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Management of the rice brown planthopperNilaparvata lugens Stål is challenging because
it can rapidly adapt to new pesticides within several generations. Combined use of
chemical insecticides and antimicrobials was proposed as an alternative strategy to
control N. lugens. Our previous experiments identified two effective agents (chemical
insecticide: pymetrozine and antimicrobial: zhongshengmycin) that act on different targets
in N. lugens. However, conditions and effectiveness of combinations of antimicrobials and
insecticides against N. lugens are still unknown. Here, we evaluated separate and
combined effects of pymetrozine and zhongshengmycin on third instar nymphs of N.
lugens under laboratory and greenhouse conditions. Results showed that
zhongshengmycin exerts significant inhibitory effects on the three endosymbionts
Pichia guilliermondii, Cryptococcus peneaus, and Pichia anomala cultured in vitro of N.
lugens. Combinations of pymetrozine and zhongshengmycin under laboratory conditions
produced additive or synergistic effects on N. lugens and caused higher mortality in third
instar nymphs than either of them used alone. Experiments under greenhouse conditions
further demonstrated that effective component quality ratio of pymetrozine to
zhongshengmycin of 1:10 and 1:40 with co-toxicity coefficients of 221.63 and 672.87,
respectively, also produced significant synergistic effects against N. lugens. Our results
indicated that chemical insecticides combined with antimicrobials may provide a potential
novel strategy for controlling N. lugens by inhibiting its endosymbionts.
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1 INTRODUCTION

The brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a migratory and
monophagous destructive pest of rice herbivore (Cheng et al., 2013). N. lugens obtains necessary
nutrients from phloem sap of rice plant leaf sheath, causes indirect damage to rice plants through
transmission of plant viruses in South and East Asia rice cultivation regions, and results in major
yield reduction and economic losses (Garrood et al., 2016; Yang et al., 2017). Although chemical
pesticides are still the main control strategy for N. lugens, this approach inevitably leads to the
development of insecticide resistance, insect resurgence, and toxicity to natural enemies (Hu et al.,
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2014). Moreover, the time for N. lugens to develop resistance to
common agents has remarkably reduced due to extensive and
irregular use of chemical insecticides.

Therefore, developing increasingly effective control methods
for the integrated management of N. lugens, which is closely
related to people’s livelihood and environmental protection, is
important. As it is known to us, endosymbionts include fungi and
bacteria are ubiquitous in insects (Li et al., 2016). Endosymbionts
have evolved from an organism into a kind of organelle-like
structure in the long process of coevolution. A large number of
studies have shown that N. lugens and endosymbionts form a
stable mutualistic symbiosis, mutual dependence, and influence
relationship due to their irreplaceable functional requirements
(Sapp, 2002). Previous studies on endosymbionts of N. lugens
mainly focused on diversity and dynamics of microbial
communities at different developmental stages or feeding on
different resistant rice varieties and their role in mediating
host resistance (Cai et al., 2020; Jin et al., 2021; Zhang et al.,
2021). Synergy effect of antimicrobials and insecticides on N.
lugens population should be further explored given the close
relationship between N. lugens and endosymbionts. The entire
genome sequencing of N. lugens and its endosymbionts revealed
that complementarity of three genomes with regard to nutritional
pathways, including essential amino acid and steroid biosynthesis
by the fungal symbiont and vitamin B supplementation by the
bacterial symbiont, enables N. lugens to thrive on a low-nutrient
diet provided solely by rice (Xue et al., 2014; Shi et al., 2021). The
3D reconstruction of N. lugens indicated that three structurally
different endosymbionts, namely, yeast-like symbionts (YLSs),
thread-, and rod-like bacterial symbionts, residing in fat body
mycetocytes or midgut account for more than 22% of the
abdominal volume of N. lugens (Song et al., 2021; Wang et al.,
2021). Hence, endosymbionts are vital to the growth of N. lugens
and may be potential targets of pest control.

Pymetrozine, a representative of pyridine azomethine
compounds, is a chemical insecticide that exerts a significant
control effect on specific species of stinging and sucking pest
(Maienfisch et al., 2012; Li et al., 2021). Pymetrozine can be used
to control aphids, leafhoppers, Bemisia tabacis, and rice
planthoppers due to its high selectivity while showing safety to
biological natural enemies of rice planthoppers, such as spiders
and Anagrus nilaparvataes, during the control process (Preetha
et al., 2010; Lin et al., 2021). The resistance of N. lugens to
pymetrozine, sulfoxaflflor, nitenpyram, ect chemical insecticides
has increased evidently in recent years (Liao et al., 2019; Zhang
et al., 2021). Some field populations of N. lugens in China still
remained susceptible to pymetrozine in 2010, but the resistance
increased to medium or high levels in 2011 and 2012 (Zhang
et al., 2014). The trend of increasing pymetrozine resistance was
associated with irrational use of insecticide doses against rice
planthoppers by managers and over-reliance on the use of
chemical insecticides, such as pymetrozine, in Southeast Asia
given that rice planthoppers in China typically migrate from
Southeast Asia (Wang et al., 2013). Exploring improved methods
for controlling and managing rice planthoppers is urgently
necessary to avoid resistance development of N. lugens to
additional types of chemical insecticides.

Zhongshengmycin is a broad-spectrum agro-antibiotic that
has been investigated and developed in 1996 and demonstrated
satisfactory effects on preventing and controlling crop pathogenic
microorganisms, such as Xanthomonas campestris, Erwinia
carotovora, Piricularia oryzae, Pseudomonas solanacearum, and
Physalospora piricola (Xie et al., 1990; Zhao et al., 1993; Jiang
et al., 1997). Zhongshengmycin works by interrupting the
synthesis of protein peptide bonds of pathogenic
microorganisms to inhibit the growth of bacteria, fungal
mycelium, and spore germination (Yao et al., 2019). The
successful exploitation of zhongshengmycin has replaced the
use of some conventional chemical pesticides to a certain
extent and presented high potential for common usage and
application (Lin et al., 1991; Zhang et al., 1998). Therefore, the
synergistic use of agro-antibiotics and chemical insecticides is an
important strategy for pest control by inhibiting different targets,
microbial endosymbionts and insects, respectively (Singh et al.,
2016). Previous studies showed that the combination of
pymetrozine and buprofezin 25% suspending agent is effective
against Sogatella furcifera and N. lugens at the nymphal stage
(Xing et al., 2011). Moreover, toxicity tests indicated that
mixtures of imidacloprid and ethofenprox as well as
thiamethoxam and ethofenprox exert excellent synergistic
effects on N. lugens (Yu et al., 2015). The interaction between
amitraz and malathion on Aphis gossypii presents a synergistic
effect at all concentrations (Shojaei et al., 2018). Furthermore, a
significant synergistic effect was observed when the mixture of
destruxins and botanical insecticide rotenone was used at a
concentration ratio of 9:1 in A. gossypii control (Yi et al.,
2012). Accordingly, antimicrobials mixed with chemical agents
may be a valuable strategy for pest control and provide an
effective way of reducing the amount of chemical pesticides
applied to crops while retarding resistance development of
pests. The utilization of appropriately selected insecticides in
association with antimicrobials can inhibit endosymbiont growth
and result in synergistic and additive effects on N. lugens control.

Thus, we hypothesized in the present study that the
combination of pymetrozine and zhongshengmycin at
different concentration ratios may be effective against N.
lugens. Our objective was to test whether combined effects of
pymetrozine and zhongshengmycin were synergistic, additive, or
antagonistic on N. lugens and obtain the optimal combination
ratio of the mixture for the control of N. lugens. Furthermore, the
optimal combination was used to test the mortality of N. lugens
third instar nymphs under greenhouse conditions.

2 MATERIALS AND METHODS

2.1 Insect and Antimicrobials
The rice variety used in this study was the susceptible strain TN1.
Rice seeds were sown in the artificial climate room, and N. lugens
was raised from rice seedlings in the tillering period. The N.
lugens population used in this study was initially collected from
rice fields in Hangzhou, China (continuously cultivated for more
than ten generations under greenhouse conditions). Insects were
reared on TN1 rice seedlings in an artificial climate chamber
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under conditions of 26 ± 1°C, relative humidity of 70%–80%,
continuous 16 h light/8 h dark photoperiod, and nonexposure to
any insecticide. Pymetrozine [96.6% active ingredient (a.i.) w/w]
was purchased from Jiangsu Weunite Fine Co., Ltd.
Zhongshengmycin (12% a.i. w/w) was provided by Fujian Kaili
Biotechnology Co., Ltd. Tebuconazole (97% a.i. w/w) was
obtained from Udragon Chemical Co., Ltd. N,
N-Dimethylformamide (99.9%) was supplied by Shanghai
Aladdin Bio-Chem Technology Co., Ltd.

2.2 Inhibitory Effect of Antimicrobials on
Yeast-Like Symbionts
Pichia guilliermondii, Cryptococcus peneaus, and P. anomala
strains were originally isolated from the fat body of N. lugens
and preserved in Zhejiang Provincial Key Laboratory of
Biometrology and Inspection and Quarantine. These isolates
were activated in a plate of potato dextrose agar (PDA; 200 g
of potato, 20 g of dextrose, and 20 g of agar in 1 L of distilled
water) at 28°C ± 1°C. YLS suspensions were prepared by scraping
YLS from the surface of the culture medium into a sterile PD
solution (PD, 200 g of potato and 20 g of dextrose in 1 L of
distilled water). Inhibitory effects of antimicrobials were
determined by spreading YLS suspensions onto PDA plates
containing various antimicrobial concentrations, followed by
incubation at 28°C for an indicated duration.

2.3 Toxicity of Antimicrobials and
Insecticides to N. lugens
Indoor toxicity testing of third instar nymphs of N. lugens was
performed using rice seedling dip method (Ban et al., 2012;
Liao et al., 2017). LC50 values of pymetrozine and
zhongshengmycin against third instar nymphs were
determined with a technical regulation method described
previously [NY/T 1708-2009 technological rules for
monitoring insecticide resistance in the rice brown
planthopper Nilaparvata lugens (Stål)]. First, rice plants at
the tillering stage were cut to a height of 10 cm. Second, three
stems of rice plants were dipped into a plastic cup (10 cm in
diameter and 18 cm in height) with a series of diluted
solutions of pymetrozine and zhongshengmycin for 30 s
and then placed rice stems in another test cup after air
dried in the room temperature. Each insecticide or
antimicrobial was diluted in six concentrations. Controls
were treated with 0.1% Tween 80 water solution instead of
the insecticide solution. Third, 20 third instar nymphs were
collected into the test cup with a homemade aspirator device.
All treatments were maintained at 26 ± 1°C and relative
humidity of 70%–80% with a photoperiod of 16:8 (L:D) h.
Each treatment was conducted in three independent
biological replicates. Mortality of insects was monitored
daily for 5 days after exposure. Nymphs were considered
dead when they failed to move after prodding gently with
a fine brush.

2.4 Screening of the Compound Proportion
of Pymetrozine and Zhongshengmycin
On the basis of the toxicity bioassay and results of Wu and Si
(2006), the toxic effect of different proportions of pymetrozine
and zhongshengmycin on N. lugens was measured in this
experiment. The synergistic prescription was selected
according to laboratory experiments via interactive
measurement. According to the results of medial lethal
concentrations and toxicity measurement of pymetrozine and
zhongshengmycin, toxic effect ratios of the two agents were set
using 11 concentration gradients to determine the optimal
compound proportion. 30 third instar nymphs were tested at
each treatment concentration. Each treatment was conducted in
three independent biological replicates. Expected mortality and
toxic effect ratio are expressed as follows:

Expected mortality = Ma × the volume proportion of agent A
in the mixture + Mb × the volume proportion of agent B in the
mixture.

Note: Ma: the observed mortality caused by agent A alone.
Mb: the observed mortality caused by agent B alone.
The concertration of agent A and agent B were both LC50

(median lethal concentration) on test insects

Toxic effect ratio � Observed Mortality
Expected Mortality

2.5 Determining the Co-Toxicity Coefficient
of Pymetrozine and Zhongshengmycin
Compound
On the basis of the toxic effect ratio results, combinations with a
toxic effect ratio greater than 1.25 were selected to show a
synergistic effect for the determination of the co-toxicity
coefficient of the optimal combination. Antagonism exists
when the toxic effect ratio was less than 0.75. An additive
effect was observed when the toxic effect ratio was
approximately equal to 1.00. Experiments were conducted
according to the procedure in Section 2.3. Each concentration
treatment was repeated three times. Insect mortalities were
recorded after 120 h. The co-toxicity coefficient, toxicity
regression curve and its standard error, LC50 value, and
confidence interval of 95% were determined on the basis of
standard probit analysis via DPS 7.05. Toxicity index, actual
toxicity index, theoretical toxicity index, and cotoxicity coefficient
can be expressed as follows:

Toxicity index (TI) of single agent
� LC50 of standard insecticide

LC50 of single agent for testing
× 100

Actual toxicity index(ATI) of mixture(A+B)

� LC50 of standard insecticide
LC50 of mixture(A + B) × 100

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8756103

Zhao et al. Synergistic Control of Nilaparvata lugens

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Theoretical toxicity index (TTI) of mixture (A+B) = TIA×mass
percentage of agent A in the mixture + TIB×mass percentage of
agent B in the mixture.

Cotoxicity coefficient (CTC) � ATI (A + B)
TTI (A + B) × 100.

Note: standard insecticide: the single agent with a larger LC50

was used as the standard insecticide, and its toxicity index was
regarded as 100.

TIA: toxicity index of agent A

TIB: toxicity index of agent B

ATI(A+B): actual toxicity index of mixture(A+B)
TTI (A+B): theoretical toxicity index of mixture(A+B)

2.6 Data Analysis
Bioassay data were analyzed with DPS 7.05. Mortality data were
corrected using the control mortality of Abbott’s formula
(Richard and Arthur, 1985). LC50 values, 95% confidence
intervals (CI), slopes of regression lines, standard errors, and
other relevant data were estimated via probit analysis (Finney,
1971). Treatment effects on mortality levels were assessed using
one-way ANOVA. Differences between treatments were deemed
significant when p < 0.05. A synergistic effect exists between the
two pesticides when the toxic effect ratio of measured insecticides

was greater than 1.25. Antagonism exists when the toxic effect
ratio was less than 0.75. An additive effect exists when the toxic
effect ratio was approximately equal to 1.00. The proportion of
compounding agents with a toxic effect ratio greater than 1.25
was selected for indoor toxicity determination, and the toxicity
regression curve and LC50 value of the compound were further
obtained. The toxicity index of the single agent and theoretical
toxicity index, actual toxicity index, and co-toxicity coefficient of
the compound were calculated using the method of Sun Yun-pei
(Sun and Johnson, 1960). Compounding agents were mutually
synergistic when the cotoxicity coefficient was greater than 120.
The interaction was additive when the cotoxicity coefficient was
between 80 and 120. An antagonistic effect was observed when
the cotoxicity coefficient was less than 80.

3 RESULTS

3.1 Inhibitory Effect of Different Fungicides
on the Yeast-Like Symbiont
Table 1 and Figure 1 showed the growth of P. guilliermondii, C.
peneaus, and P. anomala under different concentrations of
tebuconazole and zhongshengmycin on PDA medium. First, P.
guilliermondii, C. peneaus, and P. anomala all showed significant
growth on the PDA control plate but negative on two kinds of
PDA plates with concentrations of 1 μg/L tebuconazole or

TABLE 1 | Inhibitory effect of different antimicrobials on YLS isolated from Nilaparvata lugens.

Antimicrobials Pichia guilliermondii Cryptococcus peneaus Pichia anomala

Concentration (μg/L) 0 0.01 0.1 1.0 0 0.01 0.1 1.0 0 0.01 0.1 1.0
Tebuconazole +++ + + − +++ + + − +++ + ++ −

Zhongshengmycin +++ ++ − − +++ − − − +++ + − −

+++: Vast growth, ++: Major growth, +: Minimal growth, and −: Negative growth.

FIGURE 1 | The growth of YLSs isolated from Nilaparvata lugens at different concentrations of antimicrobials. (A) Tebuconazole; (B) Zhongshengmycin.
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zhongshengmycin. Second, P. guilliermondii and C. peneaus
presented a small amount of growth on the PDA plate with
0.01 and 0.1 μg/L of tebuconazole. Third, P. guilliermondii, C.
peneaus, and P. anomala demonstrated major, negative and
minimal growth on the PDA plate with 0.01 μg/L of
zhongshengmycin, respectively. No or nearly no growth was
observed on PDA plates with 0.1 μg/L of zhongshengmycin.

Different concentrations of Zhongshengmycin generally
demonstrated better inhibition effect on P. guilliermondii, C.
peneaus, and P. anomala than those of tebuconazole.
Therefore, Zhongshengmycin may present optimal efficiency
in controlling N. lugens by inhibiting its endosymbionts.

3.2 Median Lethal Concentration of
Pymetrozine and Zhongshengmycin
As shown in Table 2, pymetrozine and zhongshengmycin present
high biological activity to third instar nymphs and the
relationship between nymph mortality and insecticide
concentration is clearly described through the probit model.
Estimated LC50 values of pymetrozine and zhongshengmycin
for third instar nymphs of N. lugens were 3.80 (95% confidence
interval: 1.84–7.85 mg/L) and 152.61 (95% confidence interval:
45.34–513.70 mg/L) mg/L while LC95 values were estimated at
113.04 (95% confidence interval: 38.73–329.94 mg/L) and 895.00

(95% confidence interval: 262.10–3056.18 mg/L) mg/L,
respectively, at 5 days after application.

3.3 Effect of Interaction Between
Pymetrozine and Zhongshengmycin
The proportion screening of pymetrozine and zhongshengmycin
in the mixture was carried out through toxic effect ratio (Table 3).
The combination of pymetrozine and zhongshengmycin
demonstrated a synergistic effect on third instar nymphs, with
toxic effect ratios of 1.28 and 1.29, respectively, in groups 3 and 6.
Groups 2, 4, 5, 7, 8, 9, and 10 showed additive effects with the
toxic effect ratio between 1 and 1.25. Hence, combinations of
pymetrozine and zhongshengmycin targeting third-instar
nymphs of N. lugens showed synergistic and additive effects
without antagonism. The mortality of all combination
treatments was higher than that of individual treatments with
zhongshengmycin alone; when compared with pymetrozine
alone, the mortality of the combination treatments was
partially higher than that of the individual treatments. The
treatment results showed that at some ratio of combination
with zhongshengmycin and pymetrozine had better control
effect than that of zhongshengmycin or pymetrozine alone.
Overall, these findings indicated that combinations of
pymetrozine and zhongshengmycin increase the mortality of

TABLE 2 | Median lethal concentrations of pymetrozine and zhongshengmycin on third instar nymphs of Nilaparvata lugens.

Antimicrobials Probit equation Standard error χ2 (df) LC50 value
mg ai/L
(95% CI)

LC95 value
mg ai/L
(95% CI)

p value

96.6% Pymetrozine Y = 4.3532 + 1.1161x 0.17 0.24 (8) 3.80 (1.84 − 7.85) 113.04 (38.73 − 329.94) 0.0076
12% Zhongshengmycin Y = 0.3247 + 2.1411x 0.55 1.28 (8) 152.61 (45.34 − 513.70) 895.00 (262.10 − 3056.18) 0.0295

TABLE 3 | Interactions between pymetrozine and zhongshengmycin against third instar nymphs of Nilaparvata lugens 5 days after treatment.

Treatment Py:Zs Number Death numbera Observed mortality
(%)±SE

Expected mortalityb

(%)
Toxic effect
ratioc (120 h)

1 100:0 30 20 66.67 ± 0.27a,b,c,d

2 90:10 30 23 76.67 ± 0.09a,b 64.67 1.19
3 80:20 30 24 80.00 ± 0.13a 62.67 1.28
4 70:30 30 21 70.00 ± 0.22a,b,c 60.67 1.15
5 60:40 30 18 60.00 ± 0.39c,d,e 58.67 1.02
6 50:50 30 22 73.33 ± 0.11a,b,c 56.67 1.29
7 40:60 30 18 60.00 ± 0.42b,c,d,e 54.67 1.10
8 30:70 30 17 56.67 ± 0.38c,d,e 52.67 1.08
9 20:80 30 18 60.00 ± 0.17b,c,d,e 50.67 1.18
10 10:90 30 15 50.00 ± 0.42d,e 48.67 1.03
11 0:100 30 14 46.67 ± 0.27e

12 CK 30 0 0f

Note：Py, Pymetrozine and Zs, Zhongshengmycin (The ratio of Py:Zs represent volume ratio).
aMean values of three replicates of the experiment. Different lowercase letters indicate significant differences among different treatments in the same day after application (p < 0.05, Tukey’s
LSD test).
bExpected mortality = Ma × the volume proportion of agent A in the mixture + Mb × the volume proportion of agent B in the mixture.
Ma: the observed mortality caused by agent A alone, Mb: the observed mortality caused by agent B alone, The concertration of agent A and agent B were both LC50 (median lethal
concentration) on test insects.
cToxic effect ratio = observed mortality/Expected Mortality.
Significant differences were indicated by different letters at p < 0.05.
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N. lugens. Furthermore, groups 3 and 6 with the synergistic effect
are selected for indoor toxicity determination through the
comparison of toxic effect ratios.

3.4 Combined Effects of Pymetrozine and
Zhongshengmycin Against N. lugens Under
Greenhouse Conditions
Tables 3, 4 indicate that the effective component quality ratio of
group 3 (pymetrozine:zhongshengmycin = 80:20) is the
combination of pymetrozine: zhongshengmycin = 1:10 for
laboratory toxicity determination. LC50 of the combination to
third instar nymphs was 15.1012 mg/L (95% confidence interval:
8.6673–26.3113 mg/L) and co-toxicity coefficient was 221.63 at
the effective component quality ratio of pymetrozine and
zhongshengmycin was 1:10. LC50 of the combination to third
instar nymphs was 11.6010 mg/L (95% confidence interval:
6.6270–20.3082 mg/L) and co-toxicity coefficient was 672.87 at
the effective component quality ratio of pymetrozine and
zhongshengmycin was 1:40. Co-toxicity coefficients of the two
combinations with different effective component quality ratios
were all greater than 120, thereby indicating the significant
synergistic effect. On the basis of these experimental results,
treatments with combinations of pymetrozine and
zhongshengmycin resulted in higher mortality and the
formation of a synergistic effect compared with treatments
with insecticide or fungicide alone.

4 DISCUSSION

Pymetrozine is one of the recommended alternative insecticides
for controlling N. lugens. However, N. lugens has become highly
resistant to pymetrozine (Liu et al., 2013; Zhu et al., 2020).
Combined effects of pymetrozine and an antimicrobial
(zhongshengmycin) on nymphs of N. lugens were investigated
in the present study to delay pymetrozine resistance development
and prolong the effective application of this insecticide. Our
findings indicated that all combined groups exert synergistic
or additive effects on the control of N. lugens. The mortality
of third-instar nymphs increased in the combinations treatment
of pymetrozine and zhongshengmycin, while compared with that
of the treatments used pymetrozine and zhongshengmycin alone.
Additionally, the effective component quality ratio of
pymetrozine and zhongshengmycin of 1:10 and 1:40 proved to
have significant synergistic effects against third instar nymphs

under greenhouse conditions by calculating the co-toxicity
coefficient. Compared with chemical insecticides, microbial
metabolites present characteristics of lower toxicity and lower
environmental pollution coefficient (Chen et al., 2009; Cao et al.,
2015). Therefore, the synergistic use of antimicrobials and
chemical insecticides is a safe, efficient, and potential approach
for pest management for presenting advantages of obvious
biocontrol effect and reduced use of chemical insecticides.

The use of alternative substances to chemical insecticides has
attracted considerable research interest due to its lowered risk to
the environment and human health and increased food safety.
Combinations of antimicrobials and insecticides can exhibit
synergistic, antagonistic, or additive effects on pests. For
example, combined application of Serratia marcescens S-JS1
with spirotetramat or thiamethoxam resulted in increased
effcacy against N. lugens under both laboratory and
greenhouse conditions (Niu et al., 2018). In addition, positive
synergistic interactions in combined treatments of pymetrozine
and thiamethoxam against N. lugens revealed that the controlling
effect of combined treatments on rice planthoppers is better than
that of the commercial insecticide 2.2% abamectin–imidacloprid
emulsifiable concentrate at comparable doses (Sadigh and Erhart,
2012). Willmott et al. (2013) reported that spinosad and
pymetrozine mixtures are clearly compatible and combination
index calculations showed that mixtures are synergistic against
western flower thrips. Cao et al. (2015) revealed that 70%
propineb and 50% tebuconazole+25% trifloxystrobin exert
evident inhibitory effects on P. anomala isolated from
Laodelphax striatellus in vitro and L. striatellus fed with
treated wheat seedlings show significantly higher mortality
than the control. Controlling N. lugens with fungicides has
been extensively investigated. For instance, injection of
propiconazole into N. lugens reduced not only fecundity of
insects but also significantly reduced the total number of YLS
and Hypomyces chrysospermus in hemolymph of insects. This
finding led to significantly higher mortality of N. lugens than that
of the control group. Survival and fecundity of N. lugens also
decreased significantly after feeding on susceptible species TN1
sprayed with propiconazole (Shentu et al., 2019). Moreover, high
mortlity of N. lugens due to the administration of 27%
toyocamycin + tetramycin P + tetrin B + tetramycin A, 0.01%
trichodermin, and 75% trifloxystrobin + tebuconazole WG
inhibited the YLS (Shentu et al., 2016). The application of
another fungicide jinggangmycin for controlling rice sheath
blight can successfully inhibit the reproduction of L. striatellus
and S. furcifera but also stimulate the reproduction of N. lugens

TABLE 4 |Determination of the cotoxicity coefficient of pymetrozine and zhongshengmycin on third instar nymphs ofN. lugens and statistical results of the adjustment to the
log-probit model under greenhouse condition.

Treatment (Py:Zs) Probit equation LC50 value
(mg ai/L)

LC50 value
mg ai/L
(95% CI)

p value r CTC

1:10 Y = 5.6708 + 0.3684x 15.1012 8.66–26.31 0.0039 0.9780 221.63
1:40 Y = 6.6181 + 0.8360x 11.6010 6.62–20.30 0.0028 0.9824 672.87

Py, pymetrozine; Zs, Zhongshengmycin; CTC, Cotoxicity coefficient.
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(Zhang et al., 2015; Ding et al., 2017). However, we provided a
new combined formulation of pymetrozine and
zhongshengmycin for N. lugens control. Our results have
showed that two combinations of pymetrozine and
zhongshengmycin at the effective component quality ratio of
1:10 and 1:40 have significant synergistic effects on the control of
N. lugens. The mixing ratio and resulting economic benefits
should be considered in practical applications given that the
two combined groups demonstrated significant synergistic effects
against N. lugens. Furthermore, reasons behind the ability of
combined pymetrozine with zhongshengmycin to produce
synergistic or additive effects on N. lugens are presented in the
following section.

Applying combinations of antimicrobials with insecticides
may improve not only the efficacy of agents but also provide a
potential strategy for reducing insecticide use in pest control
(Lacey et al., 2015). Zhongshengmycin exerted a significant
inhibitory effect on P. guilliermondii, C. peneaus, and P.
anomala, which were isolated from N. lugens within 1–3 days
of in vitro culture in the present study. We hypothesized that
zhongshengmycin can help control N. lugens by inhibiting
endosymbionts, which play a vital role in the growth,
development, and reproduction of their host insects. However,
difference may exist in the inhibitory effect on YLSs between in
vivo and in vitro cultures. Moreover, in vitro culturing of many
kinds of symbionts inN. lugens, including endosymbiotic bacteria
and YLSs, is impossible. Determining whether zhongshengmycin
exerts inhibitory effects on uncultured symbionts is challenging
from an evolutionary perspective because important symbionts
are difficult to culture in vitro. Therefore, the specific kind of YLS
in N. lugens inhibited by zhongshengmycin requires further
investigation.

In conclusion, our study emphasized the importance of
combining chemical insecticides with antimicrobials for the
control of N. lugens by inhibiting endosymbionts under both
laboratory and greenhouse conditions. We first screened out
zhongshengmycin, an antimicrobial with strong inhibitory
effect on YLS, in N. lugens. Then, we applied the combination
of zhongshengmycin and pymetrozine to prevent N. lugens and
verify that the increased mortality of N. lugens is caused by the
inhibitory effect of the combination on YLSs in N. lugens. The

results of this study addressed the efficacy gap of single agent
treatment in N. lugens control and improved the efficacy in
controlling N. lugens given that all test combinations produced
additive or synergistic effects. We also revealed that synergistic
and additive effects produced by the combinations of
zhongshengmycin and pymetrozine may vary depending on
their concentrations and types. This finding may provide an
effective option for reducing concentrations and doses of
chemical insecticides in the future. However, the exact
function of the compound in symbionts of N. lugens remains
unclear. We speculated that the function may be caused by the
change in endosymbionts. Hence, further investigations on the
number and function of these endosymbionts under different
chemical insecticides or antimicrobials are necessary to address
such problems. Understanding the effect of these chemical
insecticides or antimicrobials on endosymbionts of N. lugens
and using the combination of chemical insecticides and
antimicrobials can be an important treatment for integrated
pest management of N. lugens in the future.
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