Training intensity and nutrition may influence adaptations to training performed in hypoxia and consequently performance outcomes at altitude. This study investigates if performance at simulated altitude is improved to a larger extent when high-intensity interval training is performed in normobaric hypoxia and if this is potentiated when combined with chronic dietary nitrate (NO3−) supplementation.
Thirty endurance-trained male participants were allocated to one of three groups: hypoxia (13% FiO2) + NO3−; hypoxia + placebo; and normoxia (20.9% FiO2) + placebo. All performed 12 cycling sessions (eight sessions of 2*6 × 1 min at severe intensity with 1 min recovery and four sessions of 4*6*10 s all-out with 20 s recovery) during a 4-week period (three sessions/week) with supplementation administered 3–2.5 h before each session. An incremental exhaustion test, a severe intensity exercise bout to exhaustion (
In all tests, performance improved to the same extent in hypoxia and normoxia, except for SmO2 after
Performance at simulated altitude was not improved to a larger extent when high-intensity interval training was undertaken in normobaric hypoxic conditions, when compared with normoxic training. Additionally, dietary NO3− supplementation was ineffective in further enhancing endurance performance at simulated altitude.