AUTHOR=Arciero Paul J. , Ives Stephen J. , Mohr Alex E. , Robinson Nathaniel , Escudero Daniela , Robinson Jake , Rose Kayla , Minicucci Olivia , O’Brien Gabriel , Curran Kathryn , Miller Vincent J. , He Feng , Norton Chelsea , Paul Maia , Sheridan Caitlin , Beard Sheriden , Centore Jessica , Dudar Monique , Ehnstrom Katy , Hoyte Dakembay , Mak Heather , Yarde Aaliyah
TITLE=Morning Exercise Reduces Abdominal Fat and Blood Pressure in Women; Evening Exercise Increases Muscular Performance in Women and Lowers Blood Pressure in Men
JOURNAL=Frontiers in Physiology
VOLUME=13
YEAR=2022
URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.893783
DOI=10.3389/fphys.2022.893783
ISSN=1664-042X
ABSTRACT=
The ideal exercise time of day (ETOD) remains elusive regarding simultaneous effects on health and performance outcomes, especially in women.
Purpose: Given known sex differences in response to exercise training, this study quantified health and performance outcomes in separate cohorts of women and men adhering to different ETOD.
Methods: Thirty exercise-trained women (BMI = 24 ± 3 kg/m2; 42 ± 8 years) and twenty-six men (BMI = 25.5 ± 3 kg/m2; 45 ± 8 years) were randomized to multimodal ETOD in the morning (0600–0800 h, AM) or evening (1830–2030 h, PM) for 12 weeks and analyzed as separate cohorts. Baseline (week 0) and post (week 12) muscular strength (1-RM bench/leg press), endurance (sit-ups/push-ups) and power (squat jumps, SJ; bench throws, BT), body composition (iDXA; fat mass, FM; abdominal fat, Abfat), systolic/diastolic blood pressure (BP), respiratory exchange ratio (RER), profile of mood states (POMS), and dietary intake were assessed.
Results: Twenty-seven women and twenty men completed the 12-week intervention. No differences at baseline existed between groups (AM vs PM) for both women and men cohorts. In women, significant interactions (p < 0.05) existed for 1RM bench (8 ± 2 vs 12 ± 2, ∆kg), pushups (9 ± 1 vs 13 ± 2, ∆reps), BT (10 ± 6 vs 45 ± 28, ∆watts), SJ (135 ± 6 vs 39 ± 8, ∆watts), fat mass (−1.0 ± 0.2 vs −0.3 ± 0.2, ∆kg), Abfat (−2.6 ± 0.3 vs −0.9 ± 0.5, ∆kg), diastolic (−10 ± 1 vs−5 ± 5, ∆mmHg) and systolic (−12.5 ± 2.7 vs 2.3 ± 3, mmHg) BP, AM vs PM, respectively. In men, significant interactions (p < 0.05) existed for systolic BP (−3.5 ± 2.6 vs −14.9 ± 5.1, ∆mmHg), RER (−0.01 ± 0.01 vs −0.06 ± 0.01, ∆VCO2/VO2), and fatigue (−0.8 ± 2 vs −5.9 ± 2, ∆mm), AM vs PM, respectively. Macronutrient intake was similar among AM and PM groups.
Conclusion: Morning exercise (AM) reduced abdominal fat and blood pressure and evening exercise (PM) enhanced muscular performance in the women cohort. In the men cohort, PM increased fat oxidation and reduced systolic BP and fatigue. Thus, ETOD may be important to optimize individual exercise-induced health and performance outcomes in physically active individuals and may be independent of macronutrient intake.