Physical activity (PA) increases bone mass, especially in late prepuberty and early puberty, but it remains unclear if and how PA affects both bone formation and bone resorption.
We included 191 boys and 158 girls aged 7.7 ± 0.6 (mean ± SD) in a population-based PA intervention study. The intervention group (123 boys and 94 girls) received daily physical education (PE) in school (40 min/day; 200 min/week) from study start and during the nine compulsory school years in Sweden. The controls (68 boys and 64 girls) received the national standard of 1–2 classes PE/week (60 min/week). During the intervention, blood samples were collected at ages 9.9 ± 0.6 (
Two years after the intervention was initiated (at Tanner stages 1–2), we found higher serum levels of bALP and OC, and lower serum levels of TRAcP 5b in the intervention compared with the control group. The mean difference (95% CI) was for bALP: 13.7 (2.1, 25.3) μg/L, OC: 9.1 (0.1, 18.1) μg/L, and TRAcP 5b: −2.3 (−3.9, −0.7) U/L. At Tanner stages 3–5 and after the intervention was terminated, bone turnover markers were similar in the intervention and the control children.
Daily school PA in the late prepubertal and early pubertal periods is associated with higher bone formation and lower bone resorption than school PA 1–2 times/week. In late pubertal and postpubertal periods, bone formation and resorption were similar. Termination of the intervention is not associated with adverse bone turnover, indicating that PA-induced bone mass benefits gained during growth may remain in adulthood.