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The ATP synthase is an essential multifunctional enzyme complex of mitochondria that
produces most of cellular ATP, shapes the structure of the inner membrane into cristae
and regulates the signals that control cell fate or demise. The ATPase Inhibitory Factor 1 (IF1)
functions in vivo as a physiological regulator of the ATP synthase and thereby controls
mitochondrial structure and function, and the retrograde signaling pathways that reprogram
nuclear gene expression. However, IF1 is not ubiquitously expressed in mammals, showing
tissue-restricted expression in humans andmice and large expression differences between the
two species in some tissues. Herein, we summarized key regulatory functions of IF1 for tissue
homeostasis, with special emphasis on the deleterious effects that its genetic ablation in
neurons has in learning. The development and characterization of tissue-specific mouse
models with regulated expression of IF1 will be crucial to disentangle the contribution of the
ATP synthase/IF1 axis in pathophysiology.
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INTRODUCTION

Mitochondria are highly dynamic organelles that play crucial metabolic functions in cellular
physiology, the control of intracellular signaling and cell fate (Eisner et al., 2018; Spinelli and
Haigis, 2018). The mitochondrial ATP synthase is bottleneck for energy provision because it
catalyzes the synthesis of most cellular ATP by oxidative phosphorylation (OXPHOS) under aerobic
conditions (Boyer, 1997; Walker, 2013). Moreover, the ATP synthase emerges as an essential hub
involved in shaping the structure of mitochondrial cristae (Kühlbrandt, 2019), the permeabilization
of the inner mitochondrial membrane (IMM) under physiological and pathological conditions
(Mnatsakanyan and Jonas, 2020a; Carraro et al., 2020) and the control of intracellular signaling
pathways (Esparza-Moltó et al., 2017).

The ATPase inhibitory factor 1 (IF1) is the physiological regulator of the ATP synthase, inhibiting
both the synthetic and hydrolytic activities when it is bound to the enzyme (García-Bermúdez et al.,
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2015). Besides being a main regulator of mitochondrial
OXPHOS, we have found that IF1 regulates mitochondrial
retrograde signaling and that it is a key protein for tissue
homeostasis (García-Aguilar and Cuezva, 2018). For instance,
its functional relevance in synaptic transmission and learning has
been recently demonstrated in mouse models of loss- and gain-
of-function of IF1 in neurons (Esparza-Moltó et al., 2021). In this
review, we address the role of the ATP synthase/IF1 axis in
cellular physiology, highlighting its tissue specificity.

THE ATP SYNTHASE IS CRUCIAL IN
OXPHOS, CRISTAE STRUCTURE AND AS
SIGNALING HUB
The ATP synthase is the rotatory engine in the IMM that
catalyzes the synthesis of ATP in a process driven by the
proton-motive force, which is generated by the respiratory
chain (Boyer, 1997). It is a multisubunit protein complex that

consists of the membrane embedded Fo domain, which contains
the rotor and the proton channel, and the catalytic matrix-
protruding F1 domain, which is responsible for the synthesis
of ATP (Walker, 2013; Kühlbrandt, 2019) (Figure 1A). ATP
synthesis is driven by the influx of protons from the
intermembrane space into the matrix, that triggers the rotation
of the c-ring in the Fo domain (Figure 1A). A central stalk
transfers the torque to the barrel of α3β3 subunits of the F1
domain, inducing the conformational changes that drive ATP
synthesis (Srivastava et al., 2018; Murphy et al., 2019)
(Figure 1A). A peripheral stalk acts as a stator, to prevent the
unproductive rotation of the α3β3 subunits in the F1 domain
(Hahn et al., 2018) (Figure 1A). The enzyme is assembled in a
stepwise process (He et al., 2018). The F1 domain and the c-ring
are assembled independently and are subsequently associated
with the peripheral stalk and supernumerary subunits of the
enzyme (e, f, g, 6.8pl and DAPIT). The assembly of both domains
is assisted by different assembly factors (Li et al., 2017; Carroll
et al., 2021). However, the assembly process is not fully

FIGURE 1 | Structure of the monomer, dimer and tetramer of the mammalian ATP synthase. (A) Structure of monomeric bovine ATP synthase bound to the
inhibitory N-terminal fragment of IF1. The soluble F1-ATPase domain is composed by the α3β3 subassembly (light green/pink) and the central stalk (γ subunit, light blue,
and δ, ε subunits, dark blue), while the Fo domain is formed by a ring of 8c subunits (orange), and subunit a (dark yellow). These two domains are linked by a peripheral
stalk, made up of subunits b, d, F6 (grey) and oligomycin sensitivity-conferring protein (OSCP; purple). Additional supernumerary subunits have been described in
the Fo domain; e, f, g, A6L, diabetes-associated protein in insulin-sensitive tissues (DAPIT) and the 6.8-kDa proteolipid (6.8PL) (dark green). Inset, the interaction between
the N-terminal inhibitory fragment of IF1 (red) and subunits β (pink) and γ (light blue) is shown. The position of S14 in the human andmouse inhibitory peptide is highlighted
in yellow. The Ala14 (Ser14 in human andmouse IF1) is shown in yellow. Molecular reconstruction from PDB: 6ZPO. (B) Structure of the bovine ATP synthase dimer. The
supernumerary subunits of the enzyme (DAPIT, e, f, g, A6L and 6.8PL) are involved in the dimerization of the enzyme. IMM, inner mitochondrial membrane. Molecular
reconstruction from PDB: 7AJD. (C)Cryo-EM structures of porcine (left) and ovine (right) ATP synthase tetramers viewed from thematrix side. IF1 dimers (red or circled in
red) bind two adjacent dimers of the ATP synthase promoting the formation of tetrameric or higher-order oligomers. Molecular reconstruction from PDB: 6J5K (left) and
EMD-0667 (right). Images created with the PyMOL Molecular Graphics System.
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understood, and different pathways have been proposed (He
et al., 2020).

Mitochondrial ATP synthases form dimers in lipid bilayers,
which in turn assemble into short ribbons or long rows in the
IMM (Kühlbrandt, 2019;Wittig and Schägger, 2008) (Figure 1B).
The supernumerary subunits of the enzyme, which are found
when the complex is isolated in the presence of phospholipids,
impose a local curvature on the membrane promoting its local
bending (Walker, 2013; Hahn et al., 2016; Guo et al., 2017), and
are involved in dimerization and oligomerization of the ATP
synthase, and therefore in cristae formation (Figure 1B).
Supernumerary subunits mediate different interactions
between ATP synthases within a dimer and between two
dimers, stabilizing its tetrameric structure as recently shown in
cryo-EM studies of mammalian ATP synthases (Gu et al., 2019;
Pinke et al., 2020; Spikes et al., 2020) (Figure 1C). Moreover,
dimers of the enzyme are also brought together into tetramers or
higher-order oligomers by protein-protein contacts between the
F1 domain of adjacent monomers mediated by IF1 (Wittig and
Schägger, 2008; Gu et al., 2019; Pinke et al., 2020) (Figure 1C).
IF1 binds to the ATP synthase as a dimer with the two inhibitory
domains facing opposite sites, thereby interacting with two
adjacent F1 domains simultaneously (Cabezón et al., 2000; Gu
et al., 2019; Pinke et al., 2020). However, IF1 cannot link together
both F1 domains of the same dimer in yeast and mammals
because they are too far apart (Kühlbrandt, 2019).
Remarkably, this is not the case in the ATP synthase from
ciliates, in which a specific subunit anchors the IF1 dimer to
the membrane (Flygaard et al., 2020), or from Toxoplasma gondii,
in which the dimers have an unusual architecture with the
peripheral stalks offset and form hexamers (Mühleip et al.,
2021). Interestingly, the angle between the rotatory axes in
mammalian V-shaped dimers is dynamic (ranging from 76 to
95o or from 80 to 90° in the bovine and ovine enzymes,
respectively), indicating that the interactions between both
monomers within a dimer are also dynamic (Pinke et al.,
2020; Spikes et al., 2020). This dynamism may be necessary to
accommodate the conformational changes that occur in the F1
domain during catalysis, and may also allow the enzyme to
operate and/or contribute to the continuous changes in cristae
architecture (Hackenbrock, 1966; Hackenbrock, 1968; Spikes
et al., 2020). In any case, IF1 clearly contributes to the
organization of the ATP synthase, since its overexpression in
cells (Campanella et al., 2008) or in vivo (Santacatterina et al.,
2016; Esparza-Moltó et al., 2021) increase the oligomeric
assemblies of the enzyme. Moreover, genetic ablation of IF1 in
neurons reduces the content of dimers and oligomers of the ATP
synthase in brain mitochondria (Esparza-Moltó et al., 2021).
Interestingly, IF1, by promoting the oligomerization of the
ATP synthase (Faccenda et al., 2013) and the stabilization of
OPA1 (Faccenda et al., 2017), has been reported to preserve
cristae structure upon toxic insults and thus protect cells from
apoptotic death, in agreement with previus findings (Formentini
et al., 2012).

Although recently questioned (He et al., 2017; Carroll et al.,
2019), increasing evidence strongly supports that the ATP
synthase forms the permeability transition pore (PTP), or at

least significantly contributes to it (Mnatsakanyan et al., 2019;
Urbani et al., 2019; Carraro et al., 2020; Carrer et al., 2021). The
PTP is the mitochondrial megachannel whose prolonged opening
permeabilizes the IMM to small solutes and commits cells to
death (Carraro et al., 2020). However, the PTP also undergoes
physiological transient openings known as “flickering” that are
key for buffering matrix Ca2+, regulating the efficiency of
OXPHOS and the production of mitochondrial reactive
oxygen species (mtROS) (Mnatsakanyan and Jonas, 2020a;
Carraro et al., 2020). Therefore, the ATP synthase emerges as
a key player in OXPHOS, cristae structure, the execution of cell
death and signaling.

IF1 IS THE PHYSIOLOGICAL REGULATOR
OF THE ATP SYNTHASE

IF1 is a structurally disordered protein that binds to the catalytic
interface in the F1 domain (Gledhill et al., 2007). During the binding
process, the disordered region of IF1 interacts with the most open of
the three catalytic sites and becomes α-helical as it establishes more
interactions with the enzyme (Bason et al., 2014) and once bound,
blocks the rotatory catalysis of the complex (Figure 1). For many
years now, IF1 has been considered an inhibitor only of the ATP
hydrolytic activity of the enzyme, the so-called unidirectional
inhibitor of the enzyme (Walker, 2013). In this situation, IF1
prevents reverse functioning of the enzyme to maintain the
mitochondrial membrane potential (ΔΨm) when the organelles
become de-energized in conditions of hypoxia (Campanella et al.,
2008;Walker, 1994). This notion is largely based on in vitro findings
showing that IF1 readily inhibits ATP hydrolysis by the isolated
enzyme (Walker, 2013; Gledhill et al., 2007; Bason et al., 2014;
Walker, 1994; Cabezon et al., 2000). However, more recent findings
indicate that IF1 also inhibits the forward ATP synthetic activity of
the enzyme, as revealed by a reduction in the oligomycin-sensitive
respiratory rate in cells overexpressing IF1 (Formentini et al., 2012;
Sánchez-Cenizo et al., 2010; Kahancová et al., 2018; Kahancová et al.,
2020) or in the oligomycin-sensitive ATP synthesis rate assessed in
isolated mitochondria and in permeabilized cells (García-Bermúdez
et al., 2015; Nuevo-Tapioles et al., 2020). Moreover, the ATP
synthetic activity was also significantly inhibited in isolated
mitochondria of different tissues in transgenic mice
overexpressing IF1 in vivo (Santacatterina et al., 2016; Formentini
et al., 2014; Formentini et al., 2017; Sánchez-González et al., 2020). In
addition, the IF1-mediated inhibition of the ATP synthetic activity
of the enzyme was also traced by the activation of glycolysis through
signaling pathways sensing the reduction in cellular ATP availability,
recapitulating the effect of oligomycin (Santacatterina et al., 2016;
Formentini et al., 2012; Sánchez-Cenizo et al., 2010; Formentini
et al., 2014; Formentini et al., 2017; Sánchez-Aragó et al., 2013a).
Independent findings indicated that IF1 inhibits the translocation of
protons mediated by the ATP synthase in submitochondrial
particles or in reconstituted liposomes when operating either in
the synthetic or hydrolytic modes (Zanotti et al., 2009). More direct
evidence was provided recently using genetic models for the IF1-
mediated regulation of the ATP synthase (Esparza-Moltó et al.,
2021). Indeed, ablation of IF1 in mouse neurons increases both ATP
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hydrolase and synthetic activities of the ATP synthase in isolated
mitochondria, whereas its overexpression increases the fraction of
IF1 bound to the enzyme and reduces both ATP synthase and
hydrolase activities of the enzyme (Esparza-Moltó et al., 2021).
These in vivo and cellular findings are in full agreement with the
recent cryo-EM structures of the tetrameric ATP synthase purified
from porcine or ovine heart mitochondria, that reveal under
physiological conditions that IF1 is bound and inhibits the
enzyme (Figure 1C) (Gu et al., 2019; Pinke et al., 2020).

IF1 IS EXPRESSED IN A TISSUE-SPECIFIC
MANNERAND ITS INHIBITORY ACTIVITY IS
REGULATED BY PHOSPHORYLATION
IF1 is highly overexpressed in most prevalent human carcinomas
and contributes to the reprogramming of metabolism towards an

enhanced glycolytic flux in cancer and non-cancer cells (Sánchez-
Cenizo et al., 2010; Sánchez-Aragó et al., 2013a; Esparza-Moltó
et al., 2017; Sánchez-González et al., 2020). Cancer cells and
undifferentiated cells with high proliferation rates show
metabolic similarities (Zhang et al., 2012). Interestingly, IF1
expression is also increased in stem cells when compared to
some differentiated cells (Sánchez-Aragó et al., 2013b). Indeed,
downregulation of IF1 in adult human mesenchymal stem cells is
necessary for their osteogenic differentiation (Sánchez-Aragó
et al., 2013b). Along the same line, somatic cell reprograming
is associated with the upregulation of protein levels of IF1 (Prieto
et al., 2018). Hence, IF1 may be a marker for proliferation and
stemness, and may play a role in shaping the metabolic profile of
these cells by restraining OXPHOS and favoring glycolysis.

In contrast, IF1 shows a cell type-specific expression pattern in
normal adult tissues (Sánchez-Cenizo et al., 2010; Esparza-Moltó
et al., 2019) (Figure 2A). For instance, the epithelia of human

FIGURE 2 | IF1 is tissue-specifically expressed and plays a central role in neuronal function and learning. (A) The relative molar ratio between IF1 and the ATP
synthase varies in different tissues and between human (above) andmouse (below). Negligible IF1 expression, white; Highest ratio, dark brown. (B) Interaction of IF1 with
the ATP synthase is a reversible process mainly dependent on the mitochondrial content of dephosphorylated and free IF1. IF1 is phosphorylated by a mitochondrial
protein kinase A (PKA)-like activity, thus reducing the amount of free IF1 that can bind to the enzyme. No phosphatases have been yet found to mediate IF1
dephosphorylation. An additional actor affecting the binding equilibrium of IF1 (Ke) might be the rapid turnover of IF1 mediated by serine- and metallo-proteases. (C)
Cartoon illustrating the major effects of IF1 binding to ATP synthase in its activity and in generating the tetrameric structure of the enzyme to facilitate the formation of
cristae rims. Binding of IF1 (red) to dimers of the ATP synthase (blue) generate tetramers of inhibited enzyme leading to increased proton-motive force (Δp) in cristae and
the generation of mitochondrial ROS (mtROS) by the electron transport chain (ETC). Other components that facilitate cristae structure such as the MICOS complex
(green), mitochondrial dynamin-like GTPase (OPA1, yellow), the sorting and assembly machinery (SAM, purple) and translocase of the outer membrane (TOM, pink)
located at the inner boundary membrane are depicted. (D) The expression of IF1 in hippocampal neurons promotes the formation of super-assemblies of the ATP
synthase and thereby contributes to the organization of mitochondrial cristae and the permeability of the inner mitochondrial membrane (IMM). Moreover, IF1 plays a
crucial role in the control of oxidative phosphorylation (OXPHOS) and signaling mediated by mitochondrial reactive oxygen species (mtROS), which activate the
extracellular signal-regulated kinases (ERK) 1/2. By modulating these processes, IF1 emerges as a relevant protein for the regulation of synaptic transmission and
learning. Image produced with BioRender.
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colon and lung contain low levels of IF1, while the heart, brain,
kidney and liver contain considerable amount of IF1 protein
(Esparza-Moltó et al., 2019). A semiquantitative approach aimed
at investigating the relative content of IF1 over the ATP synthase
revealed that human heart and brain have a molar excess of the
inhibitor over the enzyme (Esparza-Moltó et al., 2019)
(Figure 2A). Moreover, the expression pattern of IF1 in
mouse tissues differs from that in human tissues. Whereas
both human and mouse brain express high levels of the
protein, mouse heart and liver express low levels of it
(Esparza-Moltó et al., 2019) (Figure 2A). Conversely, and in
contrast to its human counterpart, mouse colon expresses high
levels of IF1, being in molar excess over the enzyme (Esparza-
Moltó et al., 2019) (Figure 2A).

The observation that tissues with high energy demand that rely
on an efficient OXPHOS system for energy provision express high
levels of IF1 was a puzzling scenario. However, this energetic
paradox was partially solved after showing that IF1 inhibitory
activity can be abolished by the phosphorylation of S39 (S14 in
the mature human and mouse IF1) (García-Bermúdez et al.,
2015). And indeed, a relevant fraction of IF1 is phosphorylated in
mouse tissues with a molar excess of the inhibitor protein
(Esparza-Moltó et al., 2019), thus reducing the tissue content
of IF1 that can bind and inhibit the activity of the enzyme.
However, another relevant fraction of IF1 is dephosphorylated
and co-migrates with different assemblies of the ATP synthase
(Esparza-Moltó et al., 2019), indicating inhibition of its activity
(Santacatterina et al., 2016). These findings suggest the existence
of two pools of the ATP synthase under basal physiological
conditions: one actively producing ATP and one inhibited by
IF1, in agreement with similar observations in mouse heart in
response to in vivo stimulation of β-adrenergic signaling (García-
Bermúdez et al., 2015; García-Bermúdez and Cuezva, 2016) and
cryo-EM structures of mammalian ATP synthase (Figure 1C)
(Gu et al., 2019; Pinke et al., 2020). Importantly, modulating the
dose of IF1, either by its knock-out or overexpression, affects the
fraction of IF1 bound to the ATP synthase paralleling the
reduction of both the ATP hydrolase and synthase activities of
the enzyme (Esparza-Moltó et al., 2021). Hence, the interaction of
IF1 with the ATP synthase depends on the mitochondrial content
of the inhibitor and therefore it is controlled by the mass action
ratio (Figure 2B). The phosphorylation of IF1 provides an
additional level for the regulation of the ATP synthase activity
by affecting the fraction of the inhibitor that can bind to the
enzyme (Figure 2B).

The existence of a bulk of ATP synthase inhibited by IF1
may be relevant for the fine-tuning of ATP provision by
OXPHOS with the cellular energy demand (García-
Bermúdez et al., 2015). Indeed, β-adrenergic stimulation of
mice, a condition that mimics a situation of high energy
demand, triggers the phosphorylation of heart IF1 and an
increase in the production of ATP in mitochondria (García-
Bermúdez et al., 2015). However, the proteins that mediate the
phosphorylation of IF1 are ill-defined. IF1 is phosphorylated
by a cAMP-dependent protein kinase A like activity within
mitochondria (García-Bermúdez et al., 2015) (Figure 2B). A
soluble adenylate cyclase (sAC) is the source of cAMP in

mitochondria (Acin-Perez et al., 2009) and it is activated
upon mitochondrial uptake of Ca2+ (Di Benedetto et al.,
2013). Since Ca2+ triggers the contraction of muscle fibers
and is sequestered in mitochondria (Rizzuto et al., 2012), the
Ca2+/sAC/IF1 axis provides a mechanism coupling the
increased energy demand imposed by β-adrenergic
stimulation of the heart with a higher ATP production in
mitochondria. In other words, phosphorylation of IF1 relieves
the brake on a fraction of ATP synthase to supply more ATP
when it is needed. On the other hand, IF1 is dephosphorylated
in cells under hypoxic conditions or when progressing through
the glycolytic phases of the cell cycle (García-Bermúdez et al.,
2015). No phosphatases have been yet identified regulating IF1
phosphorylation status. Hence, it is reasonable to suggest that
its rapid turnover (Sánchez-Aragó et al., 2013a; Sánchez-Aragó
et al., 2013b), when compared to other subunits of the ATP
synthase (García-Aguilar et al., 2019), could participate as an
additional mechanism controling the mitochondrial content of
phospho- and dephospho-IF1 (Figure 2B). Interestingly, the
expression and phosphorylation of IF1, which is present in
mitochondria from pancreatic β-cells, regulates glucose-
stimulated insulin secretion by controlling ATP production
in mitochondria and thus the ATP/ADP ratio (Kahancová
et al., 2018; Kahancová et al., 2020), highlighting its relevance
in metabolic regulation.

TWO POOLS OF ATP SYNTHASE, CRISTAE
HETEROGENEITY AND mtROS SIGNALING

Moreover, the existence of the two pools of the ATP synthase
could contribute to the heterogeneity in ΔΨm (Wolf et al., 2019)
and ΔpH (Rieger et al., 2021) that has been recently reported in
mitochondrial cristae by high spatial resolution microscopy. The
active and inactive fractions of ATP synthase could be in
functionally independent cristae, or even in different regions
within the same cristae, thereby contributing to the differences
in ΔΨm and ΔpH that affect the overall activity of oxidative
phosphorylation (Figure 2C). Therefore, IF1, by favoring the
formation of ATP synthase tetramers which promote cristae
formation and are inhibited for the handling of ATP, may
increase the number of cristae in which ATP synthesis is
slowed down and the proton-motive force (Δp) is increased
(Figure 2C). In this way, we propose that there are
microdomains of the enzyme in cristae containing active and
inactive ATP synthases, and that the latter domains are
preferentially located at cristae rims in order to stabilize and
facilitate the generation of the infolds of the IMM (Figure 2C).
The distribution of IF1-inhibited ATP synthase at cristae rims
differs from the ETC distribution at the flat region of cristae, and
generates mtROS as a function of the fraction of the ATP synthase
that is inhibited by IF1 (Figure 2C). The asymmetric distribution
of ETC and IF1-inhibited ATP synthase in cristae results in a
heterogeneous distribution of Δp along the cristae or in different
cristae (Figure 2C). However, these distributions are highly
dynamic, changing in the time scale of seconds or less and
depending on a very large number of factors. In this way, the
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“poised” cristae may be a reservoir of enzyme ready to respond to
an increase in energy demand or operate as signaling “modules”
by increasing ROS production.

The IF1-mediated inhibition of the ATP synthase promotes an
increase in the proton-motive force and in the production of
mtROS, since ΔΨm and mtROS production concurrently
increase with higher IF1 dose in neurons (Esparza-Moltó
et al., 2021). The increased mtROS production rate can be
explained by increased reverse electron transfer (RET) to
complex I, since ΔΨm controls the level of RET (Robb et al.,
2018). RET is a relevant pathway in ischemia-reperfusion injury
due to the aberrant production of mtROS (Chouchani et al.,
2014), but it is also involved in the polarization of macrophages
(Mills et al., 2016) and promotes mitochondrial function and
longevity in fly models of Parkinson disease and aging (Scialò
et al., 2016). Indeed, mtROS regulate the activity of kinases and
transcription factors involved in the control of nuclear and
cellular responses necessary for the adaptation to changing
cues (Holmström and Finkel, 2014). In this regard, IF1
emerges as a key regulator of retrograde signaling pathways
that control nuclear gene expression programs (Esparza-Moltó
et al., 2017). The partial arrest of OXPHOS by IF1 overexpression
in different tissues in vivo represents a mild stress in
mitochondrial function, but results in the activation of long-
lasting metabolic and molecular cytoprotective mechanisms that
allow the cells to withstand subsequent insults (Formentini et al.,
2014; Santacatterina et al., 2016; Formentini et al., 2017), that is,
IF1 signals mitohormetic processes (Esparza-Moltó et al., 2017).
Interestingly, genetic and metabolic studies targeting the ATP
synthase reveal that it regulates lifespan, as its silencing (Dillin
et al., 2002; Hansen et al., 2005; Sun et al., 2014) or the inhibition
of its activity (Chin et al., 2014; Fu et al., 2015) promote longevity
in different model organisms by activating mitohormetic
signaling. Although genetic regulation of IF1 dose in neurons
revealed no relevant effect in the life span of mice (Esparza-Moltó
et al., 2021), it was remarkable to observe that transgenic mice
overexpressing IF1 had increased exploratory activity, better
motor coordination and long-term memory than wild type
and mice devoid of IF1 in neurons (Esparza-Moltó et al., 2021).

DETRIMENTAL EFFECTS OF IF1
OVEREXPRESSION IN MOUSE TISSUES
THAT CONTAIN LOW LEVELS OF IF1
Nevertheless, the biological significance of the IF1-mediated
inhibition of the ATP synthase is more intricate and
emphasizes its tissue- and species-specific role in
mitochondrial functions. In fact, the overexpression of IF1 in
mouse tissues that naturally express low levels of the protein has
detrimental effects for the animal. For instance, mice that
overexpress a constitutively active mutant of IF1 in the liver
are more prone to hepatocarcinogenesis upon diethyl-
nitrosamine administration, stressing the pro-oncogenic role of
IF1 in liver cancer progression (Santacatterina et al., 2016;
Formentini et al., 2012; Song et al., 2014). Moreover, the
partial arrest of OXPHOS triggered by IF1 overexpression in

mouse skeletal muscle alters whole-body lipid homeostasis and
results in metabolic syndrome (Sánchez-González et al., 2020). In
mouse heart, loss of LRPPRC (leucine-rich pentatricopeptide
repeat containing protein), which recapitulates a rare form of
Leigh syndrome, causes a dramatic increase in the content of IF1
protein (Mourier et al., 2014). This occurs at the post-
transcriptional level, since LRPPRC binds and represses the
translation of IF1 mRNA in mouse heart (Esparza-Moltó
et al., 2019; Esparza-Moltó and Cuezva, 2020). IF1
upregulation in LRPPRC-knockout mice in the heart results in
a progressive lethal cardiomyopathy, caused by an alteration in
the assembly and oligomerization of the ATP synthase that leads
to a bioenergetic impairment (Mourier et al., 2014). Consistent
with these findings, it has been reported that IF1 could contribute
to cardiac damage in a mouse model of cardiac hypertrophy
(Yang et al., 2017). Remarkably, and in sharp contrast to mouse
heart, IF1 is highly expressed in human heart under normal
conditions, emphasizing large differences in IF1 function in this
organ between both species (Esparza-Moltó et al., 2019; Rouslin,
1987) (Figure 2A). It remains to be deciphered how IF1
expression in mouse heart promotes cardiac damage. We
suggest that the availability of genetically modified IF1 mice
could contribute in this regard (Formentini et al., 2014;
Esparza-Moltó et al., 2021).

Overall, we suggest that the regulation of the ATP synthase by
IF1 has tissue-specific functional relevance, and that this
relevance is imposed by the restricted expression pattern of
IF1 (Esparza-Moltó et al., 2019) (Figure 2A). This is
consistent with the proteomic and functional specialization of
mitochondria in different tissues thanks to the fine and specific
adjustment of their regulatory mechanisms (Pagliarini et al.,
2008). However, little is known about the physiological role of
IF1 in vivo in cell types that express high content of the inhibitor,
such as neurons from both the human and mouse.

THE ATP SYNTHASE/IF1 AXIS IS KEY FOR
THE REGULATION OF NEURONAL
FUNCTION
Neurons are highly specialized cells that consume around 75%
of the energy produced in the brain (Magistretti and Allaman,
2015). Most of this energy budget accounts for synaptic
processes, including the replenishment of pre-synaptic
vesicles with neurotransmitters and the maintenance of the
resting membrane potential in post-synaptic terminals
(Magistretti and Allaman, 2015). The pre-synaptic vesicle
cycle is fueled by both glycolysis and OXPHOS, which are
stimulated by the electrical activity (Rangaraju et al., 2014).
However, little is known about the energy supply in post-
synaptic terminals. Recent findings show that mitochondria
spatially confined in dendritic spines fuel local protein
translation during synaptic plasticity (Rangaraju et al.,
2019). While neurons can consume glucose, they obtain
most ATP through the oxidation of astrocytic-derived
lactate, especially during periods of high synaptic activity, as
proposed in the astrocytic-neuron lactate shuttle (Magistretti
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and Allaman, 2018). Hence, it appears paradoxical from the
energetic viewpoint that most IF1 expression in the brain is
restricted to neurons, while the more glycolytic astrocytes
contain negligible amount of the inhibitor of the ATP
synthase (Esparza-Moltó et al., 2019).

Notably, the genetic ablation of IF1 in forebrain neurons
impairs learning in mice, while its overexpression promotes
long-term memory, indicating a key role for IF1 in the
regulation of neuronal function and cognition (Esparza-
Moltó et al., 2021). IF1-knockout mice in neurons show
reduced content of oligomeric assemblies of the ATP
synthase in forebrain mitochondria and an altered cristae
structure, while IF1 overexpression promotes the
oligomerization of the enzyme and a more organized cristae
(Esparza-Moltó et al., 2021). In fact, it has been reported that
zebrafish and mouse models lacking IF1 show increased cell
death in the central nervous system and in the retina, and
thereby have a mild visual impairment (Martín-Jiménez et al.,
2018). This is associated with reduced OPA1 expression that
likely affects cristae organization (Martín-Jiménez et al., 2018).
Interestingly, a defect in the expression of subunit k of the ATP
synthase (also known as DAPIT), caused by a splice mutation
found in Leigh syndrome patients also reduces the content of
ATP synthase dimers (Barca et al., 2018). Mitochondria from
fibroblasts collected from these patients show altered cristae
organization (Barca et al., 2018), thus supporting the role of
ATP synthase oligomers in cristae architecture and
mitochondrial function. Moreover, DAPIT has been recently
identified as a susceptibility gene for schizophrenia and its
deficiency affects mitochondrial respiration, neuronal
development and mouse behavior (Wang et al., 2021).
Hence, it is conceivable that IF1 might also play a relevant
role in neuronal function by regulating the assembly of the
ATP synthase and cristae organization (Figure 2D).

The expression of other subunits of the ATP synthase is also
altered in different neurological diseases. For instance, OSCP is
downregulated in Alzheimer disease patients and mouse
models (Beck et al., 2016). The expression of β-F1-ATPase,
the catalytic subunit of the ATP synthase, is reduced in a
mouse model of Parkinson disease (Chen et al., 2019). In both
cases, there is an altered stoichiometry between the F1 and Fo
domains of the enzyme that destabilizes the complex (Beck
et al., 2016; Chen et al., 2019), favoring the dissociation of the
F1 domain (Mnatsakanyan and Jonas, 2020b). Moreover,
cyclophilin D -a protein that binds to the ATP synthase and
induces the opening of the PTP (Carraro et al., 2020)-
promotes the selective loss of OSCP subunit in aged mice
and in models of Alzheimer disease (Gauba et al., 2017; Gauba
et al., 2019). This way, cyclophilin D mediates the dysfunction
of the ATP synthase in these conditions.

It has been described that the ATP synthase harbors the
uncoupling channel that contributes to the PTP in the
membrane-embedded c-ring (Bonora et al., 2013; Alavian
et al., 2014; Mnatsakanyan et al., 2019). An excessive opening
of the PTP has been reported in neurons from mouse models of
Parkinson disease (Chen et al., 2019) and fragile X syndrome
(Licznerski et al., 2020). It is caused by the dissociation of the F1

domain of the ATP synthase and an increase in free c-rings,
which augment mitochondrial proton leak (Licznerski et al.,
2020). The excessive leak affects neuronal metabolism and
synaptic function and mediates an autistic-like behavior in
mouse models of fragile X syndrome (Licznerski et al., 2020).
Interestingly, IF1 expression is downregulated in the brain of the
same fragile X syndrome mouse model (Xu et al., 2018). We
have found that neurons from IF1-knockout mice show an
increased mitochondrial proton leak that promotes less
efficient OXPHOS (Esparza-Moltó et al., 2021). Conversely,
IF1 overexpression in neurons promotes better organized
cristae structure in mitochondria with less proton leak, which
might contribute to more efficient energy provision, increased
size of dendritic spines and higher synaptic transmission
(Esparza-Moltó et al., 2021). Therefore, IF1, by contributing
to the oligomerization of the ATP synthase, could regulate the
permeability of the IMM and thereby plays a relevant role in
neuronal metabolism and learning (Figure 2D).

Finally, we have recently shown that IF1 also regulates
neuronal function through the control of mtROS production
in neurons (Esparza-Moltó et al., 2021) (Figure 2D). mtROS
promote neuronal activation in transgenic mice overexpressing
IF1 by signaling through the activation of extracellular signal-
regulated kinases (ERK) 1/2 (Esparza-Moltó et al., 2021). ERK 1/2
is a crucial hub whose signaling contributes to the induction of
synaptic plasticity and learning (Sweatt, 2001). ROS activate ERK
1/2 (Kanterewicz et al., 1998), likely by modulating the activity of
upstream kinases and phosphatases, and this waymtROS regulate
signaling pathways involved in synaptic function (Oswald et al.,
2018).

Neurons and glial cells work together in the brain forming an
intricate association that is necessary for proper neuronal and
higher-order brain functions (Magistretti and Allaman, 2018). In
this regard, the physiological role of mtROS depends on which
cell type they are produced in (Jimenez-Blasco et al., 2020;
Vicente-Gutierrez et al., 2021). Astrocytic mtROS are
necessary for neuronal survival, because they stimulate the
production of lactate in astrocytes, which is delivered to
neurons via the lactate shuttle and supports neuronal function
(Jimenez-Blasco et al., 2020). Indeed, reducing mtROS
production in astrocytes by the specific activation of type-1
cannabinoid receptors present in astroglial mitochondria
impairs neuronal function and social behavior in mice
(Jimenez-Blasco et al., 2020). However, quenching mtROS
production in neurons by the overexpression of a
mitochondrial targeted catalase does not affect behavior under
basal conditions (Vicente-Gutierrez et al., 2021). Nevertheless, we
cannot rule out a role for neuronal mtROS. They have been
shown to regulate excitatory (Fu et al., 2017; Esparza-Moltó et al.,
2021) and inhibitory (Accardi et al., 2014) neurotransmission and
learning (Esparza-Moltó et al., 2021). Definitively, where and how
ROS are being produced in mitochondria is relevant for their
functional outcome (Scialò et al., 2016), especially in responses as
complex as learning. The site and mechanism of mtROS
production might affect which signaling molecules are
modified and therefore the downstream responses that are
induced.
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CONCLUSION

The ATP synthase is a crucial hub in mitochondria that integrates
OXPHOS, the organization of mitochondrial cristae, the
permeabilization of the IMM, and the regulation of intracellular
signaling. Using both pharmacological and genetic approaches, we
have shown that IF1 functions in vivo as a physiological inhibitor of
the ATP synthase. The IF1-mediated inhibition of the ATP
synthase is a physiologically relevant mechanism to adapt ATP
production by OXPHOS with the cellular energy demand, control
ΔΨm and mitochondrial retrograde signaling mediated at least by
mtROS. Moreover, it regulates the oligomerization of the ATP
synthase and the organization of mitochondrial cristae. However,
very little is known about the precise regulation of the ATP
synthase by IF1. In this regard, it will be interesting to address
whether the IF1-inhibited fraction of ATP synthase promotes
localized mitochondrial hyperpolarization and mtROS
production by the electron transport chain in functionally
independent cristae, or even within different regions of the
same cristae, rather than by overall increase of ΔΨm in the
whole mitochondrion.

Moreover, the biological relevance of the ATP synthase/IF1
axis is far from being fully understood. The tissue-restricted
expression of IF1 may explain why its overexpression either
in vitro or in vivo yields different outcomes depending on the
cellular type. In neurons, which show ample expression of the
inhibitor in both humans and mice, IF1 is a crucial protein
regulating synaptic transmission and memory as well as for
protection from excitotoxic insults (Formentini et al., 2014).

Hence, the ATP synthase/IF1 axis offers a valuable therapeutic
target to treat cognitive deficits associated with
neurodegenerative and age-associated conditions (Goldberg
et al., 2018). However, the expression of IF1 differs between the
human and mouse in other tissues, such as colon and heart.
The development of tissue-specific mouse models lacking or
overexpressing IF1 will be invaluable to delineate the
physiological and adaptive processes that are modulated by
the ATP synthase/IF1 axis to unveil their
contribution to the control of cellular function and
pathophysiology.
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