AUTHOR=Xiao Qian , Güntürkün Onur TITLE=“Prefrontal” Neuronal Foundations of Visual Asymmetries in Pigeons JOURNAL=Frontiers in Physiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.882597 DOI=10.3389/fphys.2022.882597 ISSN=1664-042X ABSTRACT=

This study was conducted in order to reveal the possibly lateralized processes in the avian nidopallium caudolaterale (NCL), a functional analogue to the mammalian prefrontal cortex, during a color discrimination task. Pigeons are known to be visually lateralized with a superiority of the left hemisphere/right eye for visual feature discriminations. While animals were working on a color discrimination task, we recorded single visuomotor neurons in left and right NCL. As expected, pigeons learned faster and responded more quickly when seeing the stimuli with their right eyes. Our electrophysiological recordings discovered several neuronal properties of NCL neurons that possibly contributed to this behavioral asymmetry. We found that the speed of stimulus encoding was identical between left and right NCL but action generation was different. Here, most left hemispheric NCL neurons reached their peak activities shortly before response execution. In contrast, the majority of right hemispheric neurons lagged behind and came too late to control the response. Thus, the left NCL dominated the animals’ behavior not by a higher efficacy of encoding, but by being faster in monopolizing the operant response. A further asymmetry concerned the hemisphere-specific integration of input from the contra- and ipsilateral eye. The left NCL was able to integrate and process visual input from the ipsilateral eye to a higher degree and thus achieved a more bilateral representation of two visual fields. We combine these novel findings with those from previous publications to come up with a working hypothesis that could explain how hemispheric asymmetries for visual feature discrimination in birds are realized by a sequential buildup of lateralized neuronal response properties in the avian forebrain.