOS), dyslipidemia, hypertension (HTN),

obstructive sleep apnea (OSA), thyroid disease, metabolic

syndrome (MetS), T2DM (by diagnosis code), and

abnormal glucose metabolism (by diagnosis code). To be

coded as having the comorbidity of interest without manual

chart review, at least 25% of all encounters within the

appropriate time window had to contain a related diagnosis

code (5 years pre-operative; 6–18 months post-operative)

(Perotte and Hripcsak, 2013). Features missing in more

than 25% of the sample were removed from analysis. The

closest labs obtained prior to surgery and the pre-operative

OGTT were included as features if there were multiple lab

results within the appropriate time window. HOMA-IR was

calculated using mass units (Matthews et al., 1985) as follows

in Eq. 1:

IRHOMA � G0 × I0
405

(1)

where G0 is fasting glucose in mg/dL and I0 is fasting insulin in

µIU/mL.

For continuous variables, outliers were defined as those

values outside 1.5× the interquartile range (IQR). However,

after manual chart review, none of the outliers were removed

as none were found to be spurious measurements.

FIGURE 1
Schematic of mechanistic models of glucose metabolism. Underlying physiologic processes are represented by a series of ordinary differential
equations (ODEs). Solutions lie on discrete spaces based on patient physiology at the time of measurements. In data assimilation, after reverse
parameter estimation at discrete time points (i.e., insulin secretion capacity, σ, and insulin sensitivity, SI), the system state is updated and the ODEs are
solved again. Figure adapted from Tokarz et al. (Tokarz et al., 2018) and created with BioRender.com. Relevant equations are outlined in
Methods and in Ha and Sherman 2020 (Ha and Sherman, 2020).
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Due to non-normal distributions of the majority of

continuous variables, numeric features were scaled and

standardized using power transformation with the Box-Cox

method (Box and Cox, 1964) prior to hyperparameter tuning.

Missing values (n = 7, all thyroid function tests) were imputed

using iterative imputation using five nearest features with

sampling from the prior distribution (Buck, 1960; Buuren and

Groothuis-Oudshoorn, 2011; Pedregosa et al., 2011).

In total, we used 21 continuous clinical variables,

23 categorical variables (three multinomial, 11 binary), and six

continuous parameter estimates from data assimilation (mean

and standard deviations of maximal insulin secretion capacity

[σ], insulin sensitivity [SI], and their product [σ*SI] for an

individual’s estimated distributions). Models including

HOMA-IR as a feature did not include data assimilation

estimates. After data pre-processing, a total of 49 features

were included in the most comprehensive model.

2.3 Outcome labelling

Patient post-operative outcome classification was coded as

a binary variable indicating the presence or absence of

impaired glucose metabolism (IGM) at 12 months. To be

classified as having IGM, patients could have any one of the

following criteria occur in the 6–18-month post-operative

window: ≥ 2 elevated HbA1c values, post-operative OGTT

G0 ≥ 100 mg/dL, post-operative OGTT G120 ≥ 140 mg/dL,

anti-diabetic drug use (including metformin), or presence of

diagnosis codes for T2DM or abnormal glucose metabolism

in ≥ 25% of encounters in the post-op window (American

Diabetes Association Professional Practice Committee, 2022).

If multiple specimens for the same lab were collected within

the 6-18-month window, the latest labs were used. Outcome

definitions are shown in Table 1.

2.4 Predictive model training and
evaluation

Regularized logistic regression models were trained to

predict impaired glucose metabolism (IGM) as a binary

outcome on varied subsets of the features as input. The

data were first split into 70–30 train-test sets.

Hyperparameters were tuned on the train set with stratified

nested k-fold cross-validation. Tuned hyperparameters

included regularization method (L2 vs. L1), regularization

constant (λ = α*n), learning rate [f(α)], and max iterations.

The loss function was binary cross-entropy loss with balanced

class weight. The optimizer was stochastic gradient descent

with an adaptive learning rate. To ensure model robustness to

random data splitting, we performed 30 independent train-test

splits and the results were averaged. The hyperparameters

associated with the minimum loss in training were selected for

model evaluation.

Because our dataset was imbalanced with respect to

outcomes, we chose class weights in the logistic regression

models that were inversely proportional to the class

frequency. To evaluate the performance of the prediction

models, we computed area under the Receiver Operating

Characteristic curve (AUROC), precision, recall, and

average precision (AP) on out-of-bag estimates from

1,000 bootstrapped samples (n = 176). Average precision

refers to the weighted mean of precision with respect to

recall at all probability thresholds for classification and

focuses on how well the models predict the positive class

(in our case, post-operative IGM). It is analogous to the area

under the precision-recall curve (AUPRC) and better suited

for imbalanced datasets compared to accuracy. Baseline

performance of a naïve classifier would have an AUPRC

equal to the proportion of the positive class in the data (here,

0.318).

TABLE 1 Outcome definitions for classification as having impaired glucose metabolism (IGM) or normal glucose metabolism (NGM) at 12 months
post-bariatric surgery.

Normal glucose
metabolism
(NGM)

Impaired glucose metabolism (IGM)

Prediabetes Type 2 diabetes
mellitus

HbA1c (%) < 5.7 5.7–6.4 ≥ 6.5

G0 (mg/dL) < 100 100–125 ≥ 126

G120 (mg/dL) < 140 140–199 ≥ 200

Anti-diabetic medications None Metformin or GLP-1a All other drug classes

Diagnosis codes in encounters within 6–18 months
post-op

None or < 25% Abnormal Glucose in ≥ 25% of
encounters

T2DM in ≥ 25% of encounters

G, glucose; GLP-1a, Glucagon-Like Peptide-1 agonist; OGTT, oral glucose tolerance test; OSA, obstructive sleep apnea; T2DM, type 2 diabetes mellitus.
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2.5 Mechanistic glucose metabolism
modeling

Relevant equations used in our study are briefly outlined

below, with a full description of the model available in the

supplemental materials of Ha and Sherman 2020 (Ha and

Sherman, 2020; Sherman, 2022).

Eq. 2 describes change in glucose over time as a function of

the glucose flux during the OGTT (OGTT), hepatic glucose

production (HGP), insulin sensitivity (SI), the insulin-

independent effectiveness of glucose (EG0), current glucose

(G), and insulin (I). It is given as:

dG

dt
� OGTT +HGP − (EG0 + SII)G (2)

where HGP is a decreasing function of I and hepatic insulin

sensitivity (hepaSI) and EG0 represents insulin-independent

glucose uptake by peripheral tissues, here fixed at 0.0118 min−1.

Eqs. 3, 4 describe change in insulin over time as a function of

β cell mass (β), volume of distribution (V), insulin secretion rate

(ISR), and insulin (I). ISR is a function of calcium ion

concentration in the β cell cytosol (CISR) and the number of

primed insulin vesicles at the β cell membrane (N5). They are

given as:

dI

dt
� β

V
ISR − kI (3)

ISR � CISRN5 (4)
where k is a rate constant of insulin clearance. The precise form of

CISR as a function of glucose (G) and ATP-dependent potassium

ion channel (K+-ATP) density (γ) can be determined by

expanding the equations derived from a slight modification of

the steady state of the previously published exocytosis model

(Chen et al., 2008).

Eq. 5 shows the change in γ, the density of the β cell

membrane ATP-dependent potassium ion channel (K+-ATP),

as an increasing function of glucose (G) on a scale of hours to

days. This describes the shift in glucose-dependent insulin

secretion in the setting of chronic hyperglycemia, where

increases in channel density lead to decreases in insulin

secretion. Because of the short time scale of the OGTT, γ
was fixed at –0.076 as in prior work (Sherman, 2022) and this

equation was not explicitly solved in our methods. It is

provided here for clarity on how chronic hyperglycemia

affects β cell structure and is given as:

dγ

dt
� γ∞(G) − γ

τγ
(5)

where γ∞(G) is an increasing sigmoidal function of glucose and

τγ is a time constant.

From the insulin exocytosis model, Eqs. 6, 7 describe the

change in the number of vesicles in the β cell granule-membrane

complex during docking and priming (N6 andN5, respectively) as

functions of K+-ATP channel density (γ), glucose (G), maximal

insulin secretion capacity (σ), and the baseline insulin vesicle

priming rate, r2
0 (Chen et al., 2008). These equations are given as:

dN5

dt
� C5,5N5 + C5,6N6 (6)

dN6

dt
� C6,0 + C6,5N5 + C6,6N6 (7)

where Ci,j represents the cytosol calcium ion concentration at a

given state in exocytosis: C5,5 is a function of G and γ; C5,6 and

C6,6 are functions of G, γ, and r20; C6,0 is a function of G, γ, and σ,
and; C6,5 is a constant.

Eq. 8 describes the change in the maximal insulin secretion

capacity, σ, to compensate for chronic hyperglycemia on a scale

of hours to days. It is a unitless scale factor. During the OGTT, σ
is assumed to be at steady state. σ is a function of insulin secretion
rate (ISR) and β cell metabolism (M), where σ increases with

increases in ISR and decreases as M increases.

dσ

dt
� σ∞(ISR,M) − σ

τσ
(8)

Parameters and non-estimated initial states were set according to

their values in previous research (Ha and Sherman, 2020; Sherman,

2022). In experiments where measured insulin values were not

included in the estimation optimization, I0 was set as 5.63 µIU/mL.

The parameters estimated without using a patient's insulin values are

denoted with an, σSI and σ*SI.

2.6 Estimating parameters using data
assimilation

In our methods, we estimated two parameters via data

assimilation, insulin sensitivity, SI, and maximal insulin secretion

capacity, σ. Ordinary differential equations were solved using a

Rosenbrock-W method (Rosenbrock23) (Rackauckas and Nie,

2017) within the bounds of [0.005, 3] for SI and [0.01, 10] for σ.
The posterior distributions of the parameters and the product σ*SI
were estimated based on a 500,000 iteration Random Walk

Metropolis-Hastings MCMC (Hastings, 1970) chain (excluding a

burn-in of 50,000 iterations), assuming a normal distribution error

model and uniform priors. A decrease in autocorrelation

approaching 0 was appreciated with increasing lags (k) near k =

500 to support chain convergence, and the number of iterations and

burn-in were selected to be orders of magnitude larger than k (Roy,

2019). Acceptance rate varied with each patient between 0.2–0.5.

Multiple independent chains for a subset of 10 patients provided

confidence in the reproducibility of the estimates. The means and

standard deviations of the parameters were calculated from the

remaining 450,000 iterations (Ge et al., 2018) in an individual’s

chain, and these summary statistics were included in logistic

regression models.
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2.7 Descriptive statistics

The majority of continuous features were not normally

distributed, so non-parametric methods were used to calculate

descriptive statistics on non-transformed data. These data are

reported as medians with 95% confidence intervals around the

median. The Mann-Whitney-U tests were used to compare

continuous variables under these circumstances. χ2 or Fisher’s

TABLE 2 Pre-operative demographic comparisons by binary post-operative outcome at 12 months. For continuous variables, medians with their 95%
CI are shown. Categorical variables are shown as a percentage and count. Significant p-values for Mann-Whitney-U tests after Bonferroni
correction are in bold (p < 0.001).

Variable Name − IGM n = 120 + IGM n = 56 p-value

Pre-operative IGM status# 45 (54) 83.9 (47) < 0.0001

Operation Age (years) 16.9 (16.6, 17.1) 16.8 (16.5, 17.5) 0.3034

Pre-operative BMI (kg/m2) 45.93 (44.66, 47.92) 48.25 (46.20, 51.24) 0.0712

Male (%) 27.5 (33) 33.9 (19) 0.4880

Race

Asian 0 (0) 3.6 (2) 0.1000

Black 17.5 (21) 28.6 (16) 0.1390

Native American 0 (0) 1.8 (1) 0.3180

Other 2.5 (3) 7.1 (4) 0.2110

Pacific Islander 0.8 (1) 0 (0) 1.0000

White 58.3 (70) 46.4 (26) 0.1890

Unknown 20.8 (25) 16.1 (9) 0.5890

Ethnicity

Hispanic 42.5 (51) 51.8 (29) 0.3220

Non-Hispanic 53.3 (64) 51.8 (29) 0.9760

Declined 1.7 (2) 1.8 (1) 1.0000

Unknown 9.2 (11) 1.8 (1) 0.1060

Surgery Type

Roux-en-Y (RYGB) 0.8 (1) 0 (0) 1.0000

Gastric Band (AGB) 42.5 (51) 60.7 (34) 0.0370

Sleeve Gastrectomy (VSG) 55.8 (67) 39.3 (22) 0.0600

Otherx 0.8 (1) 0 (0) 1.0000

ICD Codes

Abnormal Glucose° 13.3 (16) 33.9 (19) 0.0030

T2DM 8.3 (10) 23.2 (13) 0.0130

Dyslipidemia 29.2 (35) 35.7 (20) 0.4850

GERD 13.3 (16) 14.3 (8) 1.0000

Hypertension 21.7 (26) 41.1 (23) 0.0130

Liver Disease+ 17.5 (21) 21.4 (12) 0.6780

Metabolic Syndrome 29.2 (35) 32.1 (18) 0.8220

OSA 35 (42) 42.9 (24) 0.4030

PCOS (F, n = 87, 37) 19.5 (17) 48.6 (18) 0.0021

Thyroid Disease 4.2 (5) 8.9 (5) 0.2930

#Patients with pre-operative IGM had any one of the IGM definitions pre-operatively. This variable was not used in training any of the models.
xOther surgeries refers to non-specific procedure codes for restrictive bariatric surgery.
+Liver disease includes non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and unspecified chronic liver disease.
°Abnormal glucose diagnosis codes exclude any kind of diabetes mellitus.

Abbreviations: BMI, body mass index; CI, confidence interval; GERD, gastroesophageal reflux disease; IGM, impaired glucose metabolism; OSA, obstructive sleep apnea; PCOS, polycystic

ovary syndrome; T2DM, type 2 diabetes mellitus.
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exact tests were used to compare categorical variables depending on

the frequencies of the categories. Two-tailed Student’s t-tests were

used to compare means and 95% confidence intervals of

bootstrapped coefficient estimates and scoring metrics.

3 Results

3.1 Description of data

Out of 396 adolescents who underwent bariatric surgery,

248 had pre-operative OGTTs. Of 202 patients without any

missing values in their pre-operative OGTT glucose and

insulin measurements, 176 had follow-up within the

appropriate time window and were further analyzed. All

potential classification methods for impaired glucose

metabolism (IGM) demonstrated class imbalance, with ~35%

(n = 56) of patients with meeting post-operative criteria for IGM

as outlined above. Pre-operative characteristics by group are

shown in Tables 2, 3. Using the same criteria to classify IGM

post-operatively, 101 of the 176 (57.4%)met criteria for IGM pre-

operatively. At baseline, patients who had higher probabilities of

having IGM post-operatively were more insulin resistant as

TABLE 3 Pre-operative laboratory value comparisons by binary post-operative outcome at 12 months. Medians with their 95% CI are shown.
Significant p-values for Mann-Whitney-U tests after Bonferroni correction are in bold (p < 0.002).

Variable Name − NGM n = 120 + IGM n = 56 p-value

Baseline HbA1c (%) 5.4 (5.3, 5.5) 5.8 (5.7, 6.0) < 0.0001

Baseline HOMA-IR 3.13 (2.76, 3.52) 4.53 (3.75, 5.57) 1.987 × 10–3

OGTT Measurements

G0 (mg/dL) 86.5 (84, 88) 87.5 (86, 93) 0.1081

G30 (mg/dL) 128 (123, 134) 140.5 (134, 146) 1.312 × 10–3

G60 (mg/dL) 115.5 (113, 121) 133.5 (127, 154) 2.2 × 10–4

G120 (mg/dL) 98 (93, 104) 113.5 (109, 122) 1.5 × 10–4

I0 (µIU/mL) 14.5 (13.0, 17.0) 20.0 (17.0, 24.0) 4.033 × 10–3

I30 (µIU/mL) 65.0 (52.0, 81.0) 70.5 (52.0, 87.0) 0.8265

I60 (µIU/mL) 63.0 (50.0, 72.0) 62.5 (49.0, 90.0) 0.9456

I120 (µIU/mL) 36.5 (27.0, 50.0) 58.5 (47.0, 94.0) 1.17 × 10–4

Other Labs

Total Cholesterol (mg/dL) 164 (159, 171) 164 (155, 170) 0.6057

HDL Cholesterol (mg/dL) 42 (41, 44) 43 (41, 47) 0.3700

HDL Cholesterol (mg/dL) (M, n = 33, 19) 39 (35, 44) 39 (34, 44) 0.9317

HDL Cholesterol (mg/dL) (F, n = 87, 37) 43 (42, 47) 46 (43, 51) 0.2019

LDL Cholesterol (mg/dL) 94 (92, 104) 101 (94, 105) 0.7447

Triglycerides (mg/dL) 103 (93, 113) 87.5 (78, 114) 0.4017

ALT (IU/L) 18.5 (16, 21) 20 (17, 25) 0.3676

AST (IU/L) 19 (18, 19) 18 (18, 21) 0.8286

TSH (µIU/L) 2.3 (2.0, 2.7) 2.8 (2.3, 3.7) 0.4416

Free T4 (ng/dL) 1.14 (1.1, 1.17) 1.16 (1.13, 1.22) 0.2113

Total T4 (µg/dL) 8.2 (8.0, 8.8) 8.7 (8.3, 9.3) 0.3143

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; G, glucose; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; HOMA-IR,

homeostatic model assessment of insulin resistance; I, insulin; IGM, impaired glucose metabolism; LDL, low-density lipoprotein; NGM, normal glucose metabolism; OGTT, oral glucose

tolerance test; TSH, thyroid stimulating hormone; T4, thyroxine.

TABLE 4 Data assimilation-derived mechanistic model parameter
estimate comparisons by binary post-operative outcome at 12
months. The parameters SI, σ, and σ*SI refer to the means of the
posterior distributions for each patient. Overlined parameters were
estimated without insulin values. For comparisons, medians and
95% confidence intervals of the median are shown. All
comparisons had significant p-values for Mann-Whitney-U test
after Bonferroni correction (p < 0.008).

Parameter Name – IGM n = 120 + IGM n = 56 p-value

SI 0.403 (0.249, 0.571) 0.086 (0.054, 0.207) 1.70 x 10-5

SI 0.356 (0.284, 0.420) 0.155 (0.129, 0.178) < 0.0001

σ*SI 0.947 (0.651, 1.539) 0.207 (0.157, 0.379) < 0.0001

σ*SI 0.908 (0.763, 1.510) 0.255 (0.146, 0.547) < 0.0001

�σ 4.715 (4.414, 4.976) 4.083 (3.582, 4.399) 0.0011

σ 3.424 (2.627, 4.630) 1.596 (1.195, 3.169) 0.0003

Abbreviations: IGM, impaired glucose metabolism; σ, maximal insulin secretion

capacity; SI , insulin sensitivity.
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measured by HOMA-IR, had higher G30, G60, and G120 values,

and had higher I120 values.

A total of 202 patients met inclusion criteria, but 26 of

them did not have follow-up within 6–18 months of surgery.

One patient was lost to follow-up due to death

within three months of surgery. The proportions of patients

lost to follow-up were statistically different between those

with pre-operative IGM (Fisher’s exact test p = 0.035):

nine met two or more pre-operative IGM criteria

(three with elevated G0, one with elevated G120, six with

multiple elevated HbA1c values, one on anti-diabetic

medication).

3.2 Data assimilation results

Parameter estimates from data assimilation are

summarized in Table 4 and the probability distribution of

FIGURE 2
Scatter and 2D kernel density estimation plots, stratified by post-operative outcome at 12 months. Data are shown after Box-Cox
transformation for visualization. (A) Incorporating measured insulin measurements in the data assimilation estimations increases separation of the
estimated probability distributions of σ between groups, as compared to (B) without insulin, where SI is more separated but σ has more overlap. (C)
σ*SI had better separation compared to HOMA-IR when estimated bothwith and (D)without insulin. Blue triangles, normal glucosemetabolism
(–IGM); red circles, impaired glucose metabolism (+IGM).
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their means across the cohort as estimated by kernel density

estimation are shown in Figure 2. The post-operative + IGM

group had statistically significantly lower baseline insulin

sensitivity (SI) and maximal insulin secretion capacity

(σ) values compared to the post-operative − IGM

group, irrespective of inclusion of insulin in the data

assimilation.

The marginal posterior densities of the parameters were

estimated for each individual patient using MCMC. The

marginal posterior density of SI was sharply peaked away

from its bounds on manual inspection for a random subset of

patients, giving us confidence in its mean estimator. The density

for σ*SI was also sharply peaked away from its bounds (not

shown).

TABLE 5 AUROC comparisons between models trained on subsets of features with and without data assimilation. Models are presented in
alphabetical order with the better performing model on the left (Model A). Clinical Vars refers to all clinical features in Tables 2, 3 except pre-
operative IGM status and HOMA-IR. Clinical Vars–Ins refers to the same set of features in Clinical Vars after removing insulin measurements. Overlined
parameters were estimated without insulin values. Significant p-values for two-tailed Student’s t-test after Bonferroni correction are shown in bold
(p < 0.004).

Model A A AUROC Mean (95% CI) Model B B AUROC Mean
(95% CI)

p-value

1 Clinical Vars 0.7655 (0.7622, 0.7689) Clinical Vars–Ins + σ*SI 0.7511 (0.7475, 0.7547) < 0.0001

2 Clinical Vars + HOMA-IR 0.7659 (0.7625, 0.7692) Clinical Vars 0.7655 (0.7622, 0.7689) 0.8942

3 Clinical Vars–Ins + σ*SI 0.7511 (0.7475, 0.7547) Clinical Vars–Ins 0.7491 (0.7455, 0.7527) 0.4351

4 Clinical Vars + σ + SI + σ*SI 0.7678 (0.7644, 0.7713) Clinical Vars 0.7655 (0.7622, 0.7689) 0.3573

5 Clinical Vars + σ + SI + σ*SI 0.7678 (0.7644, 0.7713) Clinical Vars + HOMA-IR 0.7659 (0.7625, 0.7692) 0.4282

6 Clinical Vars + σ*SI 0.7700 (0.7665, 0.7734) Clinical Vars 0.7655 (0.7622, 0.7689) 0.0728

7 Clinical Vars + σ*SI 0.7700 (0.7665, 0.7734) Clinical Vars + HOMA-IR 0.7659 (0.7625, 0.7692) 0.0952

8 Glucose + Insulin + HbA1c
+ σ*SI

0.7627 (0.7594, 0.7659) Glucose + Insulin + HbA1c + σ + SI
+ σ*SI

0.7451 (0.7416, 0.7486) < 0.0001

9 Glucose + Insulin + σ + SI
+ σ*SI

0.7463 (0.743, 0.7496) Glucose + Insulin 0.7337 (0.7303, 0.7371) < 0.0001

10 σ*SI 0.7380 (0.7346, 0.7415) Glucose + Insulin 0.7337 (0.7303, 0.7371) 0.0790

11 σ*SI 0.7380 (0.7346, 0.7415) Glucose + Insulin + HOMA-IR 0.7317 (0.7283, 0.7350) 0.0089

Abbreviations: CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-IR, homeostatic model assessment of insulin resistance; σ , maximal insulin secretion capacity; SI , insulin

sensitivity.

TABLE 6 Average precision comparisons between models trained on subsets of features with and without data assimilation. Models are presented in
the same order as in Table 5. Clinical Vars refers to all clinical features in Tables 2, 3 except pre-operative IGM status and HOMA-IR. Clinical
Vars–Ins refers to the same set of features in Clinical Vars after removing insulin measurements. Overlined parameters were estimated without insulin
values. Significant p-values for two-tailed Student’s t-test after Bonferroni correction are shown in bold (p < 0.004).

Model A A AP Mean (95% CI) Model B B AP Mean (95% CI) p-value

1 Clinical Vars 0.6200 (0.6148, 0.6252) Clinical Vars–Ins + σ*SI 0.613 (0.6074, 0.6185) 0.0700

2 Clinical Vars + HOMA-IR 0.6209 (0.6155, 0.6262) Clinical Vars 0.6200 (0.6148, 0.6252) 0.8200

3 Clinical Vars–Ins + σ*SI 0.613 (0.6074, 0.6185) Clinical Vars–Ins 0.6075 (0.6021, 0.6129) 0.1665

4 Clinical Vars + σ + SI + σ*SI 0.6253 (0.6197, 0.6308) Clinical Vars 0.6200 (0.6148, 0.6252) 0.8835

5 Clinical Vars + σ + SI + σ*SI 0.6253 (0.6197, 0.6308) Clinical Vars + HOMA-IR 0.6209 (0.6155, 0.6262) 0.2656

6 Clinical Vars + σ*SI 0.6258 (0.6206, 0.6311) Clinical Vars 0.6200 (0.6148, 0.6252) 0.1244

7 Clinical Vars + σ*SI 0.6258 (0.6206, 0.6311) Clinical Vars + HOMA-IR 0.6209 (0.6155, 0.6262) 0.1966

8 Glucose + Insulin + HbA1c + σ*SI 0.6156 (0.6105, 0.6207) Glucose + Insulin + HbA1c + σ + SI + σ*SI 0.5936 (0.5882, 0.599) < 0.0001

9 Glucose + Insulin + σ + SI + σ*SI 0.5841 (0.5791, 0.5892) Glucose + Insulin 0.5695 (0.5644, 0.5745) 0.0001

10 σ*SI 0.5990 (0.5939, 0.6041) Glucose + Insulin 0.5695 (0.5644, 0.5745) < 0.0001

11 σ*SI 0.5990 (0.5939, 0.6041) Glucose + Insulin + HOMA-IR 0.5662 (0.5611, 0.5713) < 0.0001

Abbreviations: AP, average precision; CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-IR, homeostatic model assessment of insulin resistance; σ , maximal insulin secretion

capacity; SI , insulin sensitivity.
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3.3 Prediction model results

For the most complex model, data assimilation estimates

were negatively correlated with the probability of having post-

operative impaired glucose metabolism (IGM) at 12 months.

Across models that contained them, HbA1c and I120 were

positively correlated with the probability of having post-

operative IGM at 12 months. However, the model coefficients

were overall not significantly different from zero for all models

(not shown). When ranked bymagnitude, the largest coefficients,

when included, were coefficients for HbA1c, I120, and G60.

Selected AUROC and average precision score comparisons

are shown in Tables 5, 6, respectively.

The best performing model used all available clinical

variables (n features = 43) and σ*SI with an AUROC of 0.77

(95% CI 0.7665, 0.7734) and average precision of 0.6258 (95% CI

0.6206, 0.6311). Our most comprehensive models using all

clinical data had similar performances regardless of whether

data assimilation estimates or HOMA-IR were included

(Tables 5, 6, rows 1–7).

4 Discussion

4.1 Data assimilation estimates can add
clinical information that improves
prediction

Our best-performing model used the aforementioned

clinical variables combined with the product of maximal

insulin secretion capacity and insulin sensitivity, σ*SI, with
an AUROC of 0.77 (95% CI 0.7665, 0.7734) and average

precision of 0.6258 (95% CI 0.6206, 0.6311). This model

was nominally better than one using clinical variables alone

with an AUROC of 0.7655 (95% CI 0.7622, 0.7689) and

average precision of 0.6200 (95% CI 0.6148, 0.6252), but

the differences were not significant at p = 0.0728 and

0.1244, respectively (Tables 5, 6, row 6).

4.2 Data assimilation estimates can infer
missing information encoded in insulin
measurements

The comparability of our most comprehensive models

suggests that the information added by data assimilation is

captured in an extensive, but not exhaustive, clinical dataset.

Embedded in the electronic health record (EHR) data was a

powerful experiment where the effects of bariatric surgery

could be thoroughly investigated. Models incorporating

insulin, in general, outperformed models that did not

include it. However, when insulin measurements are

missing, data assimilation can add physiologic information

that approaches the predictive ability of the full clinical

dataset. For example, when using all other clinical features

except insulin, the model using the product σ*SI had

nominally improved performance to the model not

including any data assimilation estimates, although the

p-value was not significant (AUROC 0.7511 [0.7475,

0.7547] vs. 0.7491 [0.7455, 0.7527], respectively, p = 0.4351;

AP 0.6130 [0.6074, 0.6185] vs. 0.6075 [0.6021, 0.6129], p =

0.1665) (Tables 5, 6, row 3). While the performance of this

same model using σ*SI performed worse than the model using

the full clinical dataset including insulin (AUROC

0.7511 [0.7475, 0.7547] vs. 0.7655 [0.7622, 0.7689], p <
0.0001; AP 0.6130 [0.6074, 0.6185] vs. 0.6200 [0.6148,

0.6252], p = 0.0700) (Tables 5, 6, row 1), its AUROC was

non-inferior at 98.5% with p = 0.2326.

Our models further suggest that σ*SI, even when estimated

sans insulin, can represent the information within an OGTT

using glucose and insulin. When compared, our model trained

on only σ*SI had similar or better performance as compared to

models trained on the glucose and insulin measurements from an

OGTT (AUROC 0.7380 [0.7346, 0.7415] vs. 0.7337 [0.7303,

0.7371], p = 0.079; AP 0.5990 [0.5939, 0.6041] vs.

0.5695 [0.5644, 0.5745], p < 0.0001) (Tables 5, 6, row 10). The

predictive performance of σ*SI is demonstrated again in

comparison with the model incorporating HOMA-IR, which

requires a fasting insulin measurement (AUROC 0.7380 [0.7346,

0.7415] vs. 0.7317 [0.7283, 0.7350], p = 0.0089; 0.5990 [0.5939,

0.6041] vs. 0.5662 [0.5611, 0.5713], p < 0.0001) (Tables 5, 6,

row 11).

4.3 The mechanistic models were
validated using clinical data

The mechanistic models were able to be well estimated,

achieving a stable solution with a unique minimum, using our

clinical dataset. Furthermore, the mechanistic model output did

not contradict nor add unvalidated information, in that the

parameters estimated corresponded to variables associated

with glucose and insulin metabolism, and not to other clinical

variables (e.g., demographics, thyroid function).

4.4 Uncertainty of data assimilation
estimates results in reduced performance
in logistic regression

When included in the model, HbA1c and insulin measures

(particularly I120) were frequently ranked as the most

important predictors by magnitude. The improved

prediction ability using A1c or insulin was not replicated

by substituting them with data assimilation estimates not

using insulin (not shown). While not a complete substitute
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for the information contained in HbA1c or insulin, when

maximal insulin secretion capacity (σ), insulin sensitivity (SI),

or σ*SI are estimated using insulin measurements, they still

improve performance when added to models containing

OGTT insulin (AUROC 0.7463 [0.743, 0.7496] vs.

0.7337 [0.7303, 0.7371], p < 0.0001; AP 0.5841 [0.5791,

0.5892] vs. 0.5695 [0.5644, 0.5745], p = 0.0001) (Tables 5,

6, row 9).

Although in most models the feature coefficients were not

statistically different from zero (not shown), the standard

deviation of maximal insulin secretion capacity (σ) is given

more importance than the actual estimated parameters

themselves and HbA1c in the models using all three data

assimilation estimates. Furthermore, in the presence of insulin,

regularization consistently shrinks the coefficient for insulin

sensitivity (SI), whereas the coefficient for maximal insulin

secretion capacity (σ) increases. The variance in σ's estimation

and its overlapping distributions between groups compared to

that of SI, even when estimated using insulin measurements,

likely contributes to the loss of predictive power (Figure 2). Using

σ*SI in lieu of σ and SI separately improves model performance

(AUROC 0.7627 [0.7594, 0.7659] vs. 0.7451 [0.7416, 0.7486], p <
0.0001; AP 0.6156 [0.6105, 0.6207] vs. 0.5936 [0.5882, 0.599], p <
0.0001) (Tables 5, 6, row 8).

4.5 Disease subtypes can be described by
parameter estimates

Differences in pre-operative insulin sensitivity (SI) and

maximal insulin secretion capacity (σ) estimates were seen

between outcome groups when estimated both with and

without measured insulin (p < 0.05, Figure 2 and Table 4).

Regardless of a patient’s pre-operative glycemic status, SI
better distinguished those patients who would have post-

operative impaired glucose metabolism (IGM) compared to

either σ or σ*SI (Figure 2).

Those with post-operative IGM tended to have lower

baseline SI and σ values compared to those without it,

demonstrating that both may contribute to a patient’s disease,

although not necessarily equally. Additionally, those with post-

operative IGM had higher pre-operative HbA1c, G30, G60, and

G120 and I120 values (p < 0.05, Table 3). This may reflect defects in

second phase insulin secretion, which is associated with decreases

in insulin secretion capacity (Ha and Sherman, 2020). Notably,

σ*SI and SI values were not correlated with baseline BMI values,

demonstrating a seeming disconnect between whole-body

adiposity and insulin sensitivity (not shown). Other

physiologic parameters that were not estimated using data

assimilation in this study, such as insulin secretion rate (ISR)

and hepatic insulin sensitivity (hepaSI), may reveal other disease

phenotypes and patient characterizations that could be explored

in future work.

4.6 Fixed mechanistic model parameters
may differ between adolescents and
adults

Not all parameters in the mechanistic models can be

estimated simultaneously. All models have potential

limitations in generalizability beyond the populations studied

during initial development. Use of fixed parameters with values

derived from clinical studies in adults may not optimally estimate

parameters during pubertal states, where hormonal crosstalk

greatly influences energy homeostasis. For example,

adolescence is marked by a drastic decrease in insulin

sensitivity independent of adiposity; euglycemia is achieved by

a compensatory and proportional increase in insulin secretion

(Hannon et al., 2006). Insulin secretion rates will therefore be

elevated in this age group compared to their adult counterparts,

and estimated parameter bounds may differ considerably.

Other parameters which may be relatively constant in

adulthood might be more dynamic in adolescents. Obesity

and age impact β cell mass and proliferation, which were set

as fixed components of these mechanistic models (Saisho et al.,

2013; Michaliszyn et al., 2014). The fasting value of γ,
representing the K+-ATP channel density on the β cells, was

set to its example value of –0.076 (Sherman, 2022). However, γ
plays an important role in regulating β cell physiology and

glucose-mediated insulin secretion. Not properly tuning the

fasting value of γ may adversely affect the estimates of the

parameters regulating β cell physiology such as maximal

insulin secretion capacity (σ) and insulin priming rate (r2
0).

These effects likely reduced the prediction capabilities of our

estimates.

Finally, the assumption that estimates based on the 120-min-

OGTT approximate parameters as they would be estimated by a

hyperinsulinemic euglycemic clamp may be violated in

adolescents. Recently, validation of the oral minimal model in

adolescents showed that the 120-min-OGTT underestimates

insulin sensitivity compared to longer OGTTs, which is not

the case for adults (Bartlette et al., 2021). Complicating this

suboptimal approximation is the erratic behavior of OGTT

measurements, even in euglycemic patients. Glucose and

insulin assays can be imprecise, particularly in periods where

glucose and insulin are changing rapidly (i.e., after a meal), and

removing spurious OGTT measurements can improve

performance (Abohtyra et al., 2022).

4.7 Binary classification of outcomes
obscures a heterogenous population

Because of the relatively rare frequency of overt diabetes pre-

operatively and varying sensitivity of common measurements in

adolescents, the post-operative glucose metabolism outcome was

coded as a binary variable: normal glucose metabolism (NGM) or
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impaired glucose metabolism (IGM). However, there are likely

multiple sub-phenotypes present in these groups, which would

negatively impact prediction models.

Though the diagnostic threshold for T2DM is HbA1c ≥ 6.5%,

we used HbA1c ≥ 5.7%, the threshold for preDM, to indicate any

IGM to improve sensitivity for detecting T2DM in adolescents

(Nowicka et al., 2011). The exact interpretation of HbA1c must

be considered along with an individual’s hemoglobin

concentration and structure (Radin, 2014). In particular,

studies have shown that traditional HbA1c thresholds for

T2DM (≥ 6.5%) are imperfect for diagnosis in adults and may

significantly underestimate the prevalence of T2DM in

adolescents (Nowicka et al., 2011; American Diabetes

Association Professional Practice Committee Draznin et al.,

2022). Furthermore, given the frequency of anemia in

bariatric surgery patients, HbA1c may misrepresent average

blood glucose levels and thus, normal values are insufficient

to exclude IGM phenotypes. As such, HbA1c was used as a

feature in a logistic regression rather than as the outcome in a

linear regression.

All patients were included for analysis regardless of pre-

operative IGM status. Notably, neither hyperinsulinism nor

insulin resistance were used to code IGM. As insulin

resistance is tightly coupled with visceral adiposity, the

likelihood that all patients had insulin resistance as the only

manifestation of their IGM phenotype is high; this is supported

by the lower SI values and elevated HOMA-IR calculations of

patients at baseline (Kahn and Flier, 2000; Stern et al., 2005).

Nonetheless, the decision to focus on glucose rather than insulin

perturbations in outcome labeling likely impaired the ability of

our models to identify those with IGM-like phenotypes post-

operatively, particularly as the outcome is not granular enough to

distinguish this heterogenous population.

4.8 Limitations

4.8.1 Small sample size
Our methods were hindered by a small, imbalanced, and

homogenous sample from a single institution. In addition to

increasing sample size by using incomplete OGTT data, future

work could address class imbalance by under sampling the

majority class or removing redundant information. Our

sample size relative to features was exacerbated by patient

attrition, likely not at random.

4.8.2 Bias in clinical measures
Our cohort is more diverse with respect to ethnicity and

race compared to previously reported studies, which may

impact the ability of a model to predict outcomes when using

estimators such as HbA1c. Race differences in outcomes

have been seen in other studies and have been attributed to

poor calibration of models or measurements across

heterogenous populations (Wallace et al., 2004; Olson

et al., 2010; Tharakan et al., 2017). However, race

differences between Black and white adolescents have also

been noted in hyperinsulinemic-euglycemic clamp studies,

so the true difference in T2DM development is still unclear

(Michaliszyn et al., 2017).

4.8.3 Complexity and validation of electronic
health records

Our study did not occur in the context of a clinical trial and

is subject to the constraints of EHR data. The most effective use

of EHR data applies knowledge of how data are inputted into the

system while also understanding the underlying medical

decision making process. Improper automatic encoding of

features or outcomes could have negatively impacted our

models’ predictive abilities. In the case of our analyses,

features such comorbidities and drug information are less

reliable than laboratory values, and awareness of missing data

is not guaranteed—that is, the EHR datasets are not complete

(Weiskopf et al., 2013). For example, formal diagnoses of

obesity-related liver diseases (i.e., NAFLD and NASH) use a

liver biopsy to confirm pathology, which can be done while a

patient is undergoing bariatric surgery. However, the diagnosis

codes for suspected liver disease may not be reflected in the EHR,

and if they are inputted, they are done so irregularly. This was

the case in our patient sample, where many of the comorbidities

were mentioned within the patient assessment and/or radiology

impressions of notes, but not listed as a visit-associated diagnosis

code frequently enough to be marked as present by our criteria.

Relatedly, medication data are sparse and often inaccurate, with

unreliable start and stop dates. Diet information, which is

undoubtedly important in this context, is not typically

represented at all in structured datasets. Information about

mental health and psychiatric comorbidities is intentionally

difficult to access for secondary use, and social stigmas

surrounding mental health reduce confidence that, absent

documentation, no comorbidities are present. Similarly, social

determinants of health such as food insecurity, exposure to

discrimination, and exposure to adverse childhood events are

not captured in this dataset. Compounding these limitations are

existing health disparities in access bariatric surgery, leading to

selection bias (Tsui et al., 2021).

Manual chart review is the gold standard for extracting

clinical information, but this is time intensive and subject to

human error. It also cannot account for truly missing

information. As this relates to our methods, to avoid

misclassifying patients with post-operative IGM, we erred on

the side of underestimating the proportion of patients with

specific comorbidities by requiring at least 25% of encounters

to contain the relevant diagnosis codes and structured

documentation of medications. This may have classified

patients as not having IGM post-operatively when in fact they

did have some impaired metabolism.
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4.8.4 Limitations related to the use of
mechanistic models

The use of mechanistic models and oridnary differential

equations inherently limits the number of parameters that can

be estimated concurrently. Combined with the limitations related

to our retrospective, observational analysis, we are limited in our

ability to verify the estimated values with respect to a patient’s

true physiology. There are several physiologic estimates from

data assimilation that could be of use clinically, such as pre-

hepatic insulin secretion rate (ISR) or hepatic insulin sensitivity

(hepaSI). Both ISR and hepaSI are difficult to capture clinically,

and estimation using OGTTs is complex (Cauter et al., 1992;

Kjems et al., 2000). However, our choices to estimate maximal

insulin secretion capacity (σ) and insulin sensitivity (SI) limited

our ability to estimate other such important parameters.

Generally in our results, more information improved

predictions and model accuracy varied in a smooth and

logical way. While this does not prove that the ISR estimates

incorporated into σ are their true values, it demonstrates that

these imperfect features have potential utility in improving

patient-level predictions related to surgical outcomes.

Related to the limitations of mechanistic models, our

predictive models did not incorporate estimates of hepatic

insulin sensitivity (hepaSI) because hepaSI was necessarily fixed

in our equations to better estimate σ and SI. However, mismatch

between peripheral and hepatic insulin sensitivity may better

describe subgroups of adolescents with IGM compared to

peripheral insulin resistance alone, particularly in the setting

of physiologic pubertal insulin resistance (Hannon et al., 2006).

Future work should incorporate this critical component of

glucose-insulin metabolism into descriptions of patient

phenotypes.

Also absent in these models are the effects of circulating

incretins, i.e., glucagon-like peptide-1 (GLP-1) and glucose-

dependent insulinotropic polypeptide or gastric inhibitory

polypeptide (GIP). These gut-secreted, insulinotropic

hormones are implicated as one potential therapeutic

mechanism of action in metabolic surgeries through their

actions on insulin secretion and hepatic insulin clearance

(Fetner et al., 2005; Hutch and Sandoval, 2017). Supporting

this is the general success of novel classes of anti-diabetic

drugs leveraging GLP-1 receptor agonists to manage T2DM

and obesity in adults and adolescents (Kelly et al., 2020).

However, GLP-1 and GIP are not directly represented in the

mechanistic models we used, nor is it currently feasible to directly

measure their levels in an outpatient clinical setting. Changes in

incretins are indirectly reflected in changes in maximal insulin

secretion capacity, σ, where increases in GLP-1 lead to increases

in σ through the exocytosis model (Ha and Sherman, 2020). If

these mechanistic models are employed to predict future

physiologic states on a longer time scale, it is critical to

include models which incorporate incretin effects to better

model post-surgical physiology.

4.9 Future directions

Our model could not capture all features to confidently

predict post-surgical glycemic states as a dichotomous

outcome despite an extensive collection of laboratory data.

We do not believe that these estimates should be broadly

disseminated to preclude or exclude patients from receiving

indicated care. Rather, with future validation, parameters like

σ and SI could inform expectations with respect to potential

outcomes. Patients intending to have their prediabetic or diabetic

states completely reversed should be informed of the possibility

that they may not completely resolve with surgery alone.

Quantifying that uncertainty may be accomplished using

models like the ones described here. By providing more

informed consent, we hope that more patients will be able to

have meaningful discussions with their care teams to improve

long-term surgical outcomes.

Future studies can incorporate using more longitudinal data

to see the trends in insulin secretion capacity (σ) and insulin

sensitivity (SI) in the pre-, peri-, and post-operative periods.

Applying more granular outcome definitions on a continuous

scale may better capture patients who might improve in the

severity of their disease, but not sufficiently to resolve impaired

glucose metabolism. Alternatively, unsupervised machine

learning methods could be applied on a larger cohort of

patients to identify different pre-operative phenotypes.

Investigation into additional features that may improve

predictive performance can also inform future work. Focusing

on the direct effects of surgery itself may provide more insight

into patient outcomes, especially when certain surgeries (e.g.,

sleeve gastrectomy or RYGB) have larger metabolic impacts as

compared to relatively metabolically modest restrictive

procedures like gastric banding. Using models that directly

incorporate the effects of GLP-1 and its secretion in response

to glucose ingestion, such as that developed by De Gaetano et al.,

(De Gaetano et al., 2013) should be included in future work, as

should assessment of the change in GLP-1 secretion patterns

post-operatively. Prospective studies with larger sample sizes or

measurement of more stable insulin byproducts such as

C-peptide during OGTTs could improve model performance

both by adding a more specific feature and through improvement

of data assimilation estimates. Manual chart review can provide

information about pre- and post-operative anthropometrics to

better quantify adiposity. Alternatively, methods to estimate fat-

free body mass using more readily available clinical data could be

explored. Inclusion of other candidate biomarkers associated

with glucose and insulin metabolism such as incretins, growth

factors, inflammatory markers, and carrier proteins could be

added. Variables related to behaviors (including diet), mental

health, and social determinants of health should also be included

in future studies attempting prediction in this same population.

This research is a starting point for further investigation

into the use of mechanistic models and data assimilation
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applied to clinical problems. In addition to application of

similar techniques to clinical problems outside of prediction,

research focusing on solving strategies with sparse or

irregularly sampled clinical data could provide robust and

reliable methods for future studies.

5 Conclusion

We demonstrate that data assimilation captures predictive

information about glucose metabolism that is not readily

apparent from OGTT measurements alone. Further, we

validated that our chosen mechanistic model does not add

any additional information than it is meant to represent. The

clinical variables combined with the product of maximal insulin

secretion capacity and insulin sensitivity, σ*S1, produced the

best-performing model with AUROC = 0.77 and average

precision = 0.6258. This model was nominally better than one

using clinical variables alone with AUROC = 0.7655, but the

difference was not significant at p = 0.07. In some cases, using the

individual components of insulin secretion capacity (σ) and

insulin sensitivity (SI) along with their product reduced

prediction model performance.

Looking at whether insulin measurement can be replaced by

data assimilation, we found that the model using clinical

variables with insulin (AUROC = 0.7655) performed better

than the models using clinical variables without insulin but

combined with σ*SI (AUROC = 0.7511, p < 0.001). We also

found, however, that the difference was small and non-inferior at

98.5%, implying that similar performance can be achieved even

without insulin measurements.

If we limit our model inputs to OGTT glucose and insulin

values, we found adding data assimilation estimates of insulin

secretion capacity and insulin sensitivity (σ, SI, and σ*S)
significantly increased performance (p < 0.001). Models

using σ*SI alone, estimated without insulin, performed

marginally better than models using OGTT glucose and

insulin with respect to AUROC (0.7380 vs. 0.7337, p =

0.08) and had significant improvements in average

precision (0.5990 vs. 0.5695, p < 0.001).

While data assimilation alone does not significantly

improve prediction ability compared to a maximal dataset,

the separation of parameter distributions may provide insight

into how underlying physiologic processes contribute to a

patient’s disease. In this adolescent cohort, low insulin

sensitivity and low maximal insulin secretion capacity

distinguish those patients who are less likely to see

glycemic benefits from bariatric surgery. While knowing

the extent to which defects in glucose-insulin metabolism

contribute to disease is not sufficient to confidently predict

surgical outcomes, future research can leverage mechanistic

models to infer a patient’s physiology even when certain data

are absent.
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